

First approach in ink-jet printing

Véronique Conédéra, Fabien Mesnilgrente, Norbert Fabre

▶ To cite this version:

Véronique Conédéra, Fabien Mesnilgrente, Norbert Fabre. First approach in ink-jet printing. [Technical Report] Rapport LAAS n° 10031, LAAS-CNRS. 2010, 21p. hal-01867561

HAL Id: hal-01867561 https://hal.science/hal-01867561

Submitted on 4 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. First approach in ink- jet printing

V.Conédéra, F. Mesnilgrente, N. Fabre

Contents

I. History of the development of the ink jet technology

II. The two methods used to produce droplets

- II.1 Continuous jetting
- II.2 Drop on demande jetting

III. Drop formation in DOD print heads

IV. Influence of the contact angle

- IV.1 Young Dupre equation
- IV.2 Consequences
- IV.3 Droplet impact and spreading
- IV. 4 predicting line width
- IV. 5 Instability of printed lines
- IV.6 Coffee staining

V. Exemples of development at LAAS-CNRS

- V.1 Activated carbon deposition for supercapacitors
- V.2 CNT for RF applications
- V.3 ZnO nanoparticles for gas detection applications

VI. The ALTADROP equipement

VII. Conclusion

I. HISTORY OF THE DEVELOPMENT OF THE INK-JET TECHNOLOGY

Three time periods of technological and market development in the ink-jet printing industry

[1] Neil Clymer, Shigeru Asaba, J. Eng. Technol. Manage. 25 (2008) 137-156

3000 patents for 1989-2000 period (Hewlett Packard; Seiko Epson; Canon; Lexmark; Brother; Xerox; Eastman Kodak)

".. ink-jet printing is an incredibly complex technology that appears deceptively simple to the eyes of users

• Five steps in ink-jet printing

II. THE TWO METHODS USED TO PRODUCE DROPLETS

II.1 Continuous Ink jet (CIJ)

Droplets, in the presence of an electrostatic field, acquire a charge

II.2 Drop on demand (DOD)

Droplets are produced by pressure/velocity transients that are caused by volumetric change, which are induced by a piezoelectric material

Conductive and not conductive inks

III. DROP FORMATION IN PRINT HEADS

Fromm obtained an approximate solution to the Navier-Stokes equations to describe droplet formation [4]:

$$Z = \left[\frac{d \rho \gamma}{\eta} \right]^{1/2} = Oh^{-1}$$

Oh⁻¹: Ohnesorge number (dimensionless number)
ρ: density of the fluid
η: viscosity of the fluid
γ: surface tension of the fluid
d: characteristic length (diameter of the printing orifice)

Fromm predicted that drop formation in DOD systems was possible for Z > 2This was latter refined by **Reis** and **Derby** who predicted DOD printing in the range 1 < Z < 10 [3]

[3] Nuno Reis, Chris Ainsley and Brian Derby, J. of App. Phys. 97, 094903 (2005)[4] J.E. Fromm IBM Res. Develop. 28. 3. (1984)

IV. INFLUENCE OF THE CONTACT ANGLE

If gravitational forces are negligible, a liquid droplet deposited on a substrate will equilibrate to a spherical cap with a contact angle Θ

IV.1 YOUG-DUPRE EQUATION

$$\cos \Theta = \frac{\gamma^{\rm SV} - \gamma^{\rm SL}}{\gamma^{\rm LV}}$$

 $\gamma^{\rm LV}$: Interfacial energy between droplet and air $\rm Nm^{-1}$

 γ^{SV} : Interfacial energy between substrate and air Nm⁻¹

 γ^{SL} : Interfacial energy between substrate and droplet Nm⁻¹

[5] J. Stringer, B. Derby ,and al Journ. Of The European Ceramic Society., 29 (2009) 913-918

IV.2 CONSEQUENCES

- Substrates with low surface energy (teflon) are Θ large and low wettability
- Surfactant addition decrease γLV and improve the wettability
- Ex: Triton X100 surfactant, mixed in EG, on Au and SiO₂ surfaces (SiO₂ OTS treated)

Contact angle variation on Au and SiO₂ versus % Triton X100 weight

[6] V. Conedera, F. Mesnilgrente, M. Brunet, N. Fabre ICQNM Cancun Mexique (1-6 February 2009)

IV.3 DROPLET IMPACT AND SPREADING

IV.3.1 Pasandideh-Fard et al (1996) relationship

$$\beta = \frac{d}{d_0} = \frac{We + 12}{3(1 - \cos\theta + 4 (We/Re^{1/2}))}^{1/2}$$

B : spread factor

d : spread diameter

 \mathbf{d}_{\circ} : initial droplet diameter

 Θ :liquid-solid contact angle

Re : Reynolds number = $\rho v d / \mu$

We :Weber number = $\rho v^2 d/\gamma^{lv}$

■ IV.3.2 Other relationship form

$$\beta = \frac{d}{d_0} = \left(\frac{4\sin\theta (1+\cos\theta)}{(1-\cos\theta) (2+\cos\theta)}\right)^{1/3}$$

[7] Taewoong Lim, Sewoon Han et al Intern. Journ. Of Heat Transfert, 52 (2009) 431-441

IV. 4 PREDICTING LINE WIDTH

IV. 5 INSTABILITY OF PRINTED LINES

[9] J.Stringer, B. Derby et al Journ. of the European Ceramic Society , 29 (2009) 913-918

Printed lines can become unstable when the contact angle formed by the liquid with the substrate is larger than the advancing contact angle.

- Other phenomena : at the beginning of the writing
- Material is pumped towards the rear because of the pressure difference which results in bulges being seen

Ex: ZnO deposition: substrate temperature= 110°C; p= 20µm (LAAS-CNRS)

Low particles density at the end of the structure

IV. 6 COFFEE STAINING

For films we want to print uniform features, but after drying, deposition solute is in an external ring.

10% ZnO nanoparticle in ethylene glycol, deposited on silicon (10 drops;. dryed at room temperature

IV.6.1 Deegan theory

The conditions for coffee staining are:

- Volatile and wetting solvent
- Pinned contact line
- Higher evaporation at the edge

The red area represents the volume of liquid removed by evaporation in a single time step Since the contact line is pinned any liquid that evaporates from the edge must be replenished by liquid from the interior.

[11] Deegan and al. Phys. Rev. E., 62 (2000) 756-765

IV.6.2 Solutions (or suggestions) to suppress coffee staining

Reducing edge evaporation is e very good approch! <u>First</u>: by increasing the contact angle

6 droplets of activated carbon deposited on Au and SiO_2 with 30° contact angle

Sessile droplet of activated carbon deposition onto75° angle surface of SiO₂ (OTS treated

[12] V.Conédéra, F. Mesnilgrente, M. Brunet, N. Fabre, ICQNM, 1-6 February 2009 Cancun (Mexique

Second: by addition of a solvent with high boiling point

ZnO profiles : A : 10% ZnO in Ethylene glycol; B: 10% ZnO + 2.5% HBS in Ethylene glycol (LAAS-CNRS)

V.1 ACTIVATED CARBON DEPOSITION FOR SUPERCAPACITORS [12]

Localisation of the printing on the gold electrodes

SEM picture of AC deposited at 140°C onto 10µm wide electrodes

SEM picture of AC deposited on an interdigited structure

detail of the structure

V.2 Carbon nanotubes for RF applications (first result)

CNT deposited onto SiO₂ : chemical confinement by OTS

SEM of NTC (S. Pacchini LAAS-CNRS)

V.3 ZnO nanoparticles for gas detection applications

Gas sensor with (a) square geometry; (b) circular geometry.

Conditions of deposition: 30 drops;50µm diameter of the ink head; substrate temperature 65°C Chemical confinement by OTS Ink composition : 10% ZnO nanoparticles in 2.5% HBS in ethylene glycol (in weight)

SEM gas sensor with circular geometry Conditions of deposition 60 drops; 80 µm diameter of the of the ink head; substrate temperature: 130°C Ink composition: 10% ZnO nanoparticles in ethylene glycol (in weight)

[13] V. Conedera, P. Yoboue, F. Mesnilgrente, P. Menini, N. Fabre, SPIE January 2010 (submit)

VI. THE ALTADROP EQUIPMENT

Piezoresistive actuator : Wave form 12 000 combinations possible!

Ink fabrication : the challenge!!

٠

- Viscosity : above 40mPa.s, jetting becomes difficult
- The quality of suspensions:
 - Stability with time
 - No agglomeration
 - Chemical compatibility with ink head, pipes and valves...
- Adequation with the substrate....

VII. CONCLUSION

Do you remember:

... ink-jet printing is an incredibly complex technology that appears deceptively simple to the eyes of users!!"

aim :

"it's an exciting subject !!"

ADDITIONAL REFERENCES

[1] D.B. Bogy, F.E. Talke IBM J. Res. Develop. 28; 3; 1984.

[14] Edward D. Wilkes and Osman A. Basaran; Journ. Of Colloid and Interface Science 242, 180-201 (2001)

[15] Zhengjun Xue, Carlos M. Corvala et al Chem. Eng. Science. 63 (2008) 1842-1849.

[16] C. Rensch MicroFab Technologies technical note june 2006

[17] Stefano Schiaffino and Ain A. Sonin J. Fluid Mech. (1997) 343, 95-110

[18] W.M. Healy, J.G. Hartley, S.I. Abdel-Khalik, Intern. J. of Heat and Mass Transfer 44 (2001) 3869-3881

[19] A.S. Moita, A.L.N. Moreira, Int. J. of Heat and Fluid Flow 28 (2007) 735-752

[20] G. J. Dunn, S.K. Wilson, B.R. Duffy et al. Colloid Surf. A: Physicochem. Eng. Aspects 323 (2008) 50-55

[21] Chin-Tai Chen, Ching-Long Chiu, Zhao-Fu Tseng et al, Sensors and Actuators A 147 (2008) 369-377[22] Ulrich P. Muecke, Gary L. Messing, Ludwig J. Gauckler, Thin Solid Film (2008) doi: 101016/j.tsf, 2008.08.158

[23] Angela L. Dearden et al. Macromol. Rapd Commun. 2005, 26, 315-318

[24] Jin-Woo Park and Seong-Gu Baek, Scripta Materialia 55 (2006) 1139-1142