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Abstract A search is presented for a Higgs-like boson with
mass in the range 45 to 195 GeV/c2 decaying into a muon
and a tau lepton. The dataset consists of proton-proton inter-
actions at a centre-of-mass energy of 8 TeV, collected by
the LHCb experiment, corresponding to an integrated lumi-
nosity of 2 fb−1. The tau leptons are reconstructed in both
leptonic and hadronic decay channels. An upper limit on the
production cross-section multiplied by the branching fraction
at 95% confidence level is set and ranges from 22 pb for a
boson mass of 45 GeV/c2 to 4 pb for a mass of 195 GeV/c2.

1 Introduction

Decays mediated by charged-lepton flavour-violating (CLFV)
processes are forbidden in the Standard Model (SM). Their
observation would be a clear sign for physics beyond the SM.
Such processes are predicted by several theoretical models
[1–8], in particular those based on an effective theory with
relaxed renormalisability requirements [9], supersymmetric
models [10–14], composite Higgs models [15,16], Randall–
Sundrum models [17,18], and non-abelian flavour symmetry
models [19]. Nonetheless, no evidence for CLFV effects has
been reported to date.

The LEP experiments set stringent limits on the CLFV
decay of the Z boson [20–23]. In the presence of CLFV
couplings, the decays to e±μ∓, e±τ∓ and μ∓τ∓ could
be mediated by a Higgs boson. At LEP2, limits on the
cross-section of the e+e− → e±μ∓, e+e− → e±τ∓ and
e+e− → μ±τ∓ processes were obtained by the OPAL col-
laboration for centre-of-mass energies (

√
s) ranging from

192 to 209 GeV [24]. These constraints can be translated into
limits on the Higgs CLFV decay branching fraction [9,25],
which are on the order of 10−8 for a SM Higgs decay into an
electron and muon [25]. Recent searches for the H → μ±τ∓
decay have been performed by the CMS [26] and ATLAS [27]
collaborations for the Higgs boson with mH = 125 GeV/c2.
Upper limits on the branching fraction B(H → μ±τ∓) have
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been placed by the two collaborations at 0.25% and 1.85%,
respectively.

The possible existence of low-mass Higgs-like bosons
is a feature of models like the two-Higgs-doublet models
(2HDM) [28]. Searches for such particles have been per-
formed by the ATLAS [29] and CMS [30] collaborations in
the ditau decay mode. Another scenario is that of a hidden
gauge sector [31,32]. In this context, the BaBar and Belle
collaborations have performed searches for a resonance with
a mass below 10 GeV/c2 [33,34]. The LHCb collaboration
has recently published the results of a search for dark photons
decaying into the dimuon channel, placing a stringent limit
for the production of a dimuon in the mass range from 10.6
to 70 GeV/c2 [35].

The LHCb detector probes the forward rapidity region
which is only partially covered by the other LHC experi-
ments, and triggers on particles with low transverse momenta
(pT), allowing the experiment to explore relatively small
boson masses. In this paper a search for CLFV decays into a
muon and a tau lepton of a Higgs-like boson with a mass rang-
ing from 45 to 195 GeV/c2 is presented, using proton-proton
collision data collected at

√
s = 8 TeV. The Higgs-like

boson is assumed to be produced by gluon-fusion, similarly
to the main production mechanism of the SM Higgs boson
at LHC [36].1 The analysis is separated into four channels
depending on the final state of the τ lepton decay: (i) single
muon τ− → μ−νμντ , (ii) single electron τ− → e−νeντ ,
(iii) single charged hadron τ− → π−(π0)ντ , and (iv) three
charged hadrons τ− → π−π−π+(π0)ντ . They are denoted
as τμ, τe, τh1, and τh3 respectively. The main sources of
background are Z → τ+τ− decays,2 heavy flavour pro-
duction from QCD processes (“QCD” in the following) and
electroweak boson production accompanied by jets (“V j”).
This analysis utilizes reconstruction techniques and results

1 The remaining Higgs production modes (e.g., ∼ 10% from Vector-
Boson Fusion) are neglected in this study.
2 Throughout this note, Z implies Z/γ ∗, i.e. includes contributions
from Z boson production, virtual photon production, and also their
interference.
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obtained from the Z → τ+τ− measurement by the LHCb
collaboration [37].

2 Detector and simulation description

The LHCb detector [38,39] is a single-arm forward spec-
trometer covering the 2 < η < 5 pseudorapidity range,
designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system con-
sisting of a silicon-strip vertex detector surrounding the pp
interaction region, a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of 4 Tm,
and three stations of silicon-strip detectors and straw drift
tubes placed downstream of the magnet. The tracking system
provides a measurement of the momentum of charged parti-
cles with a relative uncertainty that varies from 0.5% at low
momentum to 1.0% at 200 GeV/c. The minimum distance of
a track to a primary vertex (PV), the impact parameter (IP),
is measured with a resolution of (15+29/pT)µm, where pT

is the component of the momentum transverse to the beam,
in GeV/c. Photons, electrons and hadrons are identified by
a calorimeter system consisting of scintillating-pad (SPD)
and preshower detectors (PS), an electromagnetic calorime-
ter (ECAL) and a hadronic calorimeter (HCAL). Muons are
identified by a system composed of five stations of alternating
layers of iron and multiwire proportional chambers.

Simulated data samples are used to calculate the efficiency
for selecting signal processes, to estimate the residual back-
ground level, and to produce templates for the fit used to
determine the signal yield. For this analysis, the simulation
is validated primarily by comparing Z → l+l− decays in
simulation and data. The Higgs boson is generated assum-
ing a gluon-fusion process, and with mass values from 45 to
195 GeV/c2 in steps of 10 GeV/c2, using Pythia 8 [40,41]
with a specific LHCb configuration [42]. The parton den-
sity functions (PDF) are taken from the CTEQ6L set [43].
Decays of hadronic particles are described by EvtGen [44],
in which final-state radiation is generated usingPhotos [45].
The interaction of the particles with the detector and its
response are implemented using the Geant4 toolkit [46,47]
as described in Ref. [48]. Samples of H → μ±τ∓ decays
generated at next-to-leading order precision by Powheg-
Box [49–52] with the PDF set MMHT2014nlo68cl [53]
are used for the signal acceptance determination.

3 Signal selection

This analysis uses data corresponding to a total integrated
luminosity of 1976 ± 23 pb−1 [54]. The data collected uses
a trigger system consisting of a hardware stage followed by
a software stage. The hardware trigger requires a muon track

identified by matching hits in the muon stations, as well as
a global event cut (GEC) requiring the hit multiplicity in the
SPD to be less than 600. The software trigger selects muons
or electrons with a minimum pT of 15 GeV/c.

The H → μ±τ∓ candidates are identified and recon-
structed into the four channels: μτe, μτh1, μτh3 and μτμ.
The τh3 candidates are reconstructed from the combination
of three charged hadrons from a secondary vertex (SV). The
μ±τ∓ candidates are required to be compatible with origi-
nating from a common PV. The muon track and the tracks
used to reconstruct the tau candidate must be in the geomet-
rical region 2.0 < η < 4.5. Electron candidates are cho-
sen amongst tracks failing the muon identification criteria
and falling into the acceptance of the PS, ECAL, and HCAL
sub-detectors. A large energy deposit, E , in the PS, ECAL,
but not in HCAL is required, satisfying: EPS > 50 MeV,
EECAL/p > 0.1, and EHCAL/p < 0.05, where p is the
reconstructed momentum of the electron candidate, after
recovering the energy of the bremsstrahlung photons [55].
Charged hadrons are required to be in the HCAL acceptance,
to deposit an energy EHCAL with EHCAL/p > 0.05, and to
fail the muon identification criteria. The pion mass is assigned
to all charged hadrons.

The selection criteria need to be optimised over the mH

range used in this analysis, from 45 to 195 GeV/c2. Three
different sets of selection criteria are considered, dubbed
L-selection, C-selection, and H-selection. The C-selection
is similar to that used for the analysis of Z → τ+τ−
decays [37]; as such, it is optimised for mH ∼ mZ . The L-
selection and H-selection are optimised for the mH regions
below and above the Z mass respectively. All selection sets
are applied in parallel to compute background estimation
and exclusion limits. Subsequently, for each mH hypothesis,
the chosen selection is that of L-, C-, or H-selection which
provides the smallest expected signal limit, allowing precise
separation between adjacent mass regions. As expected, it is
found that the C-selection is optimal for a boson mass of 75
and 85 GeV/c2. Below and above that range the best upper
limits are obtained from the L- and H-selections, respectively.
In the following discussion the requirements are applied iden-
tically for all decay channels and selection sets unless stated
otherwise.

The tau candidates are selected with pT > 5 GeV/c for
τe,τμ, and pT > 10 GeV/c for τh1. For the τh3 candidate, the
charged hadrons are required to have pT > 1 GeV/c and one
of them with pT > 6 GeV/c. They are combined to form the
tau candidates, which are required to have pT > 12 GeV/c
and an invariant mass in the range 0.7 to 1.5 GeV/c2. In
the H-selection, the tau candidates must have pT in excess
of 20 GeV/c. This requirement is not applied in the μτμ

channel as it favours the selection of Z → μ+μ− back-
ground. The muon from H → μ±τ∓ decay is expected
to have a relatively large pT, thus the selection requires
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the muon pT to be greater than 20 GeV/c, 30 GeV/c, and
40 GeV/c in the L-, C-, and H-selections, respectively. A
tighter requirement of 50 GeV/c is applied for the muon in
the μτμ channel in the H-selection due to the Z → μ+μ−
background. Additionally, for the μτe channel, the contri-
bution from W/Z → e + jet background is suppressed by
requiring the transverse momentum of the muon to be larger
than that of the τe candidate.

The relatively large lifetime of the τ lepton is used to
suppress prompt background. For the τh3 candidate, a SV is
reconstructed. A correction to the visible invariant mass, m,
computed from the three-track combination, is obtained by
exploiting the direction of flight defined from the PV to the
SV. The relation used is mcorr =

√
m2 + p2 sin2 θ + p sin θ ,

where θ is the angle between the momentum of the τh3 can-
didate, and its flight direction. The mcorr value is required
to not exceed 3 GeV/c2. A time-of-flight variable is also
computed from the distance of flight and the partially recon-
structed momentum of the τ lepton, and a minimum value of
30 fs is required. The mcorr and time-of-flight requirements
together retain 80% of the signal, while rejecting about 75%
of the QCD background. For tau decay channels with a single
charged particle, it is not possible to reconstruct a SV, and
a selection on the particle IP is applied. A threshold of IP
> 10µm selects 85% of the τe and τh1 candidates, and rejects
about 50% of the V j background. The threshold is increased
to 50µm for τμ candidates, in order to suppress Z → μ+μ−
background. The prompt muon instead is selected by requir-
ing IP less than 50µm, allowing up to 50% rejection of QCD
and Z → τ+τ− backgrounds.

The two leptons from the Higgs decay should be approx-
imately back-to-back in the plane transverse to the beam.
The absolute difference in azimuthal angle of muon and tau
candidates is required to be greater than 2.7 radians. This
rejects 50% of the V j background. The transverse momen-
tum asymmetry of the two particles, defined as ApT =
|pT1 − pT2|/(pT1 + pT2), can be used to effectively sup-
press various background processes. The background from
the V j processes is suppressed by up to 60% for the μτh1

channel by requiring ApT < 0.4 (0.5) in the L-selection (S-
selection), because of the large pT imbalance between the
high-pT muon from the vector boson and a hadron from a
jet. For the μτe channel, the worse momentum resolution
increases the average ApT value, hence a softer selection
ApT < 0.6 is used to preserve efficiency. On the contrary,
for the μτμ channel, a tighter cut is applied to suppress the
dominant background from Z → μ+μ− decays. By requir-
ing ApT > 0.3 (0.4) in the L-selection and C-selection (H-
selection), such background is reduced by 80%, while the
signal decreases to 70%.

The two leptons from the Higgs decay are required
to be isolated from other charged particles. Two particle-
isolation variables are defined as IpT = ( �pcone)T and Î pT =

pT/( �p + �pcone)T where �p is the momentum of the lepton
candidate, the subscript T denotes the component in the
transverse plane, and �pcone is the sum of the momenta of
all charged tracks within a distance Rηφ = 0.5 in the (η, φ)

plane around the lepton candidate. The isolation requirement
Î pT > 0.9 is applied to the muon and tau candidates for all
decay channels and selection sets, and retain 70% of the sig-
nal candidates while rejecting 90% of QCD events. In addi-
tion, a cut IpT < 2 GeV/c is applied in the L-selection to both
candidates, as the lower pT reduces the background rejection
power of the Î pT variable.

The selection criteria common or specific to each selection
set and decay channel are summarised in Table 1. The signal
selection efficiencies are found to vary from 10 to 50%. Due
to the kinematic selection, the decay channels are mutually
exclusive and just one μ±τ∓ candidate per event is found.

4 Background estimation

Several background processes are considered: Z → τ+τ−,
Z → l+l− (l = e, μ), QCD, V j , double bosons production
(VV ), t t , and Z → bb. All backgrounds except Z → τ+τ−
are estimated following the procedures described in Ref. [37].
The expected yields can be found in Table 2. The correspond-
ing invariant-mass distributions compared with candidates
observed in the data are shown in Fig. 1. For illustration,
examples of H → μ±τ∓ distributions from simulation are
also superimposed.

The Z → τ+τ− background is estimated from the cross-
section measured by the LHCb collaboration [37] where the
reconstruction efficiency is determined from data, and the
acceptance and selection efficiency are obtained from sim-
ulation. The estimated background includes a small amount
of cross-feed from different final states of the tau decay, as
determined from simulation. The Z → μ+μ− background is
dominant in the μτμ channel. The corresponding invariant-
mass distribution is obtained from simulation and normalised
to data in the Z peak region, from 80 to 100 GeV/c2. In order
to suppress the potential presence of signal in this region, the
muons are required to be promptly produced. For other chan-
nels, the Z → l+l− decay becomes a background source in
case a lepton is misidentified. This contribution is computed
from the Z → l+l− in data, and weighted by the particle
misidentification probability obtained from simulation.

The QCD and V j backgrounds are inferred from data
using the same criteria as for the signal but selecting same-
sign μ±τ± candidates. Their amounts are determined by a fit
to the distribution of pT(μ) − pT(τ ), with templates repre-
senting each of them. The template for the QCD component
is obtained from data requiring an anti-isolation Î pT < 0.6
selection. The distribution obtained from simulation is used
for the V j component. Factors are subsequently applied for
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Table 1 Requirements for each
decay channel and selection set

Selection set Variable μτe μτh1 μτh3 μτμ

All pT(τ ) [ GeV/c] > 5 > 10 > 12 > 5

pT(τ
prong1
h3 ) [ GeV/c] – – > 1 –

pT(τ
prong2
h3 ) [ GeV/c] – – > 1 –

pT(τ
prong3
h3 ) [ GeV/c] – – > 6 –

pT(μ) − pT(τ ) [ GeV/c] > 0 – – –

m(τh3) [ GeV/c2] – – 0.7–1.5 –

mcorr(τh3) [ GeV/c2] – – > 3 –

Time-of-flight (τh3) [ fs] – – > 30 –

IP (τ ) [µm] > 10 > 10 – > 50

IP (μ) [µm] < 50 < 50 < 50 < 50


φ [ rad] > 2.7 > 2.7 > 2.7 > 2.7

Î pT (τ ) > 0.9 > 0.9 > 0.9 > 0.9

Î pT (μ) > 0.9 > 0.9 > 0.9 > 0.9

L-selection pT(μ) [ GeV/c] > 20 > 20 > 20 > 20

ApT < 0.6 < 0.4 – > 0.3

IpT (τ ) [ GeV/c] < 2 < 2 < 2 < 2

IpT (μ) [ GeV/c] < 2 < 2 < 2 < 2

C-selection pT(μ) [ GeV/c] > 30 > 30 > 30 > 30

ApT – < 0.5 – > 0.3

H-selection pT(τ ) [ GeV/c] > 20 > 20 > 20 –

pT(μ) [ GeV/c] > 40 > 40 > 40 > 50

ApT – – – > 0.4

the correction of the relative yield of opposite-sign to same-
sign candidates. For the QCD background the number of
anti-isolated opposite-sign candidates found in data is used
in the calculation of the correction factor, where it is found
to be close to unity. The factors are found consistent with the
simulation. The factors for the V j component are taken from
simulation, and are in general larger than unity (1.3 for μτe
up to 3.1 for μτh1, for the L-selection). The minor contri-
butions from VV , t t , and Z → bb processes are estimated
from simulation.

5 Results

The signal cross-section multiplied by the branching fraction
is given by

σ(gg→ H → μ±τ∓) = Nsig/(L · B(τ → X) · ε), (1)

where Nsig is the signal yield obtained from the fit pro-
cedure described below, L the total integrated luminosity,
B(τ → X) the tau branching fraction, and ε the detection
efficiency. The latter is the product of acceptance, recon-
struction, and offline selection efficiencies. These efficien-
cies are obtained from simulated samples and data for each

decay channel and selection set, following the methods devel-
oped for the Z → τ+τ− measurement [37]. The acceptance
obtained from the Powheg- Box generator is identical for
the μτe, μτh3, and μτμ channels, varying from 1.0% for
mH = 195 GeV/c2 to 3.2% for mH = 75 GeV/c2. The
reconstruction efficiency, which is the product of contribu-
tions from trigger, tracking, and particle identification, is in
the range 40–70%, but only about 15% in the case of the μτh3

channel because of the limited tracking efficiency for the low-
momentum hadrons. With the exception of the μτμ channel,
the selection efficiency is 18–30% in the L-selection, and
24–49% in the C-selection and H-selection. In the case of
the μτμ channel, the tighter selection on the muon pT and
impact parameter reduces the selection efficiency to 10–15%.

The systematic uncertainties are summarised in Table 3.
The uncertainty on the acceptance receives contributions
from the gluon PDF uncertainty, as well as from factorization
and renormalisation scales. The uncertainties on the recon-
struction and selection efficiencies are estimated from simu-
lation and are calibrated using data as described in Ref. [37].
The uncertainty associated with the invariant-mass shape is
handled by selecting the weakest expected limits among the
different choices of distribution (kernel estimation and his-
tograms with different bin widths are used). The uncertain-
ties on the integrated luminosity and acceptance are fully
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Table 2 Expected number of background candidates from each component, total background with uncertainty, and number of observed candidates
with statistical uncertainty, from each decay channel and selection set

Selection set Process μτe μτh1 μτh3 μτμ

L-selection Z → τ+τ− 371.1 ± 26.0 681.7 ± 47.1 135.1 ± 11.7 137.4 ± 9.5

Z → l+l− 8.2 ± 1.6 4.0 ± 1.8 – 155.3 ± 5.0

QCD 67.5 ± 10.6 463.6 ± 5.4 93.1 ± 10.9 19.4 ± 5.5

V j 14.5 ± 10.3 143.2 ± 58.6 40.1 ± 15.8 10.7 ± 5.8

VV 3.4 ± 0.3 0.9 ± 0.2 0.3 ± 0.1 0.3 ± 0.1

t t 1.7 ± 0.1 1.3 ± 0.1 0.7 ± 0.1 1.3 ± 0.2

Z → bb 0.2 ± 0.2 0.2 ± 0.2 0.1 ± 0.1 0.2 ± 0.2

Total background 466.6 ± 28.0 1294.9 ± 75.5 269.4 ± 20.3 324.5 ± 12.5

Observed 472.0 ± 21.7 1284.0 ± 35.8 240.0 ± 15.5 344.0 ± 18.5

C-selection Z → τ+τ− 200.0 ± 14.3 288.1 ± 20.2 61.3 ± 5.5 71.7 ± 5.2

Z → l+l− 8.0 ± 1.7 4.3 ± 1.8 – 126.7 ± 4.5

QCD 10.0 ± 14.0 137.9 ± 14.0 29.9 ± 9.0 6.1 ± 3.6

V j 48.3 ± 17.2 242.9 ± 25.3 30.8 ± 17.6 7.9 ± 4.7

VV 3.4 ± 0.3 1.5 ± 0.2 0.3 ± 0.1 0.3 ± 0.1

t t 2.5 ± 0.1 1.6 ± 0.1 0.7 ± 0.1 1.5 ± 0.2

Z → bb 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1

Total background 272.3 ± 17.8 676.4 ± 35.2 123.1 ± 15.0 214.3 ± 8.1

Observed 296.0 ± 17.2 679.0 ± 26.1 123.0 ± 11.1 235.0 ± 15.3

H-selection Z → τ+τ− 13.7 ± 1.8 18.4 ± 1.6 8.9 ± 1.1 2.2 ± 0.4

Z → l+l− 4.7 ± 1.1 2.5 ± 1.1 – 33.7 ± 2.3

QCD – 15.8 ± 6.3 9.7 ± 5.1 –

V j 3.5 ± 2.6 142.6 ± 26.0 18.6 ± 16.5 7.8 ± 4.0

VV 1.7 ± 0.2 1.0 ± 0.2 0.1 ± 0.1 0.2 ± 0.1

t t 1.2 ± 0.1 0.9 ± 0.1 0.4 ± 0.1 0.8 ± 0.1

Z → bb 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1

Total background 24.9 ± 3.4 181.2 ± 26.7 37.8 ± 13.6 44.7 ± 4.6

Observed 27.0 ± 5.2 184.0 ± 13.6 37.0 ± 6.1 39.0 ± 6.2

correlated among channels, while only a partial correlation
is found for the reconstruction efficiency uncertainties. All
the other uncertainties are taken as uncorrelated.

The signal yield is determined from a simultaneous
extended likelihood fit of the binned invariant-mass distri-
butions of the μτ candidates. The distributions for signal are
obtained from simulation, while distributions of the different
background sources are obtained using the method described
in Sect. 4. The amount of each background component as well
as other terms in Eq. (1) containing uncertainties are treated
as nuisance parameters and are constrained to a Gaussian dis-
tribution with mean and standard deviation corresponding to
the expected value and its uncertainty, respectively.

The fit results for all mH values are compatible with a null
signal, hence cross-section upper limits are computed. The
exclusion limits of σ(gg → H → μ±τ∓) defined at 95%
confidence level are obtained from the CLs method [56]. As
mentioned before, for each mass hypothesis the selection
considered is that providing the smallest expected limit. The

σ(gg→ H → μ±τ∓) exclusion limits are shown in Fig. 2,
ranging from 22 pb for mH = 45 GeV/c2 to 4 pb for mH

= 195 GeV/c2. In the particular case of mH = 125 GeV/c2,
using the production cross-section from Ref. [57] gives a best
fit for the branching fraction of B(H → μ±τ∓) = − 2+14

−12%
and an observed exclusion limit B(H → μ±τ∓) < 26%.
The corresponding exclusion limit on the Yukawa coupling
is

√|Yμτ |2 + |Yτμ|2 < 1.7×10−2, assuming the decay width
SM = 4.1 MeV/c2 [58].

6 Conclusion

A search for Higgs-like bosons decaying via a lepton-flavour-
violating process H → μ±τ∓ in pp collisions at

√
s = 8 TeV

is presented, with the tau lepton reconstructed in leptonic and
hadronic decay modes. No signal has been found. The upper
bound on the cross-section multiplied by the branching frac-
tion, at 95% confidence level, ranges from 22 pb for a boson

123



1008 Page 6 of 12 Eur. Phys. J. C (2018) 78 :1008

0
]2c) [GeV/eτμ(m

0
10
20
30
40
50
60
70
80
90

)2 c
C

an
di

da
te

s /
 (5

 G
eV

/  = 8 TeVsLHCb
Data -τ+τ→Z -l+l→Z
QCD
Vj
Other

)2c(55 GeV/H

0
]2c) [GeV/eτμ(m

0

10

20

30

40

50
 = 8 TeVsLHCb

Data -τ+τ→Z -l+l→Z
QCD
Vj
Other

)2c(85 GeV/H

0
]2c) [GeV/eτμ(m

0

2

4

6

8

10

12
 = 8 TeVsLHCb

Data -τ+τ→Z -l+l→Z
QCD
Vj
Other

)2c(125 GeV/H

0
]2c) [GeV/1hτμ(m

0
20
40
60
80

100
120
140
160
180
200
220)2 c

C
an

di
da

te
s /

 (5
 G

eV
/  = 8 TeVsLHCb

Data -τ+τ→Z -l+l→Z
QCD
Vj
Other

)2c(55 GeV/H

0
]2c) [GeV/1hτμ(m

0

20

40

60

80

100  = 8 TeVsLHCb
Data -τ+τ→Z -l+l→Z
QCD
Vj
Other

)2c(85 GeV/H

0 50 100 150 20 0 50 100 150 20 0 50 100 150 20

0 50 100 150 20 0 50 100 150 20 0 50 100 150 200
]2c) [GeV/1hτμ(m

0

5

10

15

20

25

30  = 8 TeVsLHCb
Data -τ+τ→Z -l+l→Z
QCD
Vj
Other

)2c(125 GeV/H

0
]2c) [GeV/3hτμ(m

0
5

10
15
20
25
30
35
40
45

)2 c
C

an
di

da
te

s /
 (5

 G
eV

/  = 8 TeVsLHCb
Data -τ+τ→Z -l+l→Z
QCD
Vj
Other

)2c(55 GeV/H

0
]2c) [GeV/3hτμ(m

0
2
4
6
8

10
12
14
16
18
20
22
24

 = 8 TeVsLHCb
Data -τ+τ→Z -l+l→Z
QCD
Vj
Other

)2c(85 GeV/H

0
]2c) [GeV/3hτμ(m

0

2

4

6

8

10

12  = 8 TeVsLHCb
Data -τ+τ→Z -l+l→Z
QCD
Vj
Other

)2c(125 GeV/H

0
]2c) [GeV/μτμ(m

0

10

20

30

40

50

60

)2 c
C

an
di

da
te

s /
 (5

 G
eV

/  = 8 TeVsLHCb
Data -τ+τ→Z -l+l→Z
QCD
Vj
Other

)2c(55 GeV/H

0
]2c) [GeV/μτμ(m

0

5

10

15

20

25

30

35

40  = 8 TeVsLHCb
Data -τ+τ→Z -l+l→Z
QCD
Vj
Other

)2c(85 GeV/H

0 50 100 150 20 0 50 100 150 20 0 50 100 150 20

0 50 100 150 20 0 50 100 150 20 0 50 100 150 200
]2c) [GeV/μτμ(m

0

2

4

6

8

10

12

14

16  = 8 TeVsLHCb
Data -τ+τ→Z -l+l→Z
QCD
Vj
Other

)2c(125 GeV/H

Fig. 1 Invariant-mass distributions for the μ±τ∓ candidates for the
four decay channels (from top to bottom: μτe, μτh1, μτh3, μτμ) and
the three selections (from left to right: L-selection, C-selection, H-
selection). The distribution of candidates observed (black points) is

compared with backgrounds (filled colour, stacked), and with signal
hypothesis (cyan). The signal is normalised to

√
N , with N the total

number of candidates in the corresponding data histogram

Table 3 Relative systematic
uncertainties (in %) on the
normalisation factors in the
cross-section calculation. When
the uncertainty depends on mH
a range is indicated

μτe μτh1 μτh3 μτμ

Luminosity 1.16 1.16 1.16 1.16

Tau branching fraction 0.22 0.18 0.48 0.23

PDF 2.6–7.1 3.5–7.2 2.6–7.3 3.0–7.9

Scales 0.9–1.9 0.8–1.7 0.9–1.7 0.9–1.9

Reconstruction efficiency 1.8–3.6 1.9–5.4 3.3–7.1 1.5–3.3

Selection efficiency 2.5–6.0 1.9–4.1 4.0–9.3 3.8–8.5
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Fig. 2 Cross-section times branching fraction 95% CL limits for the
H → μ±τ∓ decay as a function of mH , from the simultaneous fit. The
observed limits from individual channels are also shown

mass of 45 GeV/c2, to 4 pb for 195 GeV/c2. The search pro-
vides information complementary to the ATLAS and CMS
collaborations.
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