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ABSTRACT

We present a large-scale Bayesian inference framework to constrain cosmological parameters using galaxy redshift surveys, via an
application of the Alcock-Paczyński (AP) test. Our physical model of the non-linearly evolved density field, as probed by galaxy
surveys, employs Lagrangian perturbation theory (LPT) to connect Gaussian initial conditions to the final density field, followed by a
coordinate transformation to obtain the redshift space representation for comparison with data. We have implemented a Hamiltonian
Monte Carlo sampler to generate realisations of three-dimensional (3D) primordial and present-day matter fluctuations from a non-
Gaussian LPT-Poissonian density posterior given a set of observations. This hierarchical approach encodes a novel AP test, extracting
several orders of magnitude more information from the cosmic expansion compared to classical approaches, to infer cosmological
parameters and jointly reconstruct the underlying 3D dark matter density field. The novelty of this AP test lies in constraining the
comoving-redshift transformation to infer the appropriate cosmology which yields isotropic correlations of the galaxy density field,
with the underlying assumption relying purely on the geometrical symmetries of the cosmological principle. Such an AP test does
not rely explicitly on modelling the full statistics of the field. We verified in depth via simulations that this renders our test robust
to model misspecification. This leads to another crucial advantage, namely that the cosmological parameters exhibit extremely weak
dependence on the currently unresolved phenomenon of galaxy bias, thereby circumventing a potentially key limitation. This is
consequently among the first methods to extract a large fraction of information from statistics other than that of direct density contrast
correlations, without being sensitive to the amplitude of density fluctuations. We perform several statistical efficiency and consistency
tests on a mock galaxy catalogue, using the SDSS-III survey as template, taking into account the survey geometry and selection
effects, to validate the Bayesian inference machinery implemented.

Key words. methods: data analysis – methods: statistical – cosmology: observations – large-scale structure of Universe –
galaxies: statistics

1. Introduction

The past few decades have witnessed the advent of an array of
galaxy redshift surveys, with the state-of-the-art catalogues map-
ping millions of galaxies with precision positioning and accurate
redshifts. The Sloan Digital Sky Survey (SDSS; York et al. 2000;
Abazajian et al. 2009; Ahn et al. 2014; Alam et al. 2015) and
the Six Degree Field Galaxy Redshift Survey (6dFGRS; Jones
et al. 2009) are two notable examples. Future cutting-edge sur-
veys from the Euclid (Laureijs et al. 2011; Racca et al. 2016;
Amendola et al. 2018) and Large Synoptic Survey Telescope
(LSST; Ivezic et al. 2008) missions, currently under construc-
tion, further highlight the wealth of galaxy redshift data sets
which would be available within a five to ten year time frame.
Sophisticated and optimal data analysis techniques, in particular
large-scale structure analysis methods, are in increasing demand
to cope with the present and upcoming avalanches of cosmolog-
ical and astrophysical data, and therefore optimise the scientific
returns of the missions.

With the metamorphosis of cosmology into a precision
(and data-driven) science, the three-dimensional (3D) large-scale
structures have emerged as an essential probe of the dynamics of

structure formation and evolution to further our understanding of
the Universe. The two-point statistics of the 3D matter distribu-
tion have developed into key tools to investigate various cosmo-
logical models and test different inflationary scenarios. Various
techniques to measure the power spectrum and several recon-
struction methods attempting to recover the underlying density
field from galaxy observations are described in literature (e.g.
Bertschinger & Dekel 1989; Bertschinger et al. 1991; Hoffman
et al. 1994; Lahav et al. 1994; Fisher et al. 1995; Sheth 1995;
Webster et al. 1997; Bistolas & Hoffman 1998; Schmoldt et al.
1999; Saunders et al. 2000; Zaroubi et al. 1999; Zaroubi 2002;
Erdoǧdu et al. 2004, 2006), with the recent focus being on large-
scale Bayesian inference methods (e.g. Kitaura & Enßlin 2008;
Kitaura et al. 2009; Jasche & Kitaura 2010; Jasche et al. 2010a;
Jasche & Wandelt 2012, 2013b; Jasche & Lavaux 2015, 2018).
A formal and rigorous Bayesian framework provides the ideal
setting to solve the ill-posed problem of inferring signals from
noisy observations, while quantifying the corresponding statisti-
cal uncertainties.

The potential of such Bayesian algorithms to jointly
infer cosmological constraints, nevertheless, has not yet been
exploited. We present, for the first time, a non-linear Bayesian
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inference framework for cosmological parameter inference
from galaxy redshift surveys via an implementation of the
Alcock-Paczyński (AP, Alcock & Paczynski 1979) test. We
extend the hierarchical Bayesian inference machinery of
Bayesian Origin Reconstruction from Galaxies (borg; Jasche
& Wandelt 2013a), originally developed for the non-linear
reconstruction of large-scale structures, to constrain cosmolog-
ical parameters. borg encodes a physical model for gravita-
tional structure formation, yielding a highly non-trivial Bayesian
inverse problem. This consequently allows us to reformulate
the standard problem of present 3D density field reconstruc-
tion as an inference problem for initial conditions at an earlier
epoch from current galaxy observations. borg builds upon the
implementation of the Hamiltonian Monte Carlo (HMC) method
(Neal 1993), initially introduced in the HAmiltonian Density
Estimation and Sampling (hades) algorithm (Jasche & Kitaura
2010), for efficiently sampling the high dimensional and non-
linear parameter space of possible initial conditions at an earlier
epoch.

In this work, the conceptual framework is to constrain
the comoving-redshift coordinate transformation and therefore
infer the appropriate cosmology which would result in isotropic
correlations of the galaxy density field. The key aspect of
this application of the AP test consequently lies in its robust-
ness to a misspecified model and the approximations therein,
yielding a near-optimal exploitation of the model predictions,
without relying on its accuracy in modelling the scale depen-
dence of the correlations of the density field. Here, we employ
Lagrangian perturbation theory (LPT) as a physical descrip-
tion for the non-linear dynamics and perform a joint infer-
ence of initial conditions, and consequently the correspond-
ing non-linearly evolved density fields and associated velocity
fields, and cosmological parameters, from incomplete observa-
tions. This augmented framework with cosmological applica-
tions is designated as altair (ALcock-Paczyński consTrAIned
Reconstruction).

The paper is organised as follows. In Sect. 2, the underlying
principles of the AP test are outlined, followed by a descrip-
tion of the forward modelling approach and data model imple-
mented in Sect. 3. We then test the algorithm in Sect. 5 on an
artificially generated galaxy survey, with the mock generation
procedure described in the preceding Sect. 4, by investigating
its performance via statistical efficiency and consistency tests.
In Sect. 6, we summarise the main aspects of our work and
discuss further possible extensions to our algorithm in order to
fully exploit its potential in deriving cosmological constraints. In
Appendix A, we describe the LPT-Poissonian posterior imple-
mented in this work, followed by the computation of the Jaco-
bian of the comoving-redshift transformation in Appendix B. We
provide a brief overview of the Hamiltonian sampling approach
in Appendix C, and follow up by deriving the required equa-
tions of motion in Appendix D, with the numerical implemen-
tation outlined in Appendix E. We subsequently describe how
we increase the efficiency of our cosmological parameter sam-
pler via a rotation of the parameter space in Appendix F. Finally,
we outline the derivation of the adjoint gradient for a generic 3D
interpolation scheme in Appendix G.

2. The Alcock-Paczyński test

The Alcock-Paczyński (AP) test (Alcock & Paczynski 1979) is a
cosmological test of the expansion of the Universe and its geom-
etry. The main advantage of this test is that it is independent of
the evolution of galaxies but depends only on the geometry of the
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Fig. 1. Comparison of cosmological constraints from BAO measure-
ments and our implementation of AP test in altair. The grey and green
lines denote the 1σ confidence region, centred on the fiducial cosmolog-
ical parameters, obtained from our AP test and BAO constraints from
SDSS-III (DR 12; Alam et al. 2017), respectively. The BAO constraints
have not been combined with Planck CMB measurements. This demon-
strates the potentially unprecedented constraining power of our AP test
compared to standard BAO analyses, as discussed in Sect. 2, with the
inset focusing on the altair constraints where the fiducial cosmology is
depicted in dashed lines. This error forecast is validated on a simulated
analysis (cf. Fig. 6).

Universe. The assumption of incorrect cosmological parameters
in data analysis produces distortions in the appearance of any
spherical object or isotropic statistical distribution. The AP test
provides a pathway to exploit this resulting spurious anisotropy
to constrain the cosmological parameters. Here, we invoke the
AP test to ensure that the underlying geometrical properties of
isotropy of the Universe (Friedmann 1922, 1924; Lemaître 1927,
1931, 1933; Robertson 1935, 1936a,b; Walker 1937; Saadeh
et al. 2016) are maintained. As such, the key underlying assump-
tion adopted in this work relies purely on the geometrical sym-
metries of the cosmological principle. As a result, such a test
does not employ the growth of structures to constrain cosmol-
ogy, unlike cluster abundance (e.g. Wang & Steinhardt 1998).

The AP test, and various formulations thereof, have been
studied extensively in the context of galaxy and quasar
surveys (e.g. Phillipps 1994; Ryden 1995; Ballinger et al. 1996;
Matsubara & Suto 1996; Popowski et al. 1998; de Laix &
Starkman 1998; López-Corredoira 2014; Li et al. 2014, 2016).
Variants of the AP test have also been successfully applied to
cosmic voids (e.g. Sutter et al. 2012, 2014; Lavaux & Wandelt
2012; Hamaus et al. 2014, 2015, 2016) and also to other cos-
mological observables like supernovae (Blake et al. 2011), the
Lyman-α forest (Hui et al. 1999) and 21 centimetre emission
maps (Nusser 2005; Barkana 2006).

With baryon acoustic oscillations (BAOs) being a robust
standard ruler, the AP test has been utilised for the simultane-
ous measurement of the Hubble parameter and angular diameter
distance of distant galaxies (e.g. Seo & Eisenstein 2003; Blake &
Glazebrook 2003; Glazebrook & Blake 2005; Padmanabhan &
White 2008; Shoji et al. 2009). In Fig. 1, we depict the 1σ con-
fidence region of the cosmological constraints inferred via our
implementation of the AP test. As a comparison, we also indicate
the corresponding confidence region obtained via BAO measure-
ments from the SDSS-III (Data Release 12; Alam et al. 2017).
These BAO constraints have not been combined with Planck
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Fig. 2. Schematic representation of the reconstruction pipeline. The forward model consists of a chain of various components for the non-linear
evolution from initial conditions and the subsequent transformation from comoving to redshift space for the application of the AP test. This
consequently transforms the initial density field into a set of predicted observables, i.e. a galaxy distribution in redshift space, for comparison with
data via a likelihood or posterior analysis.

measurements, which would significantly tighten the constraints.
Nevertheless, this highlights the significant potential constrain-
ing power of our AP test compared to standard BAO analy-
ses, while being at least as robust. While this improvement is
extremely substantial for the mock SDSS-III survey considered
here, we will investigate to what extent the above promise holds
when applied to actual SDSS-III data in a follow-up work, as
unknown systematics represent a potential caveat. We discuss
Fig. 1 in more depth in Sect. 5.

The crucial aspect of our AP test is that it does not assume
that the correlation function is correctly modelled. This robust-
ness to a misspecified model is illustrated explicitly in Sect. 5,
where we demonstrate that the shape of the prior power spec-
trum adopted in the inference framework does not impact on
the inferred cosmological constraints (cf. Fig. 10). As a result
of this robustness, our AP test has a definite edge over standard
approaches. Moreover, it has been pointed out that other cos-
mological tests, such as the luminosity distance – redshift rela-
tion, can be considered as generalised formulations of the AP test
(Mukherjee & Wandelt 2018), further underlining the strength of
the approach presented in this work.

3. The forward modelling approach

The large-scale structure (LSS) posterior implemented in this
work, based on the borg framework (Jasche & Wandelt 2013a),
is described in depth in Appendix A. A key component of the
inference framework is the forward model Mp which links the
initial conditions δic,(r)

p to the redshift space representation of the
evolved density field δf,(z)

p as follows:

δf(z)
p =Mp

(
1 + δic(r)

p

)
=M(1)

p ◦M
(2)
p

(
1 + δic(r)

p

)
=M(1)

p

(
ρf(r)

p

)
= Jp

∑
i, j

E−1
i j ρ

f(r)
j xα(i)

p y
β(i)
p zγ(i)

p

 − 1, (1)

where ρf(r)
p ≡ 1 + δf(r)

p is the final density field in comoving
space. The forward model consists of two components, Mp =

M
(1)
p ◦ M

(2)
p . The first component, M(2)

p ≡ Gp(a, {δic
p }), con-

tains a physical description of the non-linear dynamics, and
consequently propagates the initial conditions forward in time
using LPT, yielding a non-linearly evolved final density field in
comoving space, δf(r)

p .
To encode the AP test, we incorporate another component in

the forward model that takes care of the coordinate transforma-
tion from comoving (r) to redshift (z) space, encoded in M(1)

p
(cf. Fig. 2). Schematically, we construct a second grid in red-
shift space, which involves a triquintic interpolation (fifth order
interpolation scheme in three dimensions) on the comoving grid.
This interpolation scheme is described in Appendix G, with the
notation employed in Eq. (1) clearly laid out. The corresponding
Jacobian factor of this transformation, |J‡

∇
| (cf. Appendix B),

entails cosmological dependence and is consequently included
in the AP test as well as through the direct coordinate depen-
dence Ei j.

The redshift space representation then allows for comparison
with data via the likelihood or posterior. The essence of this AP
test to constrain cosmological parameters can be summarised as
follows: The Bayesian inference machinery explores the various
cosmological expansion histories and selects the cosmology-
dependent evolution pathways which result in isotropic corre-
lations of the galaxy density field.

Figure 2 illustrates the reconstruction scheme implemented
in altair. First, galaxies are projected from the survey onto a
3D grid, such that we have a distribution of galaxies in red-
shift space and this constitutes our observable. We then gener-
ate a 3D density field according to Gaussian initial conditions
(homogeneous prior) with a reference power spectrum, typically
ΛCDM cosmology. The forward model subsequently transforms
the initial density field into a set of predicted observables which
are then compared to data via a likelihood or posterior analysis.
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And conversely, given the position of galaxies, we can infer this
density field.

While we implement LPT to approximately describe grav-
itational non-linear structure formation in this work, other
more adequate physical descriptions such as 2LPT or the non-
perturbative particle mesh (see recent upgrade of borg in Jasche
& Lavaux 2018) can be straightforwardly employed, within the
flexible block sampling approach described in Appendix A.3, by
upgrading the first component, M(2)

p ≡ Gp(a, {δic
p }), of our for-

ward model (cf. Fig. 2). Nevertheless, our implementation of the
AP test exploits essentially the isotropy of the correlation func-
tion, such that there is no explicit dependence on the accuracy
of modelling the scale dependence of the correlations, rendering
this method robust to a misspecified model and the approxima-
tions therein.

3.1. The galaxy data model

Galaxies can be considered as tracers of the matter fluctua-
tions since they follow the gravitational potential of the under-
lying matter distribution, with the statistical uncertainty due
to the discrete nature of the galaxy distribution usually mod-
elled by a Poissonian distribution (e.g. Layzer 1956; Peebles
1980). Poissonian likelihoods have emerged as the standard for
non-linear LSS inference (e.g. Jasche et al. 2010b; Jasche &
Kitaura 2010; Kitaura et al. 2010). The Poissonian likelihood
distribution implemented in altair, for multiple subcatalogues or
galaxy observations labelled by the index g, can be expressed as
follows:

L
(
{Ng

p}|λ
g
p

)
=

∏
p

(λg
p)Ng

p e−λ
g
p

Ng
p!

, (2)

where Ng
p is the observed galaxy number counts in redshift space

in the given voxel p. λg
p is the expected number of galaxies at

this given position and is related to the final density field δf
p, in

redshift space, via

λ
g
p

(
{δf

p}, {θi}
)

= Rg
p(θi)T

[
1 + δf

p

]
, (3)

where Rg
p is the overall linear response operator of the survey that

incorporates the survey geometry and selection effects, and θi
corresponds to a set of cosmological parameters. T is the galaxy
biasing model which accounts for the fact that galaxies do not
trace exactly the underlying matter distribution, and are therefore
biased tracers with clustering properties that do not exactly mir-
ror those of dark matter (Kaiser 1984). This is currently one of
the most challenging and unresolved issues hindering the anal-
ysis of galaxy distributions in non-linear regimes (e.g. see the
review by Desjacques et al. 2018; Schmidt et al. 2018).

In this work, we adopt the standard approach of a local,
but non-linear bias function, in particular, the phenomenological
model proposed by Neyrinck et al. (2014), such that the above
Poisson intensity field can be expressed as

λ
g
p

(
{δf

p}, {θi}, {N̄g}, {bg
i }
)

= Rg
pN̄g

[
1 + δf

p

]β
e−ρ

g[1+δf
p]−ε

g

, (4)

where the bias function, described by four parameters, N̄g, the
mean density of tracers, and {bg

i } = {β, ρg, εg}, is a truncated
power law bias model with the additional exponential function
suppressing galaxy clustering in under dense regions. This bias
model, with a power law and an exponential at low densities,
were found to be in good agreement with standard excursion set

and local-growth-factor models (for more details, see Neyrinck
et al. 2014). The main limitation of this bias model is that it is
purely local. Nevertheless, it is more adequate than a simplistic
linear bias model and mitigates in practice the deficiencies of our
physical model (LPT) at the considered resolution. The expected
number of galaxies can subsequently be related to the initial con-
ditions δic

p via the forward modelMp, as described above, due to
the deterministic nature of structure formation, as implied by the
Dirac delta function in Eq. (A.2).

The logarithm of the likelihood from Eq. (2) can therefore be
expressed, in terms of the initial conditions, as

lnL
[
{Ng

p}
∣∣∣Mp

(
{δic

p }
)
, {θi}, {N̄g}, {bg

i }
]

= −
∑

p

{
λ

g
p

(
{δf

p}, {θi}, {N̄g}, {bg
i }
)

−Ng
p ln

[
λ

g
p

(
{δf

p}, {θi}, {N̄g}, {bg
i }
)]

+ ln
(
Ng

p!
)}
. (5)

We therefore have a likelihood distribution that encodes the sta-
tistical process describing the generation of galaxy observations
given a specific realisation of 3D initial conditions. This data
model is inherently non-linear as a result of the galaxy biasing
model employed and also due to the signal dependence of Pois-
sonian noise, which does not behave as an additive nuisance.

3.2. The augmented joint posterior distribution

The augmented joint posterior distribution corresponds to the
following:

P
(
{δic

p }, {N̄
g}, {bg

i }, {θi}|{N
g
p},S

)
∝ L

[
{Ng

p}
∣∣∣Mp({δic

p }), {θi}, {N̄g}, {bg
i }
]

× Π
(
{δic

p }|S
)
Π

(
{N̄g}, {bg

i }
)
Π ({θi}) , (6)

where the Π’s correspond to the respective priors for each param-
eter. Hence, given our forward model M, which incorporates
sequential components of structure formation and coordinate
transformation, as described above, the complex task of mod-
elling accurate priors for the statistical behaviour of present-
day matter fluctuations can be recast into a Bayesian inference
problem for the initial conditions. From this joint posterior dis-
tribution, we can construct the various conditional posterior dis-
tributions for each parameter of interest. The modular statistical
programming approach adopted in outlined in Appendix A.3.

Since the non-linear LSS analysis has been reformulated as
an initial conditions statistical inference problem, as described
by the joint posterior distribution Eq. (6), this method depends
solely on forward evaluations, and consequently has a definite
edge over traditional approaches of initial conditions inference
that require backward integration of the equations of motion or
the inversion of the flow of time (e.g. Nusser & Dekel 1992).
The latter methods are prone to erroneous fluctuations in the ini-
tial density and velocity fields, resulting from spurious growth of
decaying modes. Moreover, such schemes are hindered by sur-
vey incompleteness which requires the knowledge of the com-
plex and, as yet, unknown multi-variate probability distribution
for the matter fluctuations, to render the backward integration of
non-linear models physically meaningful via constrained realisa-
tions. In comparison, the forward modelling approach here con-
veniently accounts for survey masks and statistical uncertainties
in the initial conditions, which amounts to modelling straight-
forward uncorrelated Gaussian processes, to generate data con-
strained realisations of the initial and evolved density fields.

A69, page 4 of 18



D. Kodi Ramanah et al.: Cosmological inference from Bayesian forward modelling of deep galaxy redshift surveys

3.3. The cosmological parameter posterior distribution

In this work, we sample the present-day values of matter density
and dark energy equation of state parameters, {θi} = {Ωm,w0},
via the following conditional posterior distribution,

P
(
{θi}|{N

g
p}, {δ

ic
p }, {N̄

g}, {bg
i },S

)
= P

(
{θi}|{N

g
p}, {δ

ic
p }, {N̄

g}, {bg
i }
)
, (7)

assuming conditional independence of the cosmological power
spectrum, that is, Fourier transform of the covariance matrix S,
once the density field is known. This assumption holds as we are
only probing the cosmological expansion in this work, with the
power spectrum anchored with a fiducial cosmology. We quanti-
tatively demonstrate the validity of this assumption in Sect. 5 by
comparing the entropy of prior information against that of poste-
rior information (cf. Fig. 9). We defer power spectrum sampling
to a future work. Applying Bayes’ identity, and using the joint
posterior distribution from Eq. (6), we obtain

P
(
{θi}|{N

g
p}, {δ

ic
p }, {N̄

g}, {bg
i }
)

=
P

(
{θi}, {δ

ic
p }, {N̄

g}, {bg
i }|{N

g
p}
)

P
(
{δic

p }, {N̄g}, {bg
i }|{N

g
p}
)

=
L

[
{Ng

p}
∣∣∣Mp

(
{δic

p }
)
, {θi}, {N̄g}, {bg

i }
]

P
(
{δic

p }, {N̄g}, {bg
i }|{N

g
p}
)

× Π
(
{δic

p }|S
)
Π

(
{N̄g}, {bg

i }
)
Π ({θi})

∝ L
[
{Ng

p}
∣∣∣Mp

(
{δic

p }
)
, {θi}, {N̄g}, {bg

i }
]
× Π ({θi}) , (8)

after omitting the terms without any cosmological parameter
dependence.

Since this work attempts to demonstrate the capabilities of
altair to constrain the cosmological parameters, as proof of con-
cept, we set uniform prior distributions on θi. To sample from
the above marginal posterior distribution, we make use of a slice
sampling procedure (e.g. Neal 2000, 2003). After obtaining a
realisation of θi, we need to update the comoving-redshift coor-
dinate transformation in the forward model.

We adopt a dynamical dark energy model, in particular,
the standard Chevallier-Polarski-Linder (CPL) parameterisation
(Chevallier & Polarski 2001; Linder 2003), where the evolution
of the dark energy equation of state parameter w is a linear func-
tion of the scale factor a, as follows:

w = w0 + (1 − a)wa. (9)

In this work, we set wa = 0 and infer the present-day value w0.
Moreover, we impose the assumption of flatness, that is, Ωk = 0,
such that the dark energy density is Ωde = 1 −Ωm.

Due to the correlation between Ωm and w0, we perform
a rotation of the (Ωm,w0) parameter space, using orthonormal
basis transformations derived from the covariance matrix, to
improve the efficiency of the slice sampler. This procedure is
outlined in Appendix F, with the significant gain in efficiency
illustrated in Fig. F.1. The corresponding sampler for the bias
parameters is outlined in Appendix A.4.

4. Generation of a mock galaxy catalogue

We describe the generation of an artificial galaxy survey using
as template the Sloan Digital Sky Survey (SDSS-III), consist-
ing of four galaxy subcatalogues, to validate the methodology

described in the previous sections. The procedure implemented
here for the mock generation is essentially based on the descrip-
tions provided in Jasche & Kitaura (2010) and Jasche & Wandelt
(2013a).

At first, we generate a realisation for the initial density
contrast δic

p from a normal distribution with zero mean and
covariance corresponding to an underlying cosmological power
spectrum for the matter distribution. This power spectrum,
including baryonic wiggles, is computed following the prescrip-
tion provided in Eisenstein & Hu (1998, 1999), assuming a
standard Λ cold dark matter (ΛCDM) cosmology with the set
of cosmological parameters (Ωm = 0.3089, ΩΛ = 0.6911,
Ωb = 0.0486, h = 0.6774, σ8 = 0.8159, ns = 0.9667) from
Planck (Planck Collaboration XIII 2016). This yields a 3D Gaus-
sian initial density field in an equidistant Cartesian grid with
Nside = 128, consisting of 1283 voxels, where each voxel cor-
responds to a discretised volume element with a physical voxel
size of 15.6 h−1 Mpc, and comoving box length of 4000 h−1 Mpc.
As a result, this implies a total of ∼2.1 × 106 inference param-
eters, corresponding to the amplitude of the primordial density
fluctuations at the respective grid nodes.

To ensure a sufficient resolution of inferred final density
fields, we oversample the initial density field by a factor of
eight, thereby evaluating the LPT model with 2563 particles in
every sampling step. The following step is to scale this 3D dis-
tribution of initial conditions to a cosmological scale factor of
ainit = 0.001 via multiplication with a cosmological growth fac-
tor D+(ainit). These initial conditions are subsequently evolved
forward in time, in non-linear fashion, with LPT providing an
approximate description of gravitational LSS formation. We then
construct a final 3D non-linearly evolved density field δf

p from
the resulting particle distribution via the cloud-in-cell (CIC)
method (e.g. Hockney & Eastwood 1988).

To generate the mock galaxy survey, we essentially need to
simulate the inhomogeneous Poissonian process described by
Eq. (2), by drawing random samples from the distribution, on
top of the final density field δf

p. In this work, we generate a
mock data set with realistic features emulating the highly struc-
tured survey geometry and selection effects of the SDSS-III sur-
vey, with the observed sky completeness depicted in the left and
right panels of Fig. 3, respectively, for the CMASS and LOW-Z
components of the SDSS-III survey. To account for the differ-
ent selection effects in the northern and southern galactic planes,
each component is further divided into two subcatalogues, corre-
sponding to north/south galactic caps (NGC/SGC). The respec-
tive radial selection functions for these four subcatalogues are
illustrated in Fig. 4. Here, the selection functions are numerical
estimates obtained by binning the corresponding distribution of
tracers N(d) in the CMASS and LOW-Z components (e.g. Ross
et al. 2017), where d is the comoving distance from the observer.

The projection of the completeness functions into the 3D
volume produces the 3D observation mask Cg

p. The survey prop-
erties are described by the galaxy selection function and the
3D completeness function, with the product of these two func-
tions yielding the survey response operator Rg

p. More specifi-
cally, it is the average of the product of the 2D survey geometry
Cg(x̂) = Cg

p(x̂) and the selection function f (x) at each volume
element of the 3D grid:

Rg
p =

1
|Vp|

∫
Vp

d3x Cg(x̂) f g(x), (10)

where the volume occupied by the pth voxel is indicated byVp,
with |V| the volume of the setV.
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Fig. 3. Observed sky completeness, used to generate and analyse the mock catalogue in this work, are illustrated in the left and right panels,
corresponding to the CMASS and LOW-Z components of the SDSS-III survey, respectively.
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Fig. 4. Radial selection functions for the CMASS sample, in solid and
dashed lines for the north galactic cap (NGC) and south galactic cap
(SGC), respectively. The corresponding radial selection functions for
the LOW-Z sample are depicted in dash-dotted (NGC) and dotted lines
(SGC). These selection functions are used to generate the mock data to
emulate features of the actual SDSS-III BOSS data.

Finally, we generate the four artificial galaxy subcatalogues,
labelled by g, by Poisson sampling on the grid with N̄g

p =
{110.42, 122.94, 71.43, 205.48}, resulting in a total number of
997828 galaxies. The values of N̄g

p are chosen such that the mock
catalogue reflects the characteristics of the actual SDSS-III data
which contains around one million tracers.

5. Results

We perform a series of tests to evaluate the performance of
our algorithm in a realistic context by applying altair on the
simulated SDSS-III-like galaxy catalogue described in the pre-
vious section. In particular, the focus is on the burn-in and con-
vergence behaviour of our method, which are key indicators
of the overall numerical feasibility and statistical efficiency for
real data applications. To validate the conceptual framework for
cosmological parameter inference and the robustness of our
implementation of the AP test, the reproducibility of the input

cosmology and the correlations with the other inferred quanti-
ties such as galaxy bias are also of interest.

The Markov chains for the cosmological parameters, dis-
played in Fig. 5, were initialised with an over-dispersed state.
This figure consequently illustrates an initial burn-in phase,
lasting ∼250 MCMC steps, where the Markov chains follow a
persistent drift towards the high probability region of the param-
eter space. The rotation of the (Ωm,w0) parameter space before
slice sampling, as described in Appendix F, reduces the burn-
in period significantly, by roughly a factor of five, as shown
in the right panel of Fig. F.1, resulting in improved sampling
efficiency.

The corresponding marginal and joint posterior distributions
for the cosmological parameters are displayed in Fig. 6, demon-
strating the capability of altair to infer tight constraints from
galaxy redshift surveys. This robust AP test fully exploits the
high information content from the cosmic expansion as a result
of probing a deep redshift range, where the distortion is more
pronounced, yielding the following cosmological constraints:
Ωm = 0.3080 ± 0.0036 and w0 = −0.998 ± 0.008. As a com-
parison, the SDSS-III (DR12, BAO + Planck) constraints are as
follows: Ωm = 0.310 ± 0.005 and w0 = −1.01 ± 0.06 (Alam
et al. 2017), further highlighting the significant constraining
power of our AP test. We acknowledge the significant difference
in the size of uncertainties. A back of the envelope computa-
tion of the information gain is as follows: Considering a sphere
of 100 h−1 Mpc for BAO against all voxels in 4000 h−1 Mpc,
NBAO = 40003/(4π × 1003/3) = 15 278, compared to Nvox =
1283, yields an improvement of

√
Nvox/NBAO = 11.7, which pro-

vides an order of magnitude of our uncertainties on the cosmo-
logical parameters. This is an approximate attempt to quantify
the information gain from including smaller scales (in our work,
∼0.17 h−1 Mpc) than the BAO scale by essentially counting the
number of modes. However, the above argument does not imply
that employing finer resolutions will result in an infinite gain
of information. There is a saturation of information at a certain
resolution due to the slow variation in the density fields across
neighbouring voxels, such that further refinement beyond this
limit will not yield any additional information.

To verify that the cosmological information stems purely
from the geometric distortion due to the cosmic expansion,
that is, the AP test, we perform the following experiment:
We deactivate the cosmic expansion component in our for-
ward model and sample the cosmological parameters using only
the LPT evolved density field. We consequently recover the
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Fig. 5. MCMC chains for the cosmological parameters, for the first 1000 samples, with the reference cosmology employed in the mock generation
indicated by the horizontal dashed lines. An initial burn-in phase lasting ∼250 Markov transitions is illustrated by the coherent drift of the Markov
chain towards the preferred region in parameter space.
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Fig. 6. Marginal posteriors for Ωm (left panel) and the dark energy equation of state, w0 (middle panel), for ∼3000 MCMC realisations, ignoring
the burn-in phase of ∼250 Markov steps. The corresponding mean and standard deviation for each parameter are indicated in the top right corner
of each plot. The joint posterior (right panel) for Ωm and w0, depicting the high level of correlation between these two parameters. The highly
informative distortion due to the cosmic expansion, as a result of probing a deep redshift range, yields extremely tight constraints on the above
cosmological parameters. As a consistency test, this validates our implementation of the AP test to correctly recover the input cosmology.

corresponding prior distributions for the marginal posteriors of
the cosmological parameters. As a result, this implies that the
information derives purely from the geometry and not from the
clustering of the non-linearly evolved density field, at least for
the test case with the physical voxel size considered in this
work.

The mean initial and final density fields computed from
∼4000 realisations (ignoring the burn-in phase) are illustrated in
the left panel of Fig. 7 for a particular slice of the 3D field. The
maps reveal that on average we can recover highly detailed and
well-defined structures in the observed regions. In particular, the
filamentary nature of the non-linearly evolved density field can
be clearly seen, while the Gaussian nature of the initial condi-
tions can also be deduced visually. However, in poorly or not
observed regions, the ensemble mean density field approaches
the cosmic mean density, as expected, since regions lacking any
observational information should on average reflect the cosmic
mean. The uncertainty in these regions is accurately accounted
for in the inference process, as demonstrated by the right panel,
since each sampled density field is a constrained realisation,
which means that these regions are augmented with statistically
correct information.

In the top panel of Fig. 8, we illustrate the power spectra
reconstructed from all the realisations of 3D initial density field,
obtained from the posterior via the HMC sampler. This is a self-
consistency test to confirm that the sampled density fields are

in agreement with the reference (prior) power spectrum adopted
for the mock generation, as substantiated quantitatively in the
bottom panel, where the ratio of the a posteriori power spectra
to the prior distribution is shown. The measured power spec-
tra therefore demonstrate that the individual realisations possess
the correct power throughout the entire domain of Fourier modes
considered in this work. Moreover, they do not exhibit any spuri-
ous power artefacts typically resulting from erroneous treatment
of survey characteristics, such as survey geometry and selection
effects, and galaxy biases, implying that such effects have been
properly accounted for.

In order to verify the impact of the prior power spectrum
on the actual inference of cosmological parameters, we illus-
trate, in Fig. 9, the distributions of power spectra computed
using the inferred cosmology and the prior analytic prescription
(Eisenstein & Hu 1998, 1999) and the reconstructed power spec-
tra from Fig. 8, via their respective summary statistics, nor-
malised with respect to the fiducial power spectrum. The scat-
ter in the latter a posteriori power spectra reconstructed from
the sampled density field realisations is significantly higher than
distribution of the former prior spectra. This implies that the
entropy of prior information is much lower than that of pos-
terior information, thereby demonstrating that the prior power
spectrum does not influence the cosmological parameter infer-
ence via the AP test and justifying the assumption made in
Sect. 3.3.
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Fig. 7. Mean and standard deviation maps for the initial (top panels) and final density fields (bottom panels), computed from the MCMC real-
isations, with the same slice through the 3D density fields being illustrated above. In unobserved or masked regions, the density fields are not
constrained by data, and they average out to the cosmic mean density. However, in observed regions, the Gaussian nature of the initial conditions
and the filamentary nature of the non-linearly evolved density field is manifest. The corresponding variance is therefore higher in regions devoid
of data.

We further demonstrate this robustness of our AP test by
employing a modified prior power spectrum in the inference
procedure. By adopting a different cosmology (Ωm = 0.40,
w0 = −0.85), we modify the shape of the power spectrum, and
subsequently apply altair on the same mock catalogue from
Sect. 4. As shown in Fig. 10, we recover the fiducial cosmologi-
cal parameters employed in the mock generation, although with
slightly larger uncertainties than for the original run by roughly
15%. This test case therefore explicitly highlights the robustness
of our implementation of the AP test to a misspecified model
since it does not optimise the information from the scale depen-
dence of the correlations of the density field, but rather from the
isotropy of the field.

From the correlation matrix of Ωm, w0 and the galaxy bias
parameters for each of the four subcatalogues, illustrated in
Fig. 11, we deduce the extremely weak correlation between
the cosmological constraints and the bias. This is a key posi-
tive aspect of our method, as galaxy bias remains nevertheless
a highly active and challenging field of research (see, for e.g.,

Desjacques et al. 2018), due to its complex non-linear behaviour
on intermediate and small scales, which may potentially limit
the effectiveness of traditional methods of cosmological param-
eter inference (Pollina et al. 2018).

Moreover, this insensitivity to the galaxy bias implies that
our method does not rely on absolute density fluctuation ampli-
tudes, but on the actual location of matter. This entails that
our AP test exploits the geometrical structure of the density
field and not its absolute amplitude since the power spectrum
does not influence the inferred cosmological constraints. To
the best of our knowledge, this is a novel aspect of cosmo-
logical inference, with most of our current understanding of
cosmology based on measurements of density contrast ampli-
tudes. We present, therefore, one of the first methods which
extracts a large fraction of information from statistics other
than that of direct density contrast correlations, without rely-
ing on the power spectrum or bispectrum. Our method con-
sequently yields complementary information to state-of-the-art
methods.
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generation. Bottom panel: deviation from the true underlying solution,
with the thick dashed lines representing the prior power spectrum. The
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limits, respectively.

6. Summary and conclusions

We presented the implementation of a robust AP test that per-
forms a detailed fit of the cosmological expansion via a non-
linear and hierarchical Bayesian LSS inference framework. This
forward modelling approach employs LPT as a physical descrip-
tion for the non-linear dynamics and sequentially encodes the
cosmic expansion effect for joint inference of the cosmological
parameters and underlying 3D density fields, while also fitting
the mean density of tracers and bias parameters. In essence, this
inference machinery explores the various cosmological expan-
sion histories and selects the cosmology-dependent evolution
pathways which yield isotropic correlations of the galaxy den-
sity field, thereby constraining cosmology.

We demonstrated the application of our algorithm altair on
an artificially generated galaxy catalogue, consisting of four sub-
catalogues, that emulates the highly structured survey geometry
and selection effects of SDSS-III. We performed a series of sta-
tistical efficiency and consistency tests to validate the method-
ology adopted and showcased its potential to yield tight con-
straints on cosmological parameters from current and future
galaxy redshift surveys. The main strength of our implemen-
tation of the AP test lies in its robustness to a misspecified
model and its inherent approximations, thereby near-optimally
exploiting the model predictions, without relying on its accu-
racy in modelling the scale dependence of the correlations of the
field.

Moreover, another key aspect of our approach, result-
ing from the robustness to a misspecified model, is that the
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Fig. 9. Summary statistics of the reconstructed power spectra from the
inferred posterior initial density field realisations depicted in Fig. 8,
with the ensemble mean indicated by a solid green line. The solid blue
line corresponds to the ensemble mean of the power spectra realisa-
tions generated using the inferred cosmological parameters. The shaded
regions indicate their respective 1σ confidence region, i.e. 68% prob-
ability volume. This plot shows that the prior information entropy is
inferior to the posterior information entropy, due to the narrower dis-
tribution of the former. The prior power spectrum adopted, as a result,
does not impact significantly on the cosmological parameter inference
via the AP test.

cosmological constraints show extremely weak dependence on
galaxy bias. This yields two crucial advantages. First, this is
especially interesting as the lack of a sufficient physical descrip-
tion of this bias remains a potential limiting factor for standard
approaches of cosmological parameter inference from such red-
shift surveys. Furthermore, this lack of sensitivity to the bias also
implies that our method does not depend on the absolute density
fluctuation amplitudes. This is therefore among the first meth-
ods to extract a large amount of information from statistics other
than that of direct density contrast correlations, without relying
on the power spectrum or bispectrum, thereby providing com-
plementary information to state-of-the-art techniques.

There is scope for further development of the altair frame-
work, such as incorporating power spectrum inference, which
is a highly non-trivial undertaking. We also intend to augment
the current formalism to include the treatment of redshift space
distortions, which is key for unbiased constraints on the cosmo-
logical parameters, and apply altair on state-of-the-art galaxy
redshift catalogues for cosmological inference1.
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Appendix A: The LPT-Poissonian posterior

In this section, we describe the large-scale structure (LSS) poste-
rior distribution implemented in this work. We demonstrate how
the complex problem of exploring the high dimensional joint
posterior distribution can be reduced to a set of distinct steps
via a multiple block sampling scheme.

A.1. The density posterior distribution

The primary objective is to fully characterise the 3D cosmic LSS
in observations via a numerical representation of the correspond-
ing LSS posterior using sophisticated Markov chain Monte Carlo
(MCMC) techniques, in particular to provide data constrained
realisations of a set of plausible 3D density contrast amplitudes
underlying a given set of galaxy observations. The posterior dis-
tribution for the evolved density field fluctuation δf

p can be for-
mulated, in a general context, via Bayes’ identity as:

P
(
{δf

p}|{N
g
p}
)

=
L

(
{Ng

p}|{δ
f
p}
)
Π

(
{δf

p}
)

Π
(
{Ng

p}
) , (A.1)

where Ng
p is the observed number of galaxies in voxel p, at posi-

tion xp in the sky, in redshift space, for the gth galaxy sample,
with the prior Π({δf

p}) incorporating our a priori knowledge of
the present-day matter fluctuations in the Universe, the likeli-
hood L({Ng

p}|{δ
f
p}) and the normalizing factor given by the evi-

dence Π({Ng
p}).

A major stumbling block consequently arises, as discussed
extensively in Jasche & Wandelt (2013a), since the infer-
ence framework requires a suitable prior Π({δf

p}) which ade-
quately describes the physical behaviour of the gravitationally
evolved density field. Nevertheless, as elaborated in the follow-
ing section, most attempts made in this direction so far have been
based on heuristic approximations and the absence of a closed
form description of the present day matter fluctuations encoded
in a multi-variate probability density distribution still persists.

However, Jasche & Wandelt (2013a) proposed an elegant
approach to circumvent this key impediment based on the fol-
lowing assertions: There is substantial evidence that primor-
dial seed fluctuations at redshifts z ∼ 1000 can be modelled
as a Gaussian random field to great accuracy (e.g. Linde 2008;
Komatsu et al. 2011; Planck Collaboration XVII 2016), consis-
tent with inflationary theories and CMB observations. Moreover,
the evolution of the initial conditions relies solely on determinis-
tic gravitational structure formation processes. Therefore, a con-
ceptually reasonable alternative to modelling the complex statis-
tical behaviour of the non-linear matter distribution is to formu-
late the inference problem at the level of the initial conditions
adequately described by Gaussian statistics. This constitutes the
conceptual foundation of the borg framework (Jasche & Wandelt
2013a).

Given a forward model Mp that connects the initial condi-
tions δic,(r)

p , in comoving (r) space, to the redshift (z) space repre-
sentation of the final density field δf,(z)

p , we can therefore express
the conditional posterior for the evolved density field as

P
(
{δf

p}|{δ
ic
p }

)
=

∏
p

δD
[
δf

p −Mp

(
{δic

p }
)]
, (A.2)

where δD(x) denoting the Dirac delta distribution encapsulates
the assumption that the structure formation process is determin-
istic. Within this generic framework, the forward model may

be generalised to a chain of arbitrary components linking the
primordial density fluctuations to the present-day density con-
trast. Nevertheless, at its crux lies a cosmic structure formation
model Gp(a, {δic

p }) for the non-linear evolution of initial condi-
tions into a final density field at a given scale factor a, that is,
δf,(r)

p = Gp(a, {δic,(r)
p }). The forward model implemented in this

work to encode the AP test is described in Sect. 3 above.
We can then obtain a prior distribution for δf

p via a two-step
sampling procedure: First, a realisation of δic

p is generated from
the prior distribution Π({δic

p }) and subsequently evolved with a
given forward model Mp({δic

p }). This essentially implies gener-
ating samples from the joint prior distribution of δic

p and δf
p:

P
(
{δf

p}, {δ
ic
p }

)
= Π

(
{δic
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)
P
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{δf

p}|{δ
ic
p }

)
= Π

(
{δic

p }
)∏

p

δD
[
δf

p −Mp

(
{δic

p }
)]
, (A.3)

after plugging in the conditional posterior distribution from
Eq. (A.2).

Assuming a normal distribution with zero mean and covari-
ance S corresponding to an underlying cosmological power spec-
trum for the initial conditions δic

p , the joint prior distribution can
be expressed as

P
(
{δf

p}, {δ
ic
p }|S

)
= Π

(
{δic

p }|S
)∏

p

δD
[
δf
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ic
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p
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δf

p −Mp

(
{δic

p }
)]
.

(A.4)

Reformulating the statistical inference problem in terms of the
initial conditions δic

p results in the following joint posterior distri-
bution of δic

p and δf
p, conditional on the observed galaxy number

counts Ng
p,

P
(
{δf

p}, {δ
ic
p }|{N

g
p},S

)
=
L

(
{Ng

p}|{δ
f
p}, {δ

ic
p }

)
P
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{δf

p}, {δ
ic
p }|S

)
Π

(
{Ng

p}|S
) ,

(A.5)

after making the dependence on the underlying power spectrum
explicit. Assuming that the galaxy observations are conditionally
independent of the initial conditions once the final density field
is known, that is,L({Ng

p}|{δ
f
p}, {δ

ic
p }) = L({Ng

p}|{δ
f
p}) and using the

joint prior distribution from Eq. (A.4) leads to the LSS posterior
distribution:

P
(
{δf

p}, {δ
ic
p }|{N

g
p},S

)
= L
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p}|{δ
f
p}
) Π
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)

×
∏

p

δD
[
δf

p −Mp

(
{δic

p }
)]
. (A.6)

By marginalizing over the final density field δf
p, we finally obtain

our posterior distribution as follows:

P
(
{δic

p }|{N
g
p},S

)
= L

[
{Ng

p}
∣∣∣Mp

(
{δic

p }
)] Π

(
{δic

p }|S
)

Π
(
{Ng

p}|S
) , (A.7)

thereby connecting present galaxy observations Ng
p to their cor-

responding primordial density fields δic
p via a given forward
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  Fig. A.1. Schematic representation of the multi-step iterative block sampling procedure implemented in altair. Initially, a realisation of the 3D
density contrast is obtained conditional on galaxy observations, followed by the other parameters being sampled conditional on the respective
previous samples. Subsequent iterations of this procedure yield samples from the full joint posterior distribution within a modular statistical
programming framework.

model, Mp({δic
p }). We must therefore sample from the highly

non-linear and non-Gaussian posterior above to obtain realisa-
tions of the 3D initial density fields conditioned on the galaxy
observations via the sophisticated HMC method described below
in Appendix C.

A.2. Choice of density prior

Standard Wiener filtering approaches employ isotropic Gaussian
priors on the present-day density contrast which is justified for
inference on the largest scales (e.g. Zaroubi et al. 1999; Zaroubi
2002; Erdoǧdu et al. 2004, 2006; Kitaura & Enßlin 2008; Kitaura
et al. 2009; Jasche et al. 2010a; Jasche & Lavaux 2015), where
the density field can be reasonably approximated as a Gaussian
random field. Although the exact probability distribution for the
density field in the mildly and strongly non-linear regimes is
not known, the deviation from Gaussianity is well-established
and we therefore require a non-Gaussian prior to effectively cap-
ture the details of the highly complex filamentary nature of the
present day cosmic web.

Lognormal density priors were subsequently proposed
(Coles & Jones 1991) and this proved to be an adequate
phenomenological choice (e.g. Hubble 1934; Peebles 1980;
Gaztanaga & Yokoyama 1993; Kayo et al. 2001), albeit with
some limitations, for modelling the evolved matter field in the
mildly non-linear regime (Kitaura et al. 2009; Jasche & Kitaura
2010; Jasche et al. 2010b). The use of Edgeworth expansions to
construct prior distributions involving third order moments has
also been proposed in the literature (Kitaura 2012).

In this work, we rely on Lagrangian perturbation theory
(LPT) to model cosmic structure formation, which accounts for
non-local effects of gravitational mass transport from initial to
final positions. It has been extensively shown that LPT pro-
vides a sufficient description of the cosmic LSS on large scales,
where it is capable of reproducing the exact one-, two- and three-
point statistics of the evolved field, while still being a reason-
able approximation to the higher order statistics (e.g. Moutarde
et al. 1991; Buchert et al. 1994; Bouchet et al. 1995; Scoccimarro
2000; Scoccimarro & Sheth 2002).

The essence of the above approach is that it provides
a pathway to recover the high-order statistics of the matter

distribution using only the 2-point statistics of the initial
conditions, obviating the need for additional parameters to
describe higher order statistics for the matter inference problem.
Moreover, since our model encodes the dynamics, the recon-
struction of the large-scale velocity field is automatically gen-
erated without incurring the expense of an increased parameter
space.

A.3. Modular statistical programming

In this work, we exploit the modular statistical programming
framework inherent in the borg algorithm to encode the AP
test as an additional component to the original block sampling
machinery. This approach allows us to model any Bayesian hier-
archical problem to take into account any observational system-
atics via data models of higher complexity. Here, we account for
the unknown parameters {bg

i } of the galaxy bias model described
in Sect. 3.1 and unknown normalisations {N̄g} for distinct galaxy
samples, as illustrated in Fig. A.1. These last normalisations, in
practice, scale as the noise amplitudes as we are using a per-
voxel Poissonian likelihood.

Conceptually, within such a framework, the overall
aim is to characterise fully the augmented joint posterior
P({δic

p }, {N̄
g}, {bg

i }, {θi}|{N
g
p},S) of different tracer populations

labelled by the index g. Since it is not computationally feasi-
ble and advisable to sample directly from the high dimensional
joint posterior distribution, we make use of an important the-
orem on Metropolis-Hastings block sampling which allows us
to break the high dimensional sampling problem into a series
of lower dimensional ones (Hastings 1970). We therefore dis-
sect the exploration of the full joint parameter space into a
sequence of conditional sampling procedures. The block sam-
pling approach consists of drawing samples from the following
conditional probability distributions:

(1) {δic
p }

s+1 x P
(
{δic

p }|{θi}
s, {Ng

p}
s, {N̄g}s, {bg

i }
s,S

)
(2) {N̄g}s+1 x P

(
{N̄g}|{θi}

s, {Ng
p}

s, {δic
p }

s, {bg
i }

s,S
)

(3) {bg
i }

s+1 x P
(
{bg

i }|{θi}
s, {N̄g}s, {Ng

p}
s, {δic

p }
s,S

)
(4) {θi}

s+1 x P
(
{θi}|{N̄g}s, {Ng

p}
s, {δic

p }
s, {bg

i }
s,S

)
. (A.8)

A69, page 13 of 18

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834117&pdf_id=12


A&A 621, A69 (2019)

In the above expressions, s denotes the sampling step and the
symbolx indicates sampling from the distribution on the right
hand side. A series of iterations of the individual sampling steps
above will converge to the target distribution which corresponds
the full joint posterior distribution (Hastings 1970). Hence, by
simultaneously exploring the 3D initial density field {δic

p }, the
galaxy bias parameters {bg

i }, the galaxy density contrast nor-
malisations {N̄g} and the cosmological parameters {θi} via an
implementation of high dimensional MCMC methods in a mul-
tiple block sampling procedure, we can obtain samples from the
desired joint posterior distribution.

A.4. The bias posterior distribution

The formalism for the data model is presented in a generic con-
text in Sect. 3.1, such that it can be implemented for two or
more different galaxy surveys, distinct subsamples of a given
catalogue or even different cosmological probes of the LSS. The
advantage of splitting a galaxy sample into various subsamples is
that we can treat the respective systematic and statistical uncer-
tainties of each subsample separately, thereby allowing us to
account for the distinct clustering behaviour of galaxy popula-
tions in the LSS sample via their respective bias parameters.

These additional parameters can be trivially incorporated in
the flexible block sampling approach adopted here, as described
in Sect. A.3. The mean numbers of galaxies, N̄g, for the various
subsamples are essential for defining the density contrast of the
galaxy distribution, with an erroneous value of N̄g resulting in a
non-zero value of the mean, yielding spurious large-scale power in
the inferred density fields (Jasche & Wandelt 2013b). Due to a lack
of a priori knowledge, we must perform a joint inference of the set
of four N̄g and bg

i bias parameters, together with initial and final
density fields, to take into account possible cross-correlations and
interdependencies. Unlike traditional approaches (e.g. Tegmark
et al. 2004), here we infer the bias factors directly from the relation
between the data and the density field.

The conditional posterior distribution for the bias parame-
ters, given a realisation of the density field and galaxy number
counts for the respective subcatalogues, can be expressed as:

P
(
{N̄g}, {bg

i }|{θi}, {N
g
p}, {δ

ic
p }

)
∝ L

[
{Ng

p}
∣∣∣Mp

(
{δic

p }
)
, {θi}, {N̄g}, {bg

i }
]

× Π
(
{N̄g}, {bg

i }
)
, (A.9)

following an analogous reasoning to that described in Sect. 3.3.
Adopting a standard maximally agnostic philosophy, we set uni-
form prior distributions for the bias parameters:

Π
(
{N̄g}, {bg

i }
)

= Θ
(
{N̄g}

)
Θ

(
{bg

i }
)
, (A.10)

where the Heaviside function Θ(x) ensures that the parameters
are positive, as required by the bias model. The non-linear shape
of the galaxy biasing function, as given in Eq. (4), poses a partic-
ular challenge as no straightforward sampling procedure can be
derived. We therefore sample from the above conditional bias
posterior distribution via sequential slice sampling steps (e.g.
Neal 2000, 2003) to ensure unit acceptance rates.

Appendix B: Jacobian of comoving-redshift
transformation

The derivation of the Jacobian, J z
r, of the coordinate transfor-

mation between comoving (r) and redshift (z) transformation is
described below.

Since we desire the redshift space representation of the den-
sity field,

ρz[z(r)] = ρr(r)
∣∣∣∣∣∂z
∂r

∣∣∣∣∣−1

= ρr(r)
∣∣∣J r

z

∣∣∣−1
= ρr(r)

∣∣∣J z
r

∣∣∣, (B.1)

or in terms of the density contrast,

δz[z(r)] = [1 + δr(r)]
∣∣∣J z

r

∣∣∣ − 1, (B.2)

where J r
z is the corresponding Jacobian for the converse (red-

shift to comoving) transformation.
The set of three indices {i, j, k} below are spatial coordinates

{1, 2, 3}. With the functional dependence of z = f (r), we have

zi =
ri

r
f (r) = z̄ (r)

ri

r
, (B.3)

where we defined r =
√∑

j r2
j , and z̄ is the cosmological redshift.

Taking the derivative yields

dzi = dz̄ (r)
ri

r
+ z̄ (r) d

( ri

r

)
=

∑
j

∂z̄
∂r

∂r
∂r j

dr j
ri

r
+ z̄

dri

r
+ z̄rid

(
1
r

)
, (B.4)

after applying the chain rule. Differentiating with respect to the
comoving coordinate, and using d (1/r) = −

∑
j(1/r3)r jdr j,

∂zi

∂rk
=
∂z̄
∂r

∂r
∂rk

ri

r
+

z̄
r
δk

ik −
zrirk

r3

=

(
∂z̄
∂r
−

z̄
r

)
rirk

r2 +
z̄
r
δk

ik, (B.5)

where we made use of rdr =
∑

k rkdrk which follows from the

definition r =

√∑
k r2

k . To compute ∂z̄/∂r, we start from the
definition of comoving distance,

r =
c

H0

∫ z̄

0

dz
E(z)

, (B.6)

with the conventional definition for E(z),

E(z) =
√

Ωde(1 + z)3(1+w) + Ωk(1 + z)2 + Ωm(1 + z)3 + Ωr(1 + z)4,

(B.7)

where c is the speed of light and H0 is the Hubble constant today,
such that

∂z̄
∂r

=

(H0

c

)
E(z̄). (B.8)

Finally, the Jacobian matrix can be expressed as follows:

J r
z{ik} =

∂zi

∂rk
=

(H0

c
E(z̄) −

z̄
r

) rirk

r2 +
z̄
r
δk

ik, (B.9)

and we obtain the desired
∣∣∣J z

r{ik}

∣∣∣ by taking the reciprocal of∣∣∣J r
z{ik}

∣∣∣.
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Appendix C: Hamiltonian sampling

The exploration of the LPT-Poissonian posterior, described by
Eq. (6), requires highly non-linear reconstruction methods and
is therefore numerically intensive. From the Bayesian viewpoint
considered in this work, a single estimate of the density field
is not of particular interest, with the desired scientific output
being a sampled representation of the multi-dimensional LSS
posterior. Extracting any relevant statistical summary, such as
mean, mode or variance, given this posterior representation, is
then straightforward. Furthermore, the propagation of uncertain-
ties to the final inferred quantities is smooth and coherent.

In the absence of a known procedure to directly sample from
a LPT-Poissonian distribution, a Metropolis-Hastings sampling
scheme with an accept-reject step must be implemented. But
such a mechanism suffers from the well-known drawback of pos-
sible high rejection rate, where a low acceptance rate of proposed
samples will render the method numerically inefficient. This is
especially significant since the inference of 3D density fields typ-
ically involves extremely high number of inference parameters.
For instance, in this work, there are over 2×106 free parameters,
which correspond to primordial density fluctuation amplitudes
δic

p at respective grid nodes. Exploring this high dimensional
parameter space via a random walk, as in conventional MCMC
methods, consequently results in a high rejection rate. This is
an understatement, as in practice, the acceptance rate is virtually
zero, with one chance over 106 of going in the right direction,
without taking into account the step size.

To limit the number of samples and alleviate the numeri-
cal scaling of the method, we implement a Hamiltonian Monte
Carlo (HMC) scheme. This method guarantees an acceptance
rate of unity in the absence of numerical errors. The numer-
ical efficiency of the Hamiltonian sampling lies in determin-
istically proposing new samples to the Metropolis-Hastings
algorithm, based on techniques to follow dynamical particle
motion in potentials. The HMC algorithm therefore maintains
a reasonable sampling efficiency in high dimensional spaces by
suppressing the dominant random walk behaviour.

The HMC method has been successfully implemented for the
inference of density fields in the non-linear regime, and has been
found to be very efficient (e.g. Jasche & Kitaura 2010; Jasche
et al. 2010b; Kitaura et al. 2012; Jasche & Wandelt 2013a,b).
Moreover, this approach is less prone to spurious effects induced
by numerical inaccuracies due to the final accept/reject step of
the Metropolis-Hastings sampler ensuring correctness of the tar-
get density. Numerical inaccuracies would only be detrimental
to the efficiency, without comprimising the correctness.

We briefly review the underlying framework and rationale of
the HMC method. An excellent in-depth review of this approach
is provided in Duane et al. (1987) and Neal (1993), with its appli-
cation to LSS inference illustrated in Jasche & Kitaura (2010),
Jasche et al. (2010b), Jasche & Wandelt (2013a,b) and Jasche &
Lavaux (2018).

The essence of the HMC method is as follows: If we want
to generate random variates according to a desired probability
distribution P({xi}), with {xi} being a set of N elements xi, then
we may interpret the negative logarithm of the distribution as a
potential ψ(x),

ψ(x) = − ln(P(x)). (C.1)

We can subsequently formulate a corresponding Hamiltonian
that describes the dynamics in the multi-dimensional phase
space by adding a kinetic term to the above potential. To this end,
we introduce a “momentum” variable pi and a “mass matrix” M

as nuisance parameters, as follows:

H =
1
2

∑
i, j

piM−1
i j p j + ψ(x). (C.2)

This Hamiltonian, as in classical mechanics, describes the
dynamics in a high dimensional parameter space. We then obtain
the new target probability distribution by exponentiating the
above Hamiltonian:

e−H = P({xi}) exp
(

1
2

∑
i, j

piM−1
i j p j

)
. (C.3)

The form of the Hamiltonian ensures that the new joint dis-
tribution can be separated into a Gaussian distribution for the
momenta {pi} and the target distribution P({xi}). This implies
that the two sets of variables {xi} and {pi} are independent, and
hence, we can obtain samples from the target distribution P({xi})
simply by marginalizing over the auxiliary momenta.

The next step is to generate a random variate from the joint
distribution, which is proportional to exp (−H). We must first
draw a set of momenta from the distribution defined by the
kinetic energy term, which is an N-dimensional Gaussian with
covariance M. To obtain a new sample from the joint distri-
bution, we allow the system to evolve deterministically, from
a given initial point in the high dimensional parameter space
({xi}, {pi}), according to Hamilton’s equations:

dxi

dt
=
∂H
∂pi

(C.4)

dpi

dt
=
∂H
∂xi

= −
∂ψ(x)
∂xi
· (C.5)

Integrating the above equations of motion for the time variable t
up to a fixed pseudo-time τ results in the new position ({x′i }, {p

′
i})

in phase space. This new point in phase space is accepted accord-
ing to the standard Metropolis-Hastings acceptance rule:

PA = min
{
1, exp

[
−

(
H

(
{x′i }, {p

′
i}
)
− H ({xi}, {pi})

)]}
. (C.6)

Since the equations of motion provide a solution to a Hamil-
tonian system, the energy or the Hamiltonian described by
Eq. (C.2) must be conserved. A direct consequence of this con-
servation of the Hamiltonian is that the HMC approach yields
an acceptance rate of unity. In practice, however, the acceptance
rate may be lower due to numerical inaccuracies in the integra-
tion scheme. After accepting a new sample, the mechanism pro-
ceeds by discarding the momentum counterpart and restarts the
sampling procedure by randomly drawing a new set of momenta.
The individual momenta {pi} do not have to be stored in mem-
ory which is numerically convenient, and marginalisation simply
implies discarding them.

The HMC sampling scheme can therefore be summarised
in two steps. The first step is essentially a Gibbs sampling step
which results in a new set of Gaussian distributed momenta. The
second step involves computing the deterministic dynamical tra-
jectory on the posterior surface. We obtain samples of the desired
target distribution by marginalizing over the nuisance parame-
ters, that is, by discarding the auxiliary momenta {pi}.

Appendix D: Equations of motion for LSS inference

As described in Appendix C, the Hamiltonian Monte Carlo
(HMC) approach allows the exploration of the non-linear LSS
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posterior via the study of the Hamiltonian dynamics in the high
dimensional parameter space. To ensure a high acceptance rate,
the HMC exploits the gradient of the logarithmic posterior dis-
tribution to optimally explore this parameter space, such that the
algorithm also requires the derivatives of the posterior distribu-
tion, as outlined below.

From the LSS posterior illustrated in Eq. (6), we can derive
the corresponding forces required to evaluate the Hamiltonian
trajectories. The Hamiltonian potential ψ(δic) can be written as

ψ(δic) = − ln
[
P

(
{δic

p }, {N̄
g}, {bg}, {θi}|{N

g
p},S

)]
= ψlikelihood(δic) + ψprior(δic), (D.1)

where the potential ψprior(δic) corresponds to

ψprior(δic) =
1
2
δic,†S−1δic =

1
2

∑
i j

δic,∗
i S −1

i j δ
ic
j , (D.2)

while ψlikelihood(δic) is given by

ψlikelihood(δic) =
∑

p

{
λ

g
p

(
{δf

p}, {θi}, {N̄g}, {bg
i }
)

−Ng
p ln

[
λ

g
p

(
{δf

p}, {θi}, {N̄g}, {bg
i }
)]}
. (D.3)

Using the definition of the Hamiltonian potential ψ(δic) from
Eq. (D.1), we obtain the corresponding equations describing the
Hamiltonian forces by differentiating with respect to δic:

∂ψ(δic)
∂δic

i

=
∂ψprior(δic)

∂δic
i

+
∂ψlikelihood(δic)

∂δic
i

· (D.4)

The prior term is trivially obtained as

∂ψprior(δic)

∂δic
i

=
∑

j

δic,∗
j S −1

i j . (D.5)

The corresponding likelihood term, however, cannot be derived
in straightforward fashion. We compute this adjoint gradient as
a sequential application of linear operations, as follows:

∂ψlikelihood(δic)
∂δic

s
=

∑
q

∂ρ(r)
q

∂δic
s

∑
p̃

∂ρ(z)
p̃

∂ρ(r)
q

∑
p,g

∂λ
g
p

∂ρ(z)
p̃

∂ψlikelihood

∂λ
g
p

, (D.6)

where we explicitly expressed the coordinate transformation
from comoving (r) to redshift (z) space, and ρp = 1 + δf

p is the
density field. Equation (D.6) constitutes a sequence of matrix
vector applications, as follows:

G̃qs ≡
∂ρ(r)

q

∂δic
s

(D.7)

Q p̃q ≡
∂ρ(z)

p̃

∂ρ(r)
q

=
∑

i

E−1
ip̃

∑
p̃

Jp̃xα(i)
p̃ y

β(i)
p̃ zγ(i)

p̃ (D.8)

Kpp̃ ≡
∑

g

∂λ
g
p

∂ρ(z)
p̃

=
∑

g

δk
p, p̃

λ
g
p

ρ(r)
p̃

[
ρgεgρ

−εg,(r)
p̃ + β

]
(D.9)

vp ≡
∂ψlikelihood

∂λ
g
p

= 1 −
Ng

p

λ
g
p

(
{δf

p}, {θi}, {N̄g}, {bg
i }
) , (D.10)

where J is the Jacobian of the comoving-redshift transforma-
tion, G̃ indicates the derivative of LPT (cf. Appendix D in Jasche

& Wandelt 2013a) and δk
p, p̃ is the Kronecker delta. The deriva-

tion of the adjoint gradient for the triquintic interpolation is illus-
trated in Appendix G.

Using the above results, the two equations of motion (C.4)
and (C.5) for the Hamiltonian system can be expressed as fol-
lows:

dδ̂ic
i

dt
=

∑
j

M−1
i j p j, (D.11)

and

dp̂i

dt
= −

∑
j

δic,∗
j S −1

i j −
∑
q, p̃,p

G̃qiQ p̃qKpp̃ vp, (D.12)

where the hats denote Fourier space representation. We can now
obtain new samples from the LSS posterior by following the
dynamical evolution of the Hamiltonian system, governed by
Eqs. (D.11) and (D.12), in phase space.

Appendix E: Numerical implementation

Our numerical implementation of the augmented version of
borg, that incorporates cosmological parameter inference, while
assuming a more realistic non-linear bias model, is designated
as altair. It employs the FFTW3 library for fast Fourier trans-
forms (Frigo & Johnson 2005), whose feature of parallel trans-
forms allows for straightforward parallelisation of our code.
For random number generation, we make use of the GNU
scientific library (gsl; Galassi et al. 2009), in particular, the
Mersenne Twister MT19937, with 32-bit word length, from the
gsl_rng_mt19937 routine. The use of the Mersenne Twister
algorithm as a pseudo-random number generator for Monte
Carlo simulations has been proven to be efficient and depend-
able (Matsumoto & Nishimura 1998).

E.1. The leapfrog scheme

In order to obtain samples from the LSS posterior, we must
integrate the equations of motion (D.11) and (D.12) numer-
ically over a pseudo-time interval τ by means of a leapfrog
scheme. Ideally, we want to solve the equations exactly for
an optimal acceptance rate. As such, the choice of this inte-
grator is motivated by several reasons. Primarily, the leapfrog
scheme is convenient as it is a symplectic integrator and is
therefore exactly reversible, thereby maintaining detailed bal-
ance (Duane et al. 1987) of the Markov chain. The high accu-
racy of such an integration scheme is conducive to the conser-
vation of the total Hamiltonian along a given trajectory, within
the limit of numerical errors, resulting in high acceptance rates.
It is also numerically stable and allows for simple propaga-
tion of errors. To avoid resonant trajectories, τ is drawn from a
uniform distribution. The numerical implementation of the
“kick-drift-kick” leapfrog scheme here follows closely the
descriptions provided in Jasche & Kitaura (2010) and Jasche &
Wandelt (2013a), which we refer the reader to for more elaborate
and complementary explanations.

E.2. Hamiltonian mass

The mass matrix M contains a large number of parameters that
must be tuned to optimise the performance of the HMC sam-
pler. Conceptually, this Hamiltonian mass characterises the iner-
tia of individual parameters as they move through the parameter
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Fig. F.1. Left panel: correlation length of the Ωm Markov chain. The chain has a correlation length of the order of 25 samples. The dashed-dotted
lines depict the longer correlation length without the rotation of the cosmological parameter space, by nearly a factor of five. Right panel: burn-in
phase for both scenarios, illustrated via the deviation from the reference cosmology. The dashed-dotted lines depict the MCMC chains obtained
without rotating the parameter space, where the burn-in phase consequently requires around five times more iterations. The longer correlation
length and burn-in phase highlight the loss in efficiency compared to the more sophisticated sampler.

space. As a result, the choice of M is a compromise to limit slow
exploration efficiency due to extremely large masses and avoid
large numerical errors of the integration scheme due to extremely
light masses, and is therefore a trade-off between efficiency and
acceptance rate.

A general prescription for the Hamiltonian masses, when
the density fluctuations δf

p can be characterised as a Gaussian
random field, is to set them inversely proportional to the vari-
ance of that specific δf

p (Taylor et al. 2008). However, this pre-
scription has been found to be effective even for the case of
non-Gaussian distributions, such as the LPT-Poissonian poste-
rior encountered in this work (Jasche & Wandelt 2013a; Jasche
et al. 2015; Lavaux & Jasche 2016). Since the leapfrog scheme
requires the inversion of M, a diagonal representation of M is
numerically convenient, given the extremely high dimensional-
ity of the problem. We therefore choose M to be inversely pro-
portional to the cosmological power spectrum, M = S−1, which
is diagonal in its Fourier basis. This choice, moreover, improves
the efficiency of the HMC sampler and results in faster conver-
gence since it accounts for the correlation structure of the under-
lying density field (Jasche & Wandelt 2013a).

Appendix F: Rotation of cosmological parameter
space

To increase the efficiency of the cosmological parameter sam-
pler, we rotate the (Ωm,w0) parameter space, using orthogonal
basis transformations, before slice sampling. The correspond-
ing covariance matrix can be orthonormally decomposed as C =
Q†∆Q, where Q†Q = 1.

We perform a rotation of the θ vector of cosmological param-
eters, about the mean θ̄, using the transformation:

θ̃ = ∆−
1
2 Q(θ − θ̄), (F.1)

where the tilde denotes the transformed variable. A key point is
that we must rotate back to the original frame when computing
the logarithm of the posterior via

θ = Q†∆
1
2 θ̃ + θ̄. (F.2)

This is implemented at each step of the Markov chain, such that
the covariance used to compute the orthogonal basis operators

must be learnt progressively as follows:

Cn+1 =
n

n + 1
Cn +

(θn − θ̄)†(θn − θ̄)
n

, (F.3)

at the given nth step. The above transformation helps to decorre-
late the variables involved when sampling, thereby reducing the
burn-in period significantly. This procedure is especially effec-
tive with highly correlated parameters, as is the case for (Ωm,w0)
(cf. Fig. 6).

We investigate the statistical efficiency of our cosmological
parameter sampler by computing the correlation length of the
Markov chain. Subsequent samples in the chain are generally
correlated and hence do not qualify as independent samples of
the target posterior distribution. The correlation length charac-
terises the statistical efficiency of generating independent sam-
ples of a given parameter θ, as follows:

C(θ)n =
1

N − n

N−n∑
i=0

(
θi − 〈θ〉
√

Var(θ)
θi+n − 〈θ〉
√

Var(θ)

)
, (F.4)

where n is the number of transition steps in the chain, 〈θ〉
and Var(θ) correspond to the mean and variance, respectively,
〈θ〉 = 1/N

∑
i θ

i and Var(θ) = 1/N
∑

i(θi − 〈θ〉)2, while N is the
total number of realisations in the chain. This correlation length
therefore indicates the number of independent realisations that
can be drawn from the MCMC chain with a given number of
transition steps. For an unbiased comparison, we computed the
correlation length using the same chain length for both scenar-
ios, while ignoring their respective burn-in phases. From the left
panel of Fig. F.1, we deduce that the correlation length for the
Ωm chain is of the order of 25 samples. Without the rotation
of (Ωm,w0) parameter space, the correlation length is longer by
nearly a factor of five, further demonstrating the gain in effi-
ciency obtained with the more sophisticated sampler.

Appendix G: Adjoint gradient for generic 3D
interpolation

The 3D interpolation can be expressed generally, for any arbi-
trary nth order of interpolation, as:

Pαβγ =

n∑
i=0

n∑
j=0

n∑
k=0

ai jk xi
αy

j
βz

k
γ =

n∑
i, j,k

ai jkEαβγ
i jk, (G.1)
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where P is the interpolated surface and E is a (n + 1)3 × (n + 1)3

matrix required for computing the vector of interpolation coef-
ficients a. In this work, we implement a triquintic interpola-
tion scheme, which corresponds to n = 5, with the indices
{i, j, k}, {α, β, γ} = {0, 1, 2, 3, 4, 5} constituting the particular
indexing scheme employed to denote the voxels involved. E is
therefore a 216 × 216 matrix for the triquintic scheme.

The above system of equations can be reformulated as a
matrix for the linear system described by P = Ea, such that the
vector of interpolation coefficients can be computed in straight-
forward fashion through matrix inversion, a = E−1P. The advan-
tage of this approach is that E−1 can computed only once and
stored, and then used for interpolation at any location inside the
cube (e.g. Lekien & Marsden 2005).

The derivative of the generic 3D interpolation is required as
a component of the adjoint gradient at the core of the HMC sam-
pler described in Appendix C. The 3D interpolated density field,
in redshift space (cf. Eq. (B.1)), can be written explicitly as:

ρ̃k = Jk

∑
i,m

E−1
imρmxα(i)

k y
β(i)
k zγ(i)

k

 , (G.2)

where J is the Jacobian of the comoving-redshift transforma-
tion from Appendix B, evaluated at the location of the mesh ele-
ment k. Here, we employed a compact notation, where {x, y, z}

correspond to the fractional steps with respect to a reference
node in the grid, that is, interpolation weights, and {α, β, γ} label
the powers of the elements of E via:

i = α(n + 1)2 + β(n + 1) + γ, (G.3)

with the index m ∈ {i, j, k} from Eq. (G.1). Using the chain rule,
the resulting gradient w, after application of the incoming gra-
dient u from the previous components in the forward model, is
obtained as follows:

wa =
∑

k

vk
∂ρ̃k

∂ρa

=
∑

k

Jkvk

∑
i,m

E−1
im δ

k
maxα(i)

k y
β(i)
k zγ(i)

k

=
∑

i

E−1
ia

∑
k

Jkvk xα(i)
k y

β(i)
k zγ(i)

k

=
∑
i,k

E−1
ia ξik, (G.4)

where ξik ≡ Jkvk xα(i)
k y

β(i)
k zγ(i)

k represents the contribution to the
adjoint gradient from a specific voxel labelled by the index-
ing scheme adopted. This is convenient as E−1 is already avail-
able from the execution of the 3D interpolation in the forward
model.
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