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Abstract

This paper investigates the energy exchanges associated with the half-trace
of the velocity fluctuation correlation tensor in a strongly anisothermal low
Mach fully developed turbulent channel flow. The study is based on direct
numerical simulations of the channel within the low Mach number hypothesis
and without gravity. The overall flow behaviour is governed by the variable
fluid properties. The temperature of the two channel walls are imposed at
293 K and 586 K to generate the temperature gradient. The mean friction
Reynolds number of the simulation is 180. The analysis is carried out in the
spatial and spectral domains. The spatial and spectral studies use the same
decomposition of the terms of the evolution equation of the half-trace of the
velocity fluctuation correlation tensor. The importance of each term of the
decomposition in the energy exchanges is assessed. This lets us identify the
terms associated with variations or fluctuations of the fluid properties that
are not negligible. Then, the behaviour of the terms is investigated. The
spectral energy exchanges are first discussed in the incompressible case since
the analysis is not present in the literature with the decomposition used in this
study. The modification of the energy exchanges by the temperature gradient
is then investigated in the spatial and spectral domains. The temperature
gradient generates an asymmetry between the two sides of the channel. The
asymmetry can in a large part be explained by the combined effect of the mean
local variations of the fluid properties and a Reynolds number effect.

1 Introduction

This paper provides a numerical analysis of the energy exchanges associated with
the half-trace of the velocity fluctuation correlation tensor in a low Mach turbulent
channel flow subjected to a strong temperature gradient. The investigation is rel-
evant to the study of wall-bounded turbulent flows with variable fluid properties,
provided that acoustic effects are small. Flows subjected to a large temperature
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gradient are characterised by a strong coupling between temperature and turbu-
lence [48, 53]. The statistics of velocity and temperature means and fluctuations
are modified by the temperature gradient, as an asymmetry between the turbu-
lence statistics at both walls is generated. This asymmetry is more complex than a
Reynolds number effect, as the scaled statistics of turbulence do not collapse with
those of the isothermal channels at the turbulence Reynolds number corresponding
to either wall of the anisothermal channel [49]. The energy exchanges between the
different parts of total energy are insightful for the fundamental understanding of
the behaviour of flows subjected to a strong temperature gradient. They include in
particular the energy exchanges associated with turbulence kinetic energy. The use
of flow fields from direct numerical simulations has demonstrated its relevance to the
investigation of energy exchanges. Indeed, this requires the knowledge of the instan-
taneous three-dimensional velocity, pressure and temperature fields, which cannot
be easily obtained experimentally.

In incompressible flows with constant fluid properties, direct numerical simula-
tions of homogeneous isotropic turbulence have validated Kolmogorov’s hypothesis
on the locality of the energy transfer [21] and interacting scales [61, 62]. Reliable
statistics of the terms of the evolution equation of the turbulence kinetic energy in a
channel flow have been provided in the spatial domain by various authors, including
Kim et al. [30], Moser et al. [40], Abe et al. [1], Del Álamo and Jiménez [20], Hoyas
and Jiménez [27], Kozuka et al. [31] and more recently Vreman and Kuerten [58].
The analysis of the energy transfer processes in the incompressible channel flow has
been pursued in the space of scales through the analysis of the second-order struc-
ture function by Marati et al. [37], Cimarelli et al. [14, 15, 16], Cimarelli and De
Angelis [13] and in the spectral domain by Domaradzki et al. [22], Bolotnov et al.
[6]. In compressible flows with highly variable fluid properties, the turbulence kinetic
energy may be defined in several manners according to the chosen decomposition
of total energy. The main approaches are the density-weighted averaging decompo-
sition [23], the mixed-weighted decomposition [5], the density square-root-weighted
decomposition [60] and the classical averaging decomposition [11]. The reader may
find more details on these decompositions in Cousteix and Aupoix [19], Aupoix
[4], Chassaing et al. [12], Gatski and Bonnet [24], Chassaing et al. [12]. Numerical
analyses of the turbulence energetic behaviour may be carried out using any of the
above-mentioned definitions of turbulence kinetic energy. Notable works include
Ha Minh et al. [26] for the mixed-weighted decomposition and Kida and Orszag
[29], Cook and Zhou [18] for the density square-root-weighted decomposition. To
the knowledge of the authors, there is no such reference numerical analysis based on
the classical averaging decomposition. By contrast, the density-weighted averaging
decomposition has been used by many authors. In particular, the energy exchanges
associated with turbulence kinetic energy in compressible channel flows with a high
Mach number have been investigated extensively [28, 25, 36, 33, 44, 51, 50]. The
density-weighted averaging is indeed well suited to the physics of compressible flows.
The low Mach channel flow subjected to a strong temperature gradient has received
less attention from the literature. The sole analysis has been carried out in the spec-
tral domain with the density square-root-weighted decomposition by Aulery et al.
[2, 3] at a mean friction Reynolds number of 180 and 395. The two studies use a
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decomposition of the terms of the evolution equation of turbulence kinetic energy
based on the work of Bolotnov et al. [6]. The literature thus lacks a detailed study of
the effect of the temperature gradient on the spatial profiles of the energy exchanges
associated with turbulence kinetic energy.

Thereupon, this paper analyses the energy exchanges associated with the half-
trace of the velocity fluctuation correlation tensor using a decomposition of turbu-
lence kinetic energy based on the classical averaging. One of the main advantages
of the classical averaging is that it is the usual way to extend the study into the
spectral domain. Within the formulation used, each term of the evolution equation
of the half-trace of the velocity fluctuation correlation tensor is associated with an
energy exchange. In that sense, each term is given a physical meaning. Each term is
then decomposed in the particular case of a fully developed channel flow to isolate
the parts that are formally identical to the terms remaining in flows with constant
fluid properties, and the terms specific to flows with variable fluid properties. These
terms are related to the flow dilatation, the variation or the fluctuation of the fluid
properties or the presence of a mean wall-normal velocity. The decomposition is
carried out in both the spatial and spectral domains. There is a one-to-one corre-
spondence between the terms of the spatial and spectral decompositions.

In this paper, we use this property to investigate the energy exchanges associ-
ated with the half-trace of the velocity fluctuation correlation tensor in the spatial
and spectral domains in a consistent manner. This ensures that the integration of
the spectral term is exactly equal to the associated spatial term. To compute the
terms, we carry out two direct numerical simulations of a fully developed low Mach
turbulent channel flow: one isothermal and one anisothermal. In both cases, the
mean friction Reynolds number of the simulation is 180. The effects of gravity are
neglected. In the anisothermal simulation, the temperatures of the two channel walls
are 293 K and 586 K. Compared to the isothermal simulation, the only new physical
phenomenon is the variations of density, viscosity and conductivity with tempera-
ture. The numerical set-up is validated in the isothermal configuration with the data
of Moser et al. [40], Bolotnov et al. [6] and Vreman and Kuerten [58]. The spatial
and spectral amplitudes of each term are assessed. This allows us to determine the
relative importance of each term, and in particular evaluate the importance of the
terms specific to flows with variable fluid properties. Then, we study the effect of the
temperature gradient on the energy exchanges. In the spatial domain, the results
extend the existing literature in the isothermal configuration to the anisothermal
configuration. In the spectral domain, the analysis provides new insights into the
spectral energy exchanges in both the isothermal and anisothermal configurations,
since the energy exchanges have not been studied with the same decomposition in
the incompressible literature.

The ternary representation of the energy exchanges used in this paper is sum-
marised in section 2. The detailed channel flow configuration, the numerical set-up
and the data acquisition are presented in section 3. The results are discussed and
analysed in section 4.
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2 Energy exchanges associated with the half-trace
of the velocity fluctuation correlation tensor in
the ternary decomposition

The ternary representation of the energy exchanges is based on the decompo-
sition of velocity into a mean and fluctuating part with the classical (non-density-
weighted) averaging [45]. Let us denote ( ) the statistical average operator and (′)
the fluctuating part operator. The velocity is decomposed as Ui = U i +u′i, where Ui
the i-th component of the velocity. We use a lowercase u′ for the velocity fluctuation
for a better visual differentiation but there is no further underlying differences. The
instantaneous total energy per unit volume is the sum of the instantaneous kinetic
energy per unit volume ρE and the internal energy per unit volume ρI, with ρ the
density, I the internal energy per unit mass and E the half-trace of the instanta-
neous velocity correlation tensor E = 1

2
UiUi. The classical averaging decomposition

of velocity leads to the decomposition of kinetic energy into three terms:

• the mean kinetic energy ρE = 1
2
ρU i U i related to the mean motion;

• the turbulence kinetic energy ρe = 1
2
ρu′iu

′
i related to the turbulent motion;

and

• the mixed kinetic energy ρe = ρu′iU i related to the interaction between the
mean and turbulent motion.

Namely, we obtain ρE = ρE + ρe+ ρe, that is [11]

1
2
ρUiUi =

1

2
ρU i U i + 1

2
ρu′iu

′
i + ρu′iU i (1)

The total energy per unit volume is a conservative quantity. However, the four
parts of total energy, ρI, ρE, ρe and ρe, are not conservative. The non-conservative
terms of the evolution equation of each part of total energy each can be interpreted
as an energy exchange between two parts of total energy. The energy exchanges
between the four parts of total energy are represented in a schematic form in figure
1. They are of three different kinds. The terms E and ε represent an interaction
between kinetic energy and internal energy. The terms P and P are associated with
an interaction between two parts of kinetic energy. The conservative energy transfer
terms are convective or diffusive terms that account for a portion of the total energy
transfer. The terms Φc, ϕc, ϕc and ΦT,c are convective terms. The term Φλ is the
transfer by conduction and the terms ΦΥ and ϕΥ represent transfers by external
force.

In order to obtain the evolution equation of the half-trace of the velocity fluc-
tuation correlation tensor within this formulation, we further decompose the three
parts of kinetic energy and internal energy in a constant and variable density part.
We split to this intent the density ρ into a constant part ρ0 and a variable part
ρ1, ρ(x, t) = ρ0 + ρ1(x, t), where x is the position vector and t the time. We con-
sider the resulting decomposition of total energy into ρ0E, ρ0e, ρ0e, ρ0I, ρ1E, ρ1e,
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Figure 1 – Schematic representation of the energy exchanges between the four parts
of total kinetic energy in the ternary representation. An arrow represents an inter-
action between two quantities.

ρ1e and ρ1I. The energy exchanges between the eight parts of total energy include
a new interaction, between the constant and variable density part of total energy.
The formulation includes up to the constant scalar factor ρ0 the half-trace of the
velocity fluctuation correlation tensor e, as defined and extensively studied in the
incompressible literature. This quantity is directly related to the Reynolds stress
and the turbulence kinetic energy since ρu′iu′i ≈ ρu′iu

′
i under Morkovin’s hypothesis

[39], which is valid in the flow considered in this paper. It has a spectral equiv-
alent, ρ0ě = 1

2
ρ0û′i

∗
û′i, which will be investigated in this paper. From now on, we

will focus on the energy exchanges associated with its evolution equation. The for-
mulation gives the relevant groupings of the terms of its evolution equation in the
variable density case: the conservative energy transfers, ϕc and ϕΥ ; the interaction
with internal energy ε; the interaction with the other parts of kinetic energy P and
the interaction with variable density kinetic energy, ζc and ζΥ . The first three are
present in the incompressible case though with a simpler mathematical expression.
The latter is unique to flows with variable density. We use the same notations for
the constant density part of the energy exchanges as for the complete terms to avoid
more cumbersome notations. The interaction with internal energy ε, the interaction
with the other parts of kinetic energy ζΥ and the transfer by external force ϕΥ can
be seen as the sum of a viscous and pressure contribution. In particular, splitting
the stress tensor Υ into the pressure and viscous stress leads to a clearly reversible
pressure contribution, the pressure dilatation correlation [47], that exchanges en-
ergy in either direction, and an irreversible viscous contribution, called dissipation,
which always transfers kinetic energy into internal energy. The energy exchanges
associated with ρ0e are represented in figure 2.

In this paper, the statistical average of these instantaneous energy exchanges are
considered. This ensures the consistency of the formulation, in the sense that the
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Figure 2 – Schematic representation of the energy exchanges associated with the
“constant density turbulence kinetic energy” ρ0e, identical to the half-trace of the
velocity fluctuation correlation tensor e up to the constant scalar factor ρ0.

energy exchanges in both the instantaneous and statistically averaged cases are well
defined and are not conflicting. This consistency is important to give a physical
interpretation to the energy exchange, as this lets us consider the statistically av-
eraged energy exchanges as the statistical average of the associated instantaneous
energy exchanges. The schematic representation of the energy exchanges in the sta-
tistically averaged case is not presented as it is identical, albeit with the addition of
the statistical average.

The energy exchanges associated with the half-trace of the velocity fluctuation
correlation tensor are decomposed in the particular case of a fully developed chan-
nel flow to recover the terms remaining in flows with constant fluid properties (here
denoted with subscript I). The terms specific to flows with variable fluid properties
(here denoted with subscript Γ ) arise from the flow compressibility, the variations or
fluctuations of the fluid properties and the presence of a mean wall-normal velocity.
The mean wall-normal velocity Uy differs from zero in the compressible variable den-
sity channel with the classical averaging because it is in balance with the turbulent
mass flux, ρUy = −ρ′u′y. With a mass-weighted averaging, the mean wall-normal
velocity is equal to zero. The study is then extended to the spectral domain. Since
the flow is periodic in the streamwise and spanwise directions, any physical quantity
g(x, y, z) can be expressed as a Fourier series. We define and denote with the hat
operator (̂) the Fourier coefficients of the Fourier series expansion of g [see e.g. 35]:

ĝ(k, y, t) =
1

LxLz

∫ Lx

0

∫ Lz

0

g(x, y, t)e−ik·xdx. (2)

where x = (x, z) is the position vector in the xOz plane and k = (kx, kz) is the
position vector in the kxOkz plane. In the spectral domain, we study the terms of
the evolution equation of

ě =
1

2
û′i
∗
û′i, (3)

The spectral analysis extends each term of the spatial decomposition to the spec-
tral domain, associating each of them with a corresponding term of the spectral
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decomposition. In addition, a purely spectral term is identified in the spectral de-
composition, that is a spectral term with no spatial contribution.

To summarise the spatial and spectral decompositions, let us compare below the
evolution equation of the half-trace of the velocity fluctuation correlation tensor in
the spatial and spectral domains. It is given in the spatial domain by

∂e

∂t
= ϕ+ P + ζ + ε

= ϕI + ϕΓ + PI + PUy + ζ + εI + εΓ

(4)

and in the spectral domain by

∂ě

∂t
= ϕ̌+ P̌ + ζ̌ + ε̌+ Ξ̌,

= ϕ̌I + ϕ̌Γ + P̌I + P̌Uy + ζ̌ + ε̌I + ε̌Γ + Ξ̌,

(5)

with

ϕI = ϕcI + ϕpI + ϕνI,1 + ϕνI,2 ϕ̌I = ϕ̌cI + ϕ̌pI + ϕ̌νI,1 + ϕ̌νI,2

εI = ενI,1 + ενI,2 ε̌I = ε̌I,1 + ε̌I,2

ϕΓ = ϕc
Uy

+ ϕp∂ρ + ϕpρ′ + ϕνϑ′,2 ϕ̌Γ = ϕ̌c
Uy

+ ϕ̌p∂ρ + ϕ̌pρ′ + ϕ̌νϑ′,2

+ ϕν∂ν,1 + ϕν∂ν,2 + ϕνν′,1 + ϕ̌ν∂ν,1 + ϕ̌ν∂ν,2 + ϕ̌νν′,1

+ ϕνν′,2 + ϕνΘ + ϕ̌νν′,2 + ϕ̌νΘ

ζ = ζc
Θ

+ ζcϑ′ + ζp∂ρ + ζν∂ρ,1 ζ̌ = ζ̌c
Θ

+ ζ̌cϑ′ + ζ̌p∂ρ + ζ̌ν∂ρ,1

+ ζν∂ρ,2 + ζνΘ + ζ̌ν∂ρ,2 + ζ̌νΘ

εΓ = εpϑ′ + ενν′,1 + ενν′,2 + ενΘ ε̌Γ = ε̌pϑ′ + ε̌ν′,1 + ε̌ν′,2 + ε̌Θ

and:

ϕcI = −
∂eu′y
∂y

ϕ̌cI = Re

−1

2

∂û′i
∗
û′iu
′
y

∂y


ϕc
Uy

= −∂eUy

∂y
ϕ̌c
Uy

= −∂Uyě

∂y

ϕpI = −1

ρ

∂

∂y
u′yP ϕ̌pI = Re

(
−1

ρ

∂

∂y
û′y
∗
P̂

)

ϕp∂ρ =
u′yP

ρ2

∂ρ

∂y
ϕ̌p∂ρ = Re

 û′y∗P̂
ρ2

∂ρ

∂y


ϕpρ′ =

∂

∂y

u′yPρ
′

ρ(ρ+ ρ′)
ϕ̌pρ′ = Re

(
∂

∂y
û′y
∗ Pρ′

ρ(ρ+ ρ′)

∧)

ϕνI,1 = ν
∂2e

∂y2
ϕ̌νI,1 = Re

(
ν
∂2ě

∂y2

)
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ϕνI,2 = ν
∂2u′yu

′
y

∂y2
ϕ̌νI,2 = Re

ν ∂2û′y
∗
û′y

∂y2


ϕνϑ′,2 = −ν ∂

∂y
u′y
∂u′i
∂xi

ϕ̌νϑ′,2 = Re

(
−ν ∂

∂y

∂u′i
∂xi

∧

û′y

)

ϕν∂ν,1 =
∂e

∂y

∂ν

∂y
ϕ̌ν∂ν,1 = Re

(
∂ě

∂y

∂ν

∂y

)

ϕν∂ν,2 = u′i
∂u′y
∂xi

∂ν

∂y
ϕ̌ν∂ν,2 = Re

û′i∗∂u′y∂xi

∧

∂ν

∂y


ϕνν′,1 =

∂

∂y

(
ν ′u′i

∂Ui
∂y

)
ϕ̌νν′,1 = Re

(
∂

∂y

(
û′i
∗
ν ′
∂Ui
∂y

∧))

ϕνν′,2 =
∂

∂y

(
ν ′u′i

∂Uy
∂xi

)
ϕ̌νν′,2 = Re

(
∂

∂y

(
û′i
∗
ν ′
∂Uy
∂xi

∧))

ϕνΘ = − ∂

∂y

(
2ν

3
u′y
∂Ui
∂xi

)
ϕ̌νΘ = Re

(
∂

∂y

(
−2

3
û′y
∗
ν
∂Ui
∂xi

∧))

PI = −u′xu′y
∂Ux

∂y
P̌I = Re

(
−û′x

∗
û′y
∂Ux

∂y

)
PUy = −u′yu′y

∂Uy

∂y
P̌Uy = Re

(
−û′y

∗
û′y
∂Uy

∂y

)
ζc
Θ

= e
∂U j

∂xj
ζ̌c
Θ

= ě
∂Uy

∂y

ζcϑ′ = e
∂u′j
∂xj

ζ̌cϑ′ = Re

1

2
û′i
∗̂
u′i
∂u′j
∂xj


ζp∂ρ = −u

′
iP

ρ2

∂ρ

∂xi
ζ̌p∂ρ = Re

(
−û′i

∗ P

ρ2

∂ρ

∂xi

∧)

ζν∂ρ,1 =
ν

ρ

∂ρ

∂xj
u′i
∂Ui
∂xj

ζ̌ν∂ρ,1 = Re

(
û′i
∗ν

ρ

∂ρ

∂xj

∂Ui
∂xj

∧)

ζν∂ρ,2 =
ν

ρ

∂ρ

∂xj
u′i
∂Uj
∂xi

ζ̌ν∂ρ,2 = Re

(
û′i
∗ν

ρ

∂ρ

∂xj

∂Uj
∂xi

∧)

ζνΘ = −2ν

3ρ

∂ρ

∂xi
u′i
∂Uj
∂xj

ζ̌νΘ = Re

(
−û′i

∗2ν

3ρ

∂ρ

∂xi

∂Uj
∂xj

∧)

εpϑ′ =
P

ρ

∂u′i
∂xi

ε̌pϑ′ = Re

 ∂̂u′i
∂xi

∗
P

ρ

∧
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ενI,1 = −ν ∂u
′
i

∂xj

∂u′i
∂xj

ε̌I,1 = Re

−ν ∂̂u′i
∂xj

∗
∂̂u′i
∂xj


ενI,2 = −ν ∂u

′
i

∂xj

∂u′j
∂xi

ε̌I,2 = Re

−ν ∂̂u′i
∂xj

∗
∂̂u′j
∂xi


ενν′,1 = −ν ′ ∂u

′
i

∂xj

∂Ui
∂xj

ε̌ν′,1 = Re

− ∂̂u′i
∂xj

∗

ν ′
∂Ui
∂xj

∧
ενν′,2 = −ν ′ ∂u

′
i

∂xj

∂Uj
∂xi

ε̌ν′,2 = Re

− ∂̂u′i
∂xj

∗

ν ′
∂Uj
∂xi

∧
ενΘ =

2ν

3

∂u′i
∂xi

∂Uj
∂xj

ε̌Θ = Re

 ∂̂u′i
∂xi

∗
2ν

3

∂Uj
∂xj

∧
Ξ̌ = Re

1

2

∂̂u′i
∂xj

∗

û′iu
′
j −

1

2
û′i
∗̂
u′j
∂u′i
∂xj


The terms are expressed using the symmetries of the flow and its homogeneity in
the streamwise and spanwise directions to simplify the writing (∂ ·

∂x
= ∂ ·

∂z
= 0 and

U z = 0). In particular, only the terms that do not have a zero theoretical value
are considered. For instance, we only take into account the terms (i = x, j = y)

and (i = y, j = y) of the production P = −u′iu′j ∂U i∂xj
, since the other terms are

theoretically equal to zero.

In the incompressible case, only the incompressible terms remain. The evolution
equation of the half-trace of the velocity fluctuation correlation tensor reduces in
the spatial domain to

∂e

∂t
= ϕcI + ϕpI + ϕνI,1 + ϕνI,2 + PI + ενI,1 + ενI,2 (6)

and in the spectral domain to

∂ě

∂t
= ϕ̌cI + ϕ̌pI + ϕ̌νI,1 + ϕ̌νI,2 + P̌I + ε̌I,1 + ε̌I,2 + Ξ̌. (7)

In flows with highly variable fluid properties, additional terms appear. Nevertheless,
they originate from distinct flow characteristics. The thermal terms may appear
because of the addition of a wall-normal mean velocity Uy, come from the flow
dilatation Θ, or lie in variations or fluctuations of the fluid properties, namely the
viscosity and the density.

3 Study configuration

To provide the data necessary to compute the terms of the evolution equation
of the half-trace of the velocity fluctuation correlation tensor, a direct numerical
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Figure 3 – Biperiodic anisothermal channel flow

simulation of a fully developed channel flow is carried out. In the following, we
describe the flow, the geometry, the numerical settings and the numerical tools
used. Then, we validate the numerical method in the incompressible case.

3.1 Channel flow configuration

We consider a fully developed turbulent air flow under a strong temperature
gradient in a rectangular channel, as represented in figure 3. The channel is periodic
in both the streamwise (x) and spanwise (z) directions. The channel walls are at
constant temperature. The temperature of the hot wall is T2 = 586 K and the
temperature of the cold wall is T1 = 293 K. This creates a temperature gradient
in the wall-normal direction (y). The flow is fully developed despite non-adiabatic
wall conditions because the heat flux at the hot and cold wall exactly balance out.
The mean friction Reynolds number is Reτ = 180. Let us define this quantity. The
friction Reynolds number at each wall is defined as

Reτ =
Uτh

νω
, (8)

with h the half-height of the channel, νω the cinematic viscosity at the wall and Uτ
the friction velocity

Uτ =

√
νω

(
∂Ux

∂y

)
ω

. (9)

The friction Reynolds numbers at the hot and cold wall are different, since the
value of the friction velocity and the properties of the fluid differ. The mean friction
Reynolds number is defined as the average of the friction Reynolds number computed
at the cold and hot side.

The same channel is also studied in the isothermal case. In that case, both walls
are at the cold temperature. The same friction Reynolds number is considered. This
results in a 20% lower mass flow rate. Hereafter, we will refer to the channel flow
configuration in which the channel is subjected to a strong temperature gradient as
the anisothermal configuration and the configuration in which both walls are at the
same temperature as the isothermal configuration.
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3.2 Governing equations

The above-described flow is weakly turbulent. The mean Mach number is 0.008.
Compressibility effects due to velocity are therefore negligible. Large variations of
the fluid properties are generated by the temperature gradient. These considerations
let us use Paolucci’s method [42] to remove acoustic effects from the Navier–Stokes
equations. Each variable of the Navier–Stokes equations is written as a power series
of the squared Mach number. Then, the smaller-order terms of each equation are
kept. The resulting low Mach number equations split the pressure in two parts: the
thermodynamical pressure P0 and the mechanical pressure P . The constant in space
thermodynamical pressure P0 is the mean pressure in the domain. The mechanical
pressure is the pressure induced by momentum variations. The effects of gravity are
neglected and air is considered as an ideal gas for the purpose of this study.

Since the channel flow is periodic in the streamwise direction, no pressure gradi-
ent appears through the boundary conditions to balance out the dissipative forces.
A streamwise volume force f is added to the momentum conservation equation in
order to replicate the effect of a pressure gradient.

Given the above considerations, we use the following set of equations:

• Mass conservation equation

∂ρ

∂t
+
∂ρUj
∂xj

= 0, (10)

• Momentum conservation equation

∂ρUi
∂t

+
∂ρUjUi
∂xj

= −∂P
∂xi

+
∂

∂xj

[
µ

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
− 2

3

∂

∂xi

(
µ
∂Uj
∂xj

)
+ fδix,

(11)

• Energy conservation equation

ρCp

(
∂T

∂t
+ Uj

∂T

∂xj

)
=
∂P0

∂t
+

∂

∂xj

(
λ
∂T

∂xj

)
, (12)

• Ideal gas law
P0 = ρrT, (13)

• Thermodynamical pressure homogeneity

∂P0

∂xi
= 0, (14)

with ρ the density, T the temperature, µ the dynamic viscosity, λ the thermal
conductivity, Cp the heat capacity at constant pressure, r the ideal gas specific
constant, t the time, P the mechanical pressure, P0 the thermodynamical pressure,
Ui the i-th component of velocity and xi the Cartesian coordinate in i-direction.
Einstein summation convention is used and δij is the Kronecker delta.
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We use Sutherland’s law [52] to compute the fluid properties

µ(T ) = µ0

(
T

T0

) 3
2 T0 + S

T + S
, (15)

λ(T ) =
Cp
Pr

µ(T ), (16)

with µ0 = 1.716 · 10−5, S = 110.4 and T0 = 273.15 K. The Prandtl number
and the heat capacity at constant pressure are assumed constant, with Pr = 0.76
and Cp = 1005 J kg−1 K−1. The ideal gas specific constant is r = 287 J kg−1 K−1.

3.3 Numerical setting

The mesh is regular in both homogeneous directions and follows a hyperbolic
tangent law in the wall-normal direction. The wall-normal grid coordinates are
symmetrical with respect to the plane y = h. In the first half of the channel, they
are given by

yk = h

(
1 +

1

a
tanh

[(
k − 1

Ny − 1
− 1

)
tanh−1(a)

])
, (17)

where a is the mesh dilatation constant and Ny the number of grid points in the
wall-normal direction.

The same mesh is used in the anisothermal and isothermal simulations. It con-
tains 384 × 266 × 384 cells. The resulting cell sizes in wall units are ∆+

x = 5.8,
∆+
y = 0.085 at the wall and 2.9 at the centre and ∆+

z = 2.9 in the isothermal case
; ∆+

x = 8.5, ∆+
y = 0.13 at the wall and 4.2 at the centre and ∆+

z = 4.2 in the
anisothermal case. Given the mesh precision, a no-slip boundary condition is used
at the walls. The domain size is: Lx = 4πh, Ly = 2h and Lz = 2πh with h = 15
mm.

To solve the set of equations (10)–(14), we use a finite difference method writ-
ten in a divergence form in a staggered grid system [38, 41]. The time scheme is a
third-order Runge–Kutta [59]. A fourth-order centred scheme is used for momentum
convection and a third-order upstream scheme is used for temperature convection
[34]. This is performed using the TrioCFD software [9]. This software was used
in many direct numerical simulations of fluid flow coupled with other physical phe-
nomena [54, 7, 10, 53].

The value of the volume force f is adjusted through a control loop to keep the
mass flow rate constant,

ft+1 = ft + C0
Dtarget − 2Dt +Dt−1

∆t
, (18)

with C0 a damping constant, D the mass flow rate, Dtarget the targeted mass flow
rate and t − 1, t and t + 1 indices related to the previous, current and next time
step respectively. A term associated with the forcing term u′xf/ρ appears in the
transport equation of the half-trace of the velocity fluctuation correlation tensor.
This term has been computed from the result of the direct numerical simulation and
was found to be insignificant.
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3.4 Data acquisition

The data acquisition is carried out in two steps because the computation of differ-
ent terms of the evolution equation of the half-trace of the velocity fluctuation corre-
lation tensor requires knowledge of mean and fluctuating quantities. First, statistics
on the mean velocities, temperature and pressure are acquired. Full convergence is
attained after a total duration of 3.59 s in the isothermal case (29 characteristic time
h/Uτ ) and 2.86 s in the anisothermal case (34 characteristic time, using the cold wall
friction velocity). Once this prior step completed, the data collection is carried out
and spans over a total duration of 7.95 s in the isothermal case (64 characteristic
time) and 3.16 s in the anisothermal case (37 characteristic time).

To compute the spectral terms, we use the discrete two-dimensional Fourier
transform

ĝ(kx,m, y, kz,n) =
1

NxNz

Nx−1∑
p=0

Nz−1∑
k=0

g(xp, y, zk) exp

(
−2πi

(
mp

Nx

+
kn

Nz

))
. (19)

The Fourier transform is carried out in the streamwise and spanwise directions only.
The time averaged spectral terms depends on the three parameters kx, y and kz.
In order to simplify the interpretation of the terms, only the dependence on the
wavenumber norm at each wall-normal coordinate will be considered. This removes
from the scope of this study the spectral directionality of the energy transfers.

3.5 Wavenumber bin

The two-dimensional spectral results are analysed using wavenumber bins fol-
lowing Bolotnov et al. [6]. The procedure used is as follows: the wavenumber
space is divided in Nb annulus-shaped wavenumber bins. The bin #i contains every
wavenumber vector k whose norm k ranges between ki and ki+1, the lower and upper
bound of the bin #i. For each term, we then assign to the bin #i (at its wavenum-
ber centre kc,i) the sum of the values of the term computed at each wavenumber
contained in the bin.

Wavenumber bins kill any directionality of the energy transfers since only the
wavenumber norm is taken into account. This is only correctly done if the bin con-
tains a large number of wavenumber vectors and the distribution of the wavenumber
vectors is isotropic. Since the distribution of wavenumber bins is logarithmic and
the distribution of wavenumber vectors is not, the number of wavenumber vectors
per bin grows exponentially with the wavenumber bin number. This results in a low
number of wavenumber vector per bin at low wavenumbers. To address this issue,
a low pass filter was applied to the spectral data. This improves the quality of the
statistics at low wavenumbers.

The use of wavenumber bins should be taken into account in the interpretation
of the results. The values obtained are uniformly distributed on a logarithmic scale
and integration over the wavenumber space is done by simple summation of the
values. The use of wavenumber bins also reduces the dependence of the results on
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Bin number Lower bound ki Bin centre kc,i Upper bound ki+1

1 1.00000 1.09350 1.19574
2 1.19574 1.30755 1.42981
3 1.42981 1.56349 1.70968
4 1.70968 1.86954 2.04434
5 2.04434 2.23549 2.44451
6 2.44451 2.67308 2.92301
7 2.92301 3.19632 3.49518
8 3.49518 3.82198 4.17934
9 4.17934 4.57011 4.99742
10 4.99742 5.46469 5.97564
11 5.97564 6.53437 7.14534
12 7.14534 7.81344 8.54400
13 8.54400 9.34288 10.21645
14 10.21645 11.17170 12.21626
15 12.21626 13.35850 14.60753
16 14.60753 15.97335 17.46688
17 17.46688 19.10005 20.88592
18 20.88592 22.83878 24.97423
19 24.97423 27.30935 29.86280
20 29.86280 32.65501 35.70829
21 35.70829 39.04705 42.69800
22 42.69800 46.69031 51.05590
23 51.05590 55.82969 61.04982
24 61.04982 66.75805 73.00000

Table 1 – Construction of the wavenumber bins.

the domain size and mesh. On the other hand, the results are entirely determined
by the bins construction.

Thereupon, in order to compare our results with Bolotnov et al. [6], we use the
same wavenumber bins. We define Nb = 24 wavenumber bins of uniform length in
logarithmic scale, with

ki = kmin

(
kmax

kmin

) i
Nb

, (20)

where kmin = 1 m−1 and kmax = 73 m−1 are the minimum and maximum bound
across all bins. The bounds and centre of the wavenumber bins are given in table
1. Note that since the wavenumber bins are constructed with respect to the domain
and mesh sizes of the direct numerical simulation of Trofimova et al. [56] used by
Bolotnov et al. [6], they do not span over our entire computable wavenumber space.
This excludes very small and very large wavenumbers. Nonetheless, we verified that
no energy exchanges were located outside of the range of wavenumber bins.
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Figure 4 – Validation of the profile of the viscous transfer ν ∂2e
∂y2

(left) and of the

turbulent transfer −∂eu′y
∂y

(right).

3.6 Validation

The numerical set-up is validated in the isothermal configuration through a mesh
convergence study. The simulation is carried out with three meshes later referred to
as coarse mesh, medium mesh and fine mesh. The coarse mesh has 192× 118× 96
cells. The cell sizes in wall units are ∆+

x = 11.5, ∆+
y = 0.17 at the wall and 6.7 at the

centre and ∆+
z = 11.5. The medium mesh has 384×190×288 cells. The cell sizes in

wall units are ∆+
x = 5.8, ∆+

y = 0.16 at the wall and 3.7 at the centre and ∆+
z = 3.9.

The fine mesh is described in section 3.3. The results are compared to the three
following references from the literature: Moser et al. [40] and Vreman and Kuerten
[58] in the spatial domain and Bolotnov et al. [6] in the spectral domain. The three
references are at the same friction Reynolds number of 180. The consistency of the
spectral results is ensured by making sure that the integrated spectral data reduces
to the correct spatial value.

3.6.1 Validation of the spatial turbulence kinetic energy terms

The turbulence kinetic energy is given in the incompressible case by the half-trace
of the velocity fluctuation correlation tensor. The viscous transfer and the turbulent
transfer, two terms of its evolution equation, are compared in the isothermal case
to the results of Moser et al. [40] and Vreman and Kuerten [58] in figure 4. The
values are scaled by Uτ 4/νω, where Uτ is the friction velocity and νω the cinematic
viscosity at the wall. The results show two things. First, the profiles associated with
the medium and fine meshes are very close, indicating that the mesh convergence is
attained. Second, the fine mesh profiles are nearly identical to the reference profiles
of Vreman and Kuerten [58]. The profiles of Moser et al. [40] deviate slightly from
the profiles of Vreman and Kuerten [58] for the viscous transfer near to the wall.
The results of Vreman and Kuerten [58] are believed to be the most accurate as
they use a finer mesh and a longer averaging time. Hence, the data of Vreman and
Kuerten [58] will from now on be used exclusively for the validation of the spatial
terms.
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The mesh convergence study shows similar results for the other terms (not shown
here). The comparison of the fine mesh profiles with the results of Vreman and
Kuerten [58] is shown for each term in figure 5. The profile of each term is equal
to the reference profile. This validates the spatial profiles of the terms of the evo-
lution equation of the half-trace of the velocity fluctuation correlation tensor at the
incompressible limit.

3.6.2 Validation of the spectral turbulence kinetic energy terms

The numerical properties of the discrete Fourier transform used ensure that the
summation of over all wavenumber bins of a spectral term for a given wall-normal
coordinate y is equal to the value of the associated spatial term. This property
is used to verify the consistency of the spectral and spatial data. The profiles of
production computed from the spectral data and computed directly in the spatial
domain are compared in figure 6 and are shown to be identical. This was verified to
be true for all terms in the isothermal case and in the anisothermal case.
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The spectral data are compared in the isothermal case to the results provided
by Bolotnov et al. [6]. The figure 7 compares the spectral profiles of the production
computed from the coarse, medium and fine meshes with Bolotnov et al. [6] at a
distance of 10 in wall units from the wall. The fine and medium profiles are very
close showing a good convergence of the production statistical profile in the spectral
domain. The results are in agreement with those of Bolotnov et al. [6]. The spectral
profiles have the same shape and predict the same spectral location of the maximum
value. There are however some differences. The profile of Bolotnov et al. [6] has a
lower amplitude and is more spread out in wavenumber. This leads to a very similar
total integrated value, though not exactly identical. Unfortunately, there are no
further data on the spectral turbulence kinetic energy terms in the literature to
decide between the two profiles. Therefore, we compare the spatial integrated value
of the two spectra. There is 3.5%–4% difference between the spatial integrated value
of Bolotnov et al. [6] and the results of Moser et al. [40] or Vreman and Kuerten
[58], whereas the difference is less than 1% for our spectrum. Our results are thus
more accurate with regard to their total integrated value.

This applies to all wall-normal positions and all terms investigated by Bolotnov
et al. [6], as shown by the comparison of the two-dimensional spectra of the produc-
tion in figure 8, the interplane triadic transfer in figure 9, the inplane triadic transfer
in figure 10, the inplane triadic transfer in figure 10, the interplane dissipation in
figure 11, the inplane dissipation in figure 12 and the viscous transfer in figure 13. In
each case, both plot uses the same normalisation and the colour scales are identical.
For each plot, our results agree very closely with the results of Bolotnov et al. [6].
The two spectra follow the same general behaviour. They also are in a very good
agreement on the spatial and spectral location of the terms. Nevertheless, there are
some differences. The results of Bolotnov et al. [6] tends to have a lower amplitude
and be more spread out in wavenumber. This is the same behaviour as previously
discussed for the spectral profile of production and the same remarks may apply.
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(a) This paper (b) Bolotnov et al.

Figure 8 – Production, Re
(
−û′x

∗
û′y

∂Ux
∂y

)
.

(a) This paper (b) Bolotnov et al.

Figure 9 – Interplane triadic, Re

(
−û′i

∗ ∂̂u′iu′y
∂y

)
.

(a) This paper (b) Bolotnov et al.

Figure 10 – Inplane triadic, Re

(
−û′i

∗ ∂̂u′iu′x
∂x
− û′i

∗ ∂̂u′iu′z
∂z

)
.
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(a) This paper (b) Bolotnov et al.

Figure 11 – Interplane dissipation, Re

(
−ν ∂̂u

′
i

∂y

∗
∂̂u′i
∂y

)
.

(a) This paper (b) Bolotnov et al.

Figure 12 – Inplane dissipation, Re

(
−ν ∂̂u

′
i

∂x

∗
∂̂u′i
∂x
− ν ∂̂u

′
i

∂z

∗
∂̂u′i
∂z

)
.

(a) This paper (b) Bolotnov et al.

Figure 13 – Viscous transfer, Re
(
ν ∂

2ě
∂y2

)
.
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4 Results

The numerical results with regard to the terms of the evolution equation of the
half-trace of the velocity fluctuation correlation tensor are discussed in this section.

The energy exchanges associated with the half-trace of the velocity fluctuation
correlation tensor are investigated in the spatial and spectral domains. In both
cases, the analysis is carried out in two configurations as described in section 3.1:
the isothermal configuration and the anisothermal configuration. In the isothermal
configuration, the flow is incompressible as there is no temperature gradient. In the
anisothermal configuration, the strong temperature gradient generates large vari-
ations of the fluid properties. In the spatial domain, the terms of the half-trace
of the velocity fluctuation correlation tensor have been studied in the literature in
the isothermal configuration [see e.g. 40, 58], but has not been documented in the
anisothermal configuration. In the spectral domain, the analysis is novel in both
the isothermal and anisothermal configurations with the decomposition used in this
study. The spatial results in the isothermal configuration are used solely to validate
the numerical method. In this section, we discuss the results in the isothermal con-
figuration in the spectral domain and in the anisothermal configuration in both the
spatial and spectral domains.

The effect of the temperature gradient on the terms of the evolution equation
of the half-trace of the velocity fluctuation correlation tensor is decomposed in two
separate effects. The first effect is the behaviour modification of the terms of the
incompressible evolution equation, here called incompressible terms. The second
effect is the addition of terms specific to flows with variable fluid properties, here
called thermal terms. Each term is associated with an energy exchange, that is
either a conservative energy transfer or an interaction with another part of total
energy. The incompressible energy exchanges are modified by the temperature gra-
dient both through the incompressible terms and the addition of thermal terms to
their expression. Additionally, a new thermal energy exchange is added, composed
only of thermal terms.

In both the spatial and spectral domains, the analysis of the energy exchanges in
the anisothermal configuration first investigates the effect of the temperature gradi-
ent on the incompressible energy exchanges. Then, we investigate the contribution
of the thermal terms to the energy exchanges. This analysis includes the thermal
terms of the incompressible energy exchanges and of the thermal energy exchange.

4.1 Scalings

For later use, we define here the four following scalings: the constant scaling, the
classical scaling, the semi-local scaling and the integral scaling. With the constant
scaling, all profiles are scaled identically thus keeping the same relative behaviour
as the raw profiles. The scaling uses a combination of the friction velocity U◦τ and
the cinematic viscosity at the wall ν◦ω in the isothermal configuration. This scaling
uses the results of the isothermal configuration even for profiles in the anisothermal
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case since the scaling should always be the same. The constant scaling is denoted
with a superscript circle (◦),

y◦ =
yU◦τ
ν◦ω

, (21)

k◦ =
kν◦ω
U◦τ

, (22)

U ◦ =
U

U◦τ
, (23)

e◦ =
e

U◦τ
2 , (24)(

∂e

∂t

)◦
=

1

U◦τ
4/ν◦ω

(
∂e

∂t

)
. (25)

With the classical scaling, the profiles are scaled using the results at the same
side of the channel. All quantities are scaled by a combination of the friction velocity
Uτ and the cinematic viscosity νω at the closest wall. The classical scaling is denoted
with a superscript plus sign (+),

y+ =
yUτ
νω

, (26)

k+ =
kνω
Uτ

, (27)

U+ =
U

Uτ
, (28)

e+ =
e

U2
τ

, (29)(
∂e

∂t

)+

=
1

U4
τ /νω

(
∂e

∂t

)
. (30)

With the semi-local scaling, the profiles takes into account the mean local fluid
properties instead of the fluid properties at the wall. The semi-local scaling is
denoted with a superscript asterisk (∗),

y∗ =
yU∗τ
ν(y)

, (31)

k∗ =
kν(y)

U∗τ
, (32)

U ∗ =
U

U∗τ
, (33)

e∗ =
e

U∗τ
2 , (34)(

∂e

∂t

)∗
=

1

U∗τ
4/ν(y)

(
∂e

∂t

)
, (35)

with,

U∗τ =

√
µω
ρ(y)

(
∂Ux

∂y

)
ω

. (36)
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The semi-local scaling is part of the current paradigm of scalings for compressible
wall turbulence [55]. While it was first proposed using heuristic arguments [46, 28,
17], two different mathematical frameworks were developed recently to support the
validity of the semi-local scaling by Patel et al. [43] and Trettel and Larsson [55].

With the integral scaling, the profiles are scaled using an integral length scale as
in Brun et al. [8]. The integral scaling is denoted with a superscript (B),

yB =

∫ y+

0

µω
µ(y)

dy+ (37)

UB =
U

UB
τ

(38)

eB =
e

UB
τ

2 (39)(
∂e

∂t

)B
=

1

UB
τ

4/νω

(
∂e

∂t

)
(40)

(41)

with,

UB
τ =

yB

y+

µ(y)

µω

√
ρω
ρ(y)

Uτ . (42)

In particular, note that the terms of the evolution equation of the half-trace of
the velocity fluctuation correlation tensor are scaled by U◦τ

4/ν◦ω with the constant
scaling, Uτ 4/νω with the classical scaling, U∗τ

4/ν(y) with the semi-local scaling and
UB
τ

4
/νω with the integral scaling.

We remark that the values of Uτ 4/νω at the hot and cold sides are the same within
0.5% accuracy. The classical scaling thus does not modify the relative amplitude of
the hot and cold sides. We do not see any physical reason for the equality of Uτ 4/νω
at the two sides, that is of the relation

νω1

(
∂Ux

∂y

)2

ω1

= νω2

(
∂Ux

∂y

)2

ω2

(43)

where the subscript ω1 denotes the value at the cold wall and the subscript ω2 the
value at the hot wall. Further analyses at different friction Reynolds number and
temperature ratios are required to verify the possible generality of the property.

4.2 Assessment of the amplitude of the terms

The maximum amplitude of each term of the evolution equation of the half-trace
of the velocity fluctuation correlation tensor is reported in table 2. The purpose
of this is twofold. First, this gives an estimate of the relative importance of each
term. Second, the importance of each term compared to the balance term indicates
whether the term has reliable statistics.
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Term of the equation of the half-trace of the velocity fluctuation correlation Maximum value
Spatial equation Associated energy exchange Spatial Spectral

PI = −u′xu′y(∂yUx) Production (I) 2.3 · 10−1 3.4 · 10−2

ενI,1 = −ν(∂ju′i)(∂ju
′
i) Interaction with ie, dissipation (I) 1.8 · 10−1 2.0 · 10−2

ϕνI,1 = ν(∂y∂ye) Conservative energy transfer, viscous transfer (I) 1.7 · 10−1 2.0 · 10−2

ϕcI = −∂yeu′y Conservative energy transfer, convection (I) 6.5 · 10−2 7.7 · 10−3

ϕνν′,1 = ∂yν ′u′i∂yUi Conservative energy transfer, viscous transfer 2.4 · 10−2 2.6 · 10−3

ζν∂ρ,1 = (ν/ρ)(∂jρ)u′i(∂jUi) Interaction with vdke, viscous contribution 1.6 · 10−2 1.7 · 10−3

ενν′,1 = −ν ′(∂ju′i)(∂jUi) Interaction with ie, dissipation 1.5 · 10−2 1.7 · 10−3

ϕν∂ν,1 = (∂ye)(∂yν) Conservative energy transfer, viscous transfer 1.2 · 10−2 1.4 · 10−3

ϕpI = −(1/ρ)(∂yu′yP ) Conservative energy transfer, pressure transfer (I) 9.0 · 10−3 1.2 · 10−3

ζc
ϑ

= e(∂jU j) Interaction with vdke, kinetic energy dilatation 3.8 · 10−3 4.1 · 10−4

Ξ = 0 Purely spectral term (I) 3.6 · 10−3 1.2 · 10−2

ζcϑ′ = e(∂ju′j) Interaction with vdke, kinetic energy dilatation 2.7 · 10−3 2.9 · 10−4

ϕc
Uy

= −∂y(eUy) Conservative energy transfer, convection 2.6 · 10−3 3.4 · 10−4

ενI,2 = −ν(∂ju′i)(∂iu
′
j) Interaction with ie, dissipation (I) 2.6 · 10−3 3.1 · 10−4

ϕνI,2 = ν(∂y∂yu′yu
′
y) Conservative energy transfer, viscous transfer (I) 2.4 · 10−3 3.1 · 10−4

ζp = −(u′iP/ρ
2)(∂iρ) Interaction with vdke, pressure contribution 1.2 · 10−3 1.5 · 10−4

Balance term 1.0 · 10−3 2.6 · 10−4

ϕp∂ρ = (u′yP/ρ
2)(∂yρ) Conservative energy transfer, pressure transfer 7.0 · 10−4 8.9 · 10−5

ϕpρ′ = ∂yu′yPρ
′/(ρ(ρ+ ρ′)) Conservative energy transfer, pressure transfer 4.0 · 10−4 7.8 · 10−5

εp = (P/ρ)(∂iu′i) Interaction with ie, pressure dilatation 3.4 · 10−4 5.0 · 10−5

ϕν∂ν,2 = u′i(∂iu
′
y)(∂yν) Conservative energy transfer, viscous transfer 3.0 · 10−4 4.0 · 10−5

ζν∂ρ,2 = (ν/ρ)(∂jρ)u′i(∂iUj) Interaction with vdke, viscous contribution 1.9 · 10−4 2.3 · 10−5

ϕνν′,2 = ∂yν ′u′i(∂iUy) Conservative energy transfer, viscous transfer 1.5 · 10−4 1.7 · 10−5

PUy = −u′yu′y(∂yUy) Production 1.4 · 10−4 1.7 · 10−5

ενν′,2 = −ν ′(∂ju′i)(∂iUj) Interaction with ie, dissipation 1.0 · 10−4 1.1 · 10−5

ϕνϑ′,2 = −ν(∂yu′y∂iu
′
i) Conservative energy transfer, viscous transfer 2.5 · 10−5 1.1 · 10−5

ϕνΘ = −∂y(2ν/3)u′y(∂iUi) Conservative energy transfer, viscous transfer 1.8 · 10−5 2.6 · 10−6

ενΘ = (2ν/3)(∂iu′i)(∂jUj) Interaction with ie, dissipation 2.1 · 10−6 1.2 · 10−7

ζνΘ = −(2ν/3ρ)(∂iρ)u′i(∂jUj) Interaction with vdke, viscous contribution 1.9 · 10−6 2.0 · 10−7

Table 2 – Maximum value of the terms of the evolution equation of the half-trace of
the velocity fluctuation correlation tensor in the spatial and spectral domain. For
the sake of conciseness, the expression of each term is given in the spatial domain
only. The type of each term refers to the four energy exchanges associated with
the half-trace of the velocity fluctuation correlation tensor according to the ternary
representation: the conservative energy transfer, the interaction with internal energy
(ie), the production, interaction with the other parts of kinetic energy, and the
interaction with variable density kinetic energy (vdke). The symbol (I) is appended
to the terms that do no vanish in the incompressible case. The results are given
with the classical scaling.
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The most significant terms in the low Mach anisothermal channel flow remain
the incompressible terms, namely terms that do not vanish in the incompressible
case. For each energy exchange, the most important term of the decomposition is
an incompressible term, with the obvious exception of the interaction with variable
density kinetic energy which vanish in the incompressible case. The only incom-
pressible terms that have a very low maximum amplitude are the two terms ενI,2 and
ϕνI,2, which cancel each other out in the incompressible case. The purely spectral
term is found to be a major part of the energy exchanges in the spectral domain.

The amplitudes of the thermal terms do not follow those of the associated in-
compressible terms. For instance, while the incompressible production is the term
with the highest amplitude, the thermal production is one of the smallest terms.
Instead, it depends primarily on the underlying physical origin of the terms. The
most significant thermal terms are terms associated with the viscous shear stress,
and more specifically the part associated with the product with the velocity gradient.
Though, they differ in the energy exchange they are associated with (conservative
energy transfer, interaction with internal energy or with variable density kinetic en-
ergy) and the source of their thermal character (fluctuation of the viscosity, variation
of the mean viscosity or of the density). With regard to the terms associated with
the other parts of the viscous shear stress, the terms associated with the product
with the transpose of the velocity gradient are very small compared to the terms
associated with the product with the velocity gradient. The terms associated with
the product with the velocity divergence are the smallest terms of all. This is only
true for the viscous terms as the kinetic energy dilatation correlation and to a lesser
extent the pressure dilatation correlation have larger amplitude.

Hence, the effect of the thermal terms with regard to the energy exchanges is the
largest on the conservative energy transfer and the interaction with internal energy.
The two most significant terms of the thermal conservative energy transfer ϕΓ are
ϕνν′,1 and ϕν∂ν,1, both part of the thermal viscous transfer. In the thermal interaction
with internal energy εΓ , the term ενν′,1 predominates. The additional energy exchange
with variable density kinetic energy ζ is substantial. It acts primarily through its
viscous contribution and secondly through the kinetic energy dilatation correlation.
For the three interactions, the pressure contribution is not significant. Note however
that the data provided in the table are mute towards the local importance of the
terms, which may be larger or lower than what the maximum amplitude make it
appears to be.

For the purpose of this paper, a term is considered statistically reliable if its
maximum amplitude is at least ten times larger than the maximum amplitude of
the kinetic energy balance. This leaves the eight following statistically reliable terms:

• PI , the incompressible production,

• ενI,1, a part of the incompressible dissipation,

• ϕνI,1, a part of the incompressible viscous transfer,

• ϕcI , the convection by turbulent motion,
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• ϕνν′,1, a part of viscosity fluctuation viscous transfer,

• ζν∂ρ,1, a part of the density variation viscous interaction with variable density
kinetic energy,

• ενν′,1, a part of the viscosity fluctuation dissipation,

• ϕν∂ν,1, a part of the mean viscosity variation viscous transfer,

In the following, the behaviour of those eight terms is analysed. The remaining
18 terms are not discussed individually as their amplitude is too low to ensure
that their profile is correctly described. In particular, the pressure transfer and the
pressure contribution to the interaction with variable density kinetic energy and the
interaction with internal energy will not be studied.

4.3 Results in the spatial domain

In this section, we investigate the energy exchanges associated with the half-trace
of the velocity fluctuation correlation tensor in the spatial domain. The analysis is
carried out in three steps. First, we study the total effect of the temperature gradient
on the incompressible energy exchanges, through the combined effect of the mod-
ification of the behaviour of the incompressible terms and the addition of thermal
terms. In particular, we study the effect of the Reynolds number variations across
the channel. Then, we focus on the contribution of the modification of the incom-
pressible terms to the alteration of the incompressible energy exchanges. Finally,
we investigate the profiles of the thermal terms.

4.3.1 Profiles of the incompressible energy exchanges in the anisothermal
configuration

The four energy exchanges associated with the half-trace of the velocity fluc-
tuation correlation tensor are the production, the conservative energy transfer, the
interaction with variable density kinetic energy and the interaction with internal
energy. The production represented in figure 14, the conservative energy transfer
in figure 15 and the interaction with internal energy in figure 16. The interaction
with variable density kinetic energy is discussed later since, as a thermal energy ex-
change, its behaviour is particular. We also provide the profile of the relevant parts
of each term. The viscous transfer is given in figure 17 and the turbulent transfer
in figure 18. The pressure transfer is not discussed because it is not statistically
reliable in the anisothermal configuration. The dissipation is given by the profile of
the interaction with internal energy, since the pressure dilatation is negligible.

For each term, the profiles at the hot and cold sides are compared to each other
and to the corresponding profile in the isothermal configuration. The results are
given with the constant scaling, the classical scaling, the semi-local scaling and the
integral scaling. The three scalings show an asymmetry between the hot and cold
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Figure 14 – Production, total P and incompressible PI .

profiles, though of different nature. Some generalities are found in the manner in
which the temperature gradient manifests itself as summarised in the following.

The constant scaling shows the effect of the temperature gradient when not
correcting the friction velocity and viscosity differences between the isothermal and
anisothermal case. The general behaviour of the profiles is never drastically modified.
However, the amplitudes in absolute value are increased considerably at the hot and
cold side compared to the isothermal results. The amplitudes at the cold side are
larger than the amplitudes at the hot side. Meanwhile, the positions of the local
or global extrema are shifted closer to the wall at the cold side compared to the
isothermal profile and closer to the centre of the channel at the hot side. Since
the wall-normal coordinate axis is logarithmic, this shift comes with an increase of
the spatial range of the term at the hot side and a decrease at the cold side. In
particular, the effect of the amplitude and spatial extent modification offset each
other for the production, such that the total integrated production is the same at
the hot and cold side. Within 1% error, this remark may also be applied to the
interaction with internal energy

The classical scaling shows the effect of the temperature gradient when scaled
by the friction velocity and the viscosity at the wall. With the classical scaling, the
anisothermal profiles have the same order of magnitude as the isothermal profile.
This proves that most of the amplitude differences seen with the constant scaling
are due to the increased friction velocity on the anisothermal configuration. The
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Figure 15 – Conservative energy transfer, total ϕ and incompressible ϕI .

scaled amplitude at the cold side is increased compared to the isothermal profile
and decreased at the hot side. We recall that the classical scaling has no effect
on the relative amplitude of the terms at the hot and cold side since the value
of U4

τ /νω is the same at both sides of the channel. In other words, the classical
scaling successfully explains the differences between the isothermal amplitudes and
the anisothermal amplitudes but is silent towards the difference between the hot and
cold sides. The relative position of the local or global extrema of the hot, cold and
isothermal profiles are swapped by the classical scaling. Now, the extrema are seen
shifted closer to the wall in wall units at the hot side compared to the isothermal
profile and closer to the centre of the channel at the cold side. A good explanation is
that the classical scaling takes into account the viscosity at the wall thus overcorrects
the position closer to the centre of the channel where the viscosity is similar at both
sides of the channel.

To address this, the semi-local scaling takes into account the mean local vari-
ations of the fluid properties. With the semi-local scaling, there is no position
differences between the hot, cold and isothermal profiles. This result shows the
physical relevance of the semi-local scaling, which is able to explain the positional
shift of the hot and cold profiles compared to the isothermal profile. However, the
amplitude differences are not modified.

A possible explanation of these amplitude differences could be a Reynolds number
effect, that is the local variations of the friction Reynolds number across the channel



28 D. Dupuy, A. Toutant and F. Bataille

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

 0

 0.1  1  10  100

(I
n

te
ra

c
ti
o

n
 w

it
h

 i
n

te
rn

a
l 
e

n
e

rg
y
)o

y
o

Inc. term, hot side
Inc. term, cold side

Hot side
Cold side

Incompressible
Vreman & Kuerten

(a) Constant scaling.

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.1 1 10 100

(In
te

ra
ct

io
n 

w
ith

 in
te

rn
al

 e
ne

rg
y)

+

y+

(b) Classical scaling.

−0.25

−0.2

−0.15

−0.1

−0.05

 0

 0.1  1  10  100

(I
n

te
ra

c
ti
o

n
 w

it
h

 i
n

te
rn

a
l 
e

n
e

rg
y
)*

y
*

Moser et al. 395
Tsukahara et al. 150
Tsukahara et al. 110

Inc. term, hot side
Inc. term, cold side

Hot side
Cold side

Incompressible
Vreman & Kuerten

(c) Semi-local scaling.

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.1 1 10 100

(In
te

ra
ct

io
n 

w
ith

 in
te

rn
al

 e
ne

rg
y)

B

yB

(d) Integral scaling [8].

Figure 16 – Interaction with internal energy, total ε and incompressible ενI .

between the hot and cold sides. Indeed, the temperature gradient creates variations
of the local friction Reynolds number (figure 19), that we define as U∗τ (y)h/ν(y)
following the semi-local scaling. The local friction Reynolds number spans between
107 at the hot wall and 260 at the cold wall. Within this Reynolds number range,
the scaled isothermal profiles depend on the Reynolds number. This makes the
semi-local scaling harder to interpret, as it would prevent the hot and cold profiles
to collapse. To study the Reynolds number effect, we compare the effect of the
temperature gradient to the effect of Reynolds number variations in the isothermal
configuration. We use to this intent the data of Tsukahara et al. [57] at the friction
Reynolds numbers 110 and 150, the isothermal results at Reτ = 180 and the data of
Moser et al. [40] at Reτ = 395 (considering the lack of available data between 180
and 395).

The semi-locally scaled profiles of production (figure 14(c)) follow very closely
a Reynolds number effect. We use the empirical relation between the maximum of
production and the friction Reynolds number of Laadhari [32] to compute the peak
of production in the isothermal configuration associated with the friction Reynolds
number of the peak of production in the anisothermal configuration (around 121 at
the hot side and 215 at the cold side). The results agree within 1% accuracy to the
anisothermal results. Therefore, we can conclude that the effect of the temperature
gradient on production is to a very large extent a Reynolds number effect. A math-
ematical argument supporting this fact can be inferred from the mean streamwise
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Figure 17 – Viscous transfer (part of the conservative energy transfer), total ϕν and
incompressible ϕνI .

momentum balance, which may be rewritten with the semi-local scaling as

u′∗x u
′∗
y +

∂U
∗
x

∂y∗
=

(
1− y∗

Re∗τ

)
, (44)

assuming that ρu′xu′y ≈ ρu′xu
′
y and µ∂Ux

∂y
≈ µ∂Ux

∂y
. The semi-locally scaled incom-

pressible production PI
∗ is thus equal to

PI
∗

= −u′∗x u′∗y
∂U
∗
x

∂y∗
=

(
∂U
∗
x

∂y∗

)2

− ∂U
∗
x

∂y∗

(
1− y∗

Re∗τ

)
. (45)

This expression is identical to the expression of the production in the incompress-
ible case with the semi-local scaling substituting the classical scaling, hinting that
the semi-local scaling is an appropriate scaling for the production in the variable
property case.

While the effect of the temperature gradient on the interaction with internal
energy (figure 16(c)), the viscous transfer (figure 17(c)) and the convection (figure
18(c)) is also in a large part due to a Reynolds number effect, this explanation is not
sufficient to explain the effect of the temperature gradient on these terms. The value
of the interaction with internal energy (figure 16(c)) at the hot wall is comprised
between the value at the wall in the isothermal configuration at Reτ = 110 and
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Figure 18 – Convection (part of the conservative energy transfer), total ϕc and
incompressible ϕcI .

Reτ = 150, despite being associated with a friction Reynolds number of 107. The
semi-locally scaled profile of the viscous transfer (17(c)) deviates noticeably from
all isothermal profiles from y∗ = 10 to the wall. In particular, while the semi-local
profiles of the viscous transfer in the four isothermal configurations (Reτ = 110, 150,
180, 395) pass through the same point at y∗ = 3.5, the hot and cold anisothermal
profiles deviate from this point significantly. The difference amounts to 20% of
the maximum value of the viscous transfer throughout the channel. The semi-
locally scaled hot and cold profiles of the convection (figure 18(c)) are farther from
the isothermal profiles at the negative extremum than at the positive extremum,
closer from the wall, which is the opposite of what a Reynolds number effect would
imply. The effect of the temperature gradient is from these simple observations
proven inconsistent with a sole Reynolds number effect. This shows that there is
an additional effect that is not taken into account by the semi-local scaling and a
Reynolds number effect. This effect is related to the variations of the fluid properties
since it is the only new physical phenomenon in the anisothermal channel compared
to the isothermal simulation. Judging from the failure of the semi-local scaling,
based on the mean local value of the fluid properties, we may presume that the
mean local value of the fluid properties do not explain the entirety of the effect
of the temperature gradient. It may thus be necessary to take into account the
fluctuations of the fluid properties to explain this effect. This is consistent with the
previous study of Serra et al. [49] which showed this effect through the analysis of
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as a function of the distance to the
wall with the semi-local scaling.

the isotropic component of the velocity fluctuation correlation tensor, out of which
the half-trace is governed by the energy exchanges studied here.

The integral scaling is another approach to scale the profile using the mean fluid
properties. The integral scaling significantly reduces the position asymmetry of the
classical scaling for the production (figure 14(d)). However, the scaling overcorrects
the amplitude difference between the hot and cold sides and swaps their positions.
The amplitude difference with the integral scaling is thus no longer consistent with
a Reynolds number effect. Moreover, the integral scaling gives very unsatisfying
results for the terms with non-zero value at the wall, in particular the interaction
with internal energy (figure 16(d)), since the ordering of the profiles at the wall is
not changed. Since the integral scaling appears less appropriate, this scaling will
not be discussed further in the remaining part of the paper.

All in all, the effect of the temperature gradient on the profiles at the hot and
cold sides is characterised by a twofold asymmetry. The asymmetry in the position
of the extrema is explained by the mean local variations of the fluid properties. The
asymmetry in the amplitudes is in part due to the local variations of the friction
Reynolds number and in part due to the local fluctuations of the fluid properties.

4.3.2 Profiles of the incompressible terms in the anisothermal configu-
ration

The effect of the temperature gradient on the profiles takes place both through
the addition of thermal terms to the energy exchanges and the alteration of the
profile of the incompressible terms. To assess the two phenomena, the set of figures
14 to 18 provides a comparison of the total energy exchanges to their incompressible
part, that we recall are formally identical to the terms in the incompressible case.

In agreements with the conclusions of the analysis of the maximum amplitude
of the terms in section 4.2, the production and the convection are not modified
significantly by the addition of the corresponding thermal terms. However, the
profiles of the interaction with internal energy, the viscous transfer and hence the
conservative energy transfer are noticeably modified. With semi-local scaling, the
changes are restricted to an area that arises very near to the wall and ends around
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y∗ = 20. The scaled profile of the incompressible terms are much closer to the
isothermal profile than the total term. The addition of the thermal terms separates
the three profiles more clearly, moving the hot and cold profiles further away from
each other and from the isothermal profile. In other words, taking into account only
the incompressible terms leads to results closer to the isothermal profile than the
true anisothermal profiles.

While the hot and cold profiles of the viscous transfer have a different behaviour
than the isothermal profiles, the hot and cold profiles of the incompressible viscous
transfer are more similar (figure 17(c)). In particular, the hot and cold profiles of the
incompressible viscous transfer pass through the point at y∗ = 3.5 as the profiles of
the viscous transfer in the four isothermal configurations (Reτ = 110, 150, 180, 395).
At the hot side, the profile of the incompressible term is in line with a Reynolds
number effect. The difference between the incompressible term and the total term
thus represents the more complex interaction between temperature and turbulence.

4.3.3 Profiles of the thermal terms in the anisothermal configuration

We study here the thermal terms of the energy exchanges. This includes the
thermal terms of the production, of the conservative energy transfer and of the in-
teraction with internal energy and the total profile of the interaction with variable
density kinetic energy since this energy exchange does not have an incompressible
part. The thermal conservative energy transfer is represented in figure 20, the inter-
action with variable density kinetic energy in figure 21 and the thermal interaction
with internal energy in figure 22. The behaviour of the thermal production is not
discussed as its amplitude was found too low.

The three profiles share an interesting characteristic unknown to any of the in-
compressible terms. The profile at the hot and cold sides are of opposite signs.
For most terms, the sign inversion can be understood from their mathematical ex-
pression. For instance, ∂y

(
ν ′u′x∂yUx

)
, the leading term of the thermal conservative

energy transfer undergoes a sign inversion as both ν ′u′x and ∂yUx undergo a sign
inversion, which implies that the derivative of their product also does. Because of
the sign inversion, we give, in addition to the profiles with the three scalings, the
profile with the semi-local scaling with sign of the term at the hot side inverted. This
allows a more convenient comparison of the hot and cold profiles when ignoring the
sign difference.

The shape of the three thermal terms is similar. This is rather unexpected as the
three terms are related to different energy exchanges and have different associated
incompressible profiles. Besides, the interaction with variable density kinetic energy
is interpreted as a new interaction whereas the thermal interaction with internal
energy and the thermal conservative energy transfer are seen as the thermal part of
a larger energy exchange. The hot and cold profiles both tend to zero at the wall
and at the centre of the channel. Between these two points, both profiles have two
extrema, one positive and one negative. The first extremum has a larger amplitude
than the second extremum but the second extremum has a larger spatial range.
In the thermal conservative energy transfer (figure 20), the two extrema have the
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(c) Semi-local scaling.
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(d) Semi-local scaling, hot side inverted.

Figure 20 – Thermal conservative energy transfer ϕΓ .

same integral. This term transfers the energy from the extremum close to the wall
towards the centre of the channel at the hot side, and conversely towards the wall at
the cold side. On the other hand, the first extremum has a smaller integral than the
second extremum for the thermal interaction with internal energy (figure 22). The
effect of this term is an energy loss at the extremum close to the wall at the cold
side and a gain closer to the centre of the channel at the cold side, and vice versa at
the hot side. This can be thought of as a pseudo-transfer in the opposite direction
to the thermal conservative energy transfer. However, this effect is accompanied
by a net energy gain at the cold side and loss at the hot side. The same remark
may be applied to the interaction with variable density kinetic energy (figure 21),
but the transfer occurs in the opposite direction. The amplitude of the extrema
is always larger at the cold side than at the hot side, and to a greater extent for
the first extremum than for the second extremum. As for the incompressible energy
exchanges, the spatial extent of the term is at the same time larger at the hot side
compared to the cold side. As just previously noted, the significant part of the
thermal terms is limited to an area that excludes the near vicinity of the wall and
the centre of the channel. This can be explained as the velocity and temperature
fluctuations are zero at the wall and the temperature gradient is low at the centre
of the channel.

The signs of the extrema are the same for the two non-conservative thermal
terms, and are of opposite signs for the thermal conservative energy transfer. Hence,
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(c) Semi-local scaling.
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(d) Semi-local scaling, hot side inverted.

Figure 21 – Interaction with variable density kinetic energy ζ.

the sum of the non-conservative terms and the sum of the conservative terms are
of opposite signs. With regard to the total energy exchanges, the sum of the non-
conservative terms is equal to the opposite of the conservative energy transfer. We
may wonder if this property holds for the thermal terms as the thermal conservative
and non-conservative terms may interact with each other only or also with the
incompressible terms. To answer this question, the sum of all thermal terms is
represented in figure 23. The profile is of the same order of magnitude as the
thermal terms, proving that the thermal terms do not cancel out. It is composed of
three extrema where, like the individual term, the profiles at the hot and cold side
are of opposite sign. The integral of the positive extrema is larger than the integral
of the negative extrema at both the hot and cold sides, resulting in a net energy
gain overall.

The profiles of the thermal terms are modified by the classical scaling and the
semi-local scaling in a similar way to the terms that do not vanish in the incom-
pressible case. With the constant scaling, an extremum is always closer to the wall
at the cold side than at the hot side. The classical scaling reduces the position
differences between the hot and cold side, and swaps their relative position. Indeed,
by contrast with the constant scaling, an extremum is always closer to the wall in
wall units at the hot side than at the cold side. The difference is very slight for the
first extremum, but larger for the second extremum. This is in agreement with the
proposed interpretation of this result given in the previous section.
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(c) Semi-local scaling.
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(d) Semi-local scaling, hot side inverted.

Figure 22 – Thermal interaction with internal energy εΓ .

With the semi-local scaling, there is no position differences between the extrema
of kinetic energy gain/loss at the hot and cold sides. Additionally, the areas where
the hot and cold profiles are of the same sign are removed. Therefore, any kinetic
energy loss coincides with a kinetic energy gain at the same position at the other side
of the channel. The semi-locally scaled hot and cold profiles can thus be considered
to always be of opposite sign and completely symmetric if not for the amplitude dif-
ferences, which are left largely unchanged. This shows that the amplitude difference
cannot be solely explained by the mean local variations of the fluid properties.

4.4 Results in the spectral domain

In this section, the spectral behaviour of the terms of the evolution equation of
the half-trace of the velocity fluctuation correlation tensor is discussed. The spectra
of the energy exchanges are not documented in the literature with the decompo-
sition used in this study. Thereupon, we first describe the spectral behaviour of
the energy exchanges in the isothermal configuration. Then, we study the effect
of the temperature gradient on the spectra of the incompressible energy exchanges.
Finally, we analyse the spectra of the thermal terms separately.
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(d) Semi-local scaling, hot side inverted.

Figure 23 – Sum of all thermal terms ϕΓ + ζ + εΓ .

4.4.1 Spectra of the incompressible energy exchanges in the isothermal
configuration

In the incompressible case, the four main spectral energy terms are the produc-
tion, the conservative energy transfer, the purely spectral transfer and the interaction
with internal energy. They are represented in the isothermal configuration in figure
24(c), 25(c), 26(c) and 27(c) respectively. We recall that for each plot, the amplitude
is given by the integration of the spectral density of the term over a wavenumber bin,
as described in section 3.5. The spectra give the total statistically averaged effect
of the term, that is the statistical balance of the energy taken and given at each
wall-normal coordinate and wavenumber. This may hide some physical phenomena
from the analysis.

The production (figure 24(c)) generates turbulence kinetic energy from mean
kinetic energy in a limited area in both the spectral and spatial domains. The area
is roughly circular but slanted so that large eddies contribute to the production
farther from the wall and small eddies closer to the wall. This is consistent with
the spatial profile of production (figure 14) which consists of a single peak. The
maximum of production is located at (y◦ = 12; k◦ = 0.07).

The conservative energy transfer (figure 25(c)) transfers the energy from an area
centred on the position of the maximum of production, with a very large wavenumber
range. The energy is transferred towards the wall and slightly towards large scales.
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This is consistent with the spatial profile of the conservative energy transfer (figure
15).

The purely spectral transfer (figure 26(c)) redistributes the energy among scales
with no effect in the spatial domain. The energy is taken from an area very close
to the maximum of production but slightly farther from the wall and redistributed
towards both large scales and small scales, with few spatial position shifts. The
spectrum is slanted and involves smaller eddies closer to the wall and larger eddies
away from the wall. The positive area at small scales has a twice as large amplitude
than the positive area at large scales. The purely spectral transfer thus primarily
moves the energy towards small scales. The spectrum highlights the complex re-
distribution of scales in wall-bounded flows through both direct and inverse energy
cascades.

The interaction with internal energy (figure 27(c)) dissipates kinetic energy into
internal energy very near to the wall. This is consistent with its spatial profile
(figure 16). The extremum of its spectrum is at the same position as the positive
area of the spectrum of the conservative energy transfer. However, its spatial extent
is significantly larger, going much closer to the centre of the channel. When away
from the wall, the scales that contribute to the interaction with internal energy are
smaller. This is the opposite behaviour of the production peak described above.
Since the production and the dissipation have opposite effect, the consequences are
similar.

The conservative energy transfer is the sum of three contributions: the convec-
tion, the viscous transfer and the pressure transfer. We study here individually the
spectra of the viscous transfer (figure 28(c)) and the convection (figure 29(c)). The
pressure transfer is not discussed as its amplitude is too small for its spectrum to
be statistically reliable in the anisothermal configuration (see section 4.2).

The viscous transfer (figure 28(c)) transfers the energy from an area around
y◦ = 10 to the wall with no scale shift. The transfer does not occur only in the
spatial direction, since the wavenumber range of the positive area is larger than the
wavenumber range of the negative area.

The convection (figure 29(c)) is characterised by transfers in both the spatial and
spectral domains. The energy is taken from an area located at the same wall-normal
coordinate as the maximum of production but at smaller scales and transferred both
towards the wall at larger scales and towards the centre of the channel at smaller
scales. The former of these two effects is however far more significant.

The overall spectral behaviour of the energy exchanges in a wall-bounded flow is
as follows. Mean kinetic energy is transformed into turbulence kinetic energy around
a particular point in the spatial and spectral domains. The energy is primarily
redistributed towards small scales; transferred with few scale shift towards the wall,
then transformed into internal energy.
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(a) Hot side, constant scaling. (b) Hot side, semi-local scaling.

(c) Isothermal, constant scaling. (d) Isothermal, semi-local scaling.

(e) Cold side, constant scaling. (f) Cold side, semi-local scaling.

Figure 24 – Production P̌ .



Turbulence kinetic energy exchanges 39

(a) Hot side, constant scaling. (b) Hot side, semi-local scaling.

(c) Isothermal, constant scaling. (d) Isothermal, semi-local scaling.

(e) Cold side, constant scaling. (f) Cold side, semi-local scaling.

Figure 25 – Conservative energy transfer ϕ̌.
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(a) Hot side, constant scaling. (b) Hot side, semi-local scaling.

(c) Isothermal, constant scaling. (d) Isothermal, semi-local scaling.

(e) Cold side, constant scaling. (f) Cold side, semi-local scaling.

Figure 26 – Purely spectral transfer Ξ̌.
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(a) Hot side, constant scaling. (b) Hot side, semi-local scaling.

(c) Isothermal, constant scaling. (d) Isothermal, semi-local scaling.

(e) Cold side, constant scaling. (f) Cold side, semi-local scaling.

Figure 27 – Interaction with internal energy ε̌.
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(a) Hot side, constant scaling. (b) Hot side, semi-local scaling.

(c) Isothermal, constant scaling. (d) Isothermal, semi-local scaling.

(e) Cold side, constant scaling. (f) Cold side, semi-local scaling.

Figure 28 – Viscous transfer (part of the conservative energy transfer) ϕ̌ν .
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(a) Hot side, constant scaling. (b) Hot side, semi-local scaling.

(c) Isothermal, constant scaling. (d) Isothermal, semi-local scaling.

(e) Cold side, constant scaling. (f) Cold side, semi-local scaling.

Figure 29 – Convection (part of the conservative energy transfer) ϕ̌c.
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4.4.2 Spectra of the incompressible energy exchanges in the anisothermal
configuration

We now focus on the effect of the temperature gradient on the terms of the
evolution equation of the half-trace of the velocity fluctuation correlation tensor,
investigated above in the isothermal configuration. The production is represented
in figure 24, the conservative energy transfer in figure 25, the purely spectral transfer
in figure 26, the interaction with internal energy in figure 27, the viscous transfer in
figure 28 and the convection in figure 29. Let us recall that in flows with variable
fluid properties, the interaction with internal energy is the sum of two contributions:
the dissipation and the pressure dilatation correlation. Since the pressure dilatation
correlation is negligible, the spectra of the interaction with internal energy also give
the spectra of the dissipation.

For each term, we give the spectra obtained with the constant scaling and with
the semi-local scaling. As shown by the analysis in the spatial domain, the classical
scaling overcorrects the position of the maxima in the wall-normal direction because
of the large variations of the fluid properties. In the spectral domain, the classical
scaling was found to provide no further information over the constant scaling and the
semi-local scaling as this behaviour holds. For similar reasons, the results with the
integral scaling are not shown. For each scaling, we compare the spectra at the hot
and cold sides in the anisothermal configuration and the spectra in the isothermal
configuration.

The effect of the temperature gradient is less universal in the spectral domain
than in the spatial domain. With the constant scaling, the spatial position of
the spectral extrema is modified for each term as described in the spatial domain.
Namely, it is shifted closer to the wall at the cold side and farther at the hot side.
The spectral position of the extrema is shifted towards large scales at both the hot
and cold sides compared to the isothermal spectra. The shift is small at the cold
side and large at the hot side. This creates an additional asymmetry between the
hot and cold sides. The amplitude of the extrema is larger at the hot side than at
the cold side. This is counterintuitive because the extrema in the spatial domain
are larger at the cold side. This apparent contradiction is explained by a difference
in the range of scales handled. The energy exchanges take place over a wider range
of scales at the cold side and are restricted to a smaller wavenumber range at the
hot side. In other words, the larger spatial amplitudes at the cold side do not root
in larger spectral amplitudes but in a larger number of scales handled.

In agreement with the analysis in the spatial domain, there is no spatial position
difference between the hot and cold sides with the semi-local scaling. The effect of
the semi-local scaling on the spectral position differences is not the same for each
term.

With the semi-local scaling, there is no longer a spectral position difference
between the hot and cold sides of the maximum of production (figure 24).

This is also true for the negative area of the spectra of the conservative energy
transfer (figure 25), which hence stays centred on the maximum of production. The
positive area also stays centred on the extremum of dissipation, which as will be
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described later means that the spectral positions of the extrema at the hot and cold
sides remain different. As a result of the inconsistency between the behaviour of the
two areas, the pseudo-transfer from the negative area to the positive area appears
to be almost entirely towards the wall at the hot side and both towards the wall and
towards large scales at the cold side.

With regard to the purely spectral transfer (figure 26), the spectral position
difference between the hot and cold sides disappears for the negative area and the
positive area at small scales but remains for the positive area at large scales at the
hot side. The inverse energy cascade hence is modified by the complex interaction
between temperature and turbulence.

The extremum of the interaction with internal energy (figure 27) is not at the
same spectral position at the hot and cold sides. The relative positions of the hot and
cold extrema is swapped compared to the constant scaling. The extremum at the
hot side appears closer to the smallest scales than in the isothermal configuration,
and closer to the largest scales at the cold side. We previously identified that smaller
scales contribute to the interaction with internal energy away from the wall. This
behaviour almost vanishes at the hot side but is strengthened at the cold side.
Taking into account the mean local variations of the fluid properties with semi-local
scaling, the effect appears stronger.

The spectral position difference between the hot and cold sides observed with
the constant scaling remains for some extrema but vanishes for others with the
semi-local scaling. If the difference vanishes, it suggests that the spectral position
asymmetry is a direct consequence of the spatial position asymmetry, through the
mean local variations of the viscosity. If the difference remains, it suggests that
the asymmetry additionally lies in more complex phenomena, namely the combined
effect of local Reynolds number variations and of the local fluctuations of the fluid
properties.

4.4.3 Spectra of the thermal terms in the anisothermal configuration

The thermal terms are the thermal part of the above-investigated terms and the
total profile of the interaction with variable density kinetic energy, a thermal energy
exchange. We only discuss here the terms that have a statistically reliable spectra
from our direct numerical simulation. The thermal conservative energy transfer
is represented in figure 30, the interaction with variable density kinetic energy in
figure 31 and the thermal interaction with internal energy in figure 32. The thermal
production is not discussed as its effect is negligible and the purely spectral transfer
has no thermal contribution.

The three terms were shown to have a similar spatial profile. The similarities
also appear in the spectral domain. As could be induced from the spatial profiles,
the spectra are composed of two areas of opposite signs at each side, that are also of
opposite sign between the hot and cold sides. That is, a kinetic energy gain (respec-
tively loss) at one side of the channel occurs with a kinetic energy loss (respectively
gain) at the other side of the channel. The extrema close to the wall have a signifi-
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(a) Hot side, constant scaling. (b) Hot side, semi-local scaling.

(c) Cold side, constant scaling. (d) Cold side, semi-local scaling.

Figure 30 – Thermal conservative energy transfer ϕ̌Γ .

cantly larger spectral amplitude than the second extrema. The spectral amplitude
in absolute value of an extremum is larger at the cold side than the hot side. This
may seem obvious from the spatial profiles but contrasts with the spectra of the
incompressible energy exchanges. In agreement with the other spectra, the extrema
with the constant scaling are closer to the large scales at the hot side and spans over
a wider range of scales at the cold side. Hence, the larger spatial amplitudes at the
cold side come both from a larger spectral amplitude and a larger number of scales
handled.

The spectral position of the extrema closer to the wall is identical for the three
terms at both the hot and cold sides. The spectral position of the extrema close
to the centre of the channel is identical for the thermal conservative energy transfer
and the interaction with variable density kinetic energy, but different for the thermal
interaction with internal energy. In the former case, its spectral position with the
constant scaling is the same as the extremum close to the wall. In the latter case,
it is located at smaller scales.

For the thermal conservative energy transfer and the interaction with variable
density kinetic energy, the semi-local scaling creates a spectral position shift between
the two extrema. For the interaction with variable density kinetic energy, the already
existing shift is increased at the cold side and reduced at the hot side. The semi-local
scaling fails to nullify the spectral position difference between the hot and cold sides
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(a) Hot side, constant scaling. (b) Hot side, semi-local scaling.

(c) Cold side, constant scaling. (d) Cold side, semi-local scaling.

Figure 31 – Interaction with variable density kinetic energy ζ̌.

for all extrema of the thermal terms. With the semi-local scaling, an extremum
appears closer to the small scales at the hot side. This behaviour is similar to the
behaviour of some extrema of the previously discussed total terms.

The combined effect of the thermal terms is rather unobvious because of the
spatial and spectral position differences between the three terms. The spectra of
the sum of all thermal terms, represented in figure 33, are composed of three areas
of opposite sign between the hot and cold sides. This is in agreement with the
spatial profiles (figure 23). The first two areas are located at the same wavenumber
as the extrema closer to the wall of the separate spectra. The third area more or
less corresponds to the extremum close to the centre of the channel of the thermal
interaction with internal energy. It is thus located at smaller scales than the first
two areas. The spectra show complex interactions both in the spatial and spectral
directions and between the two sides of the channel.

The semi-local scaling retains in the anisothermal configuration a large part
of the overall spectral behaviour of the energy exchanges found in the isothermal
configuration. The production and redistribution among scales of turbulence kinetic
energy are not significantly modified. However, the kinetic energy transfer towards
the wall and the dissipation are modified. In particular, the scales involved differ
between the hot and cold sides. They are shifted towards large scales at the cold
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(a) Hot side, constant scaling. (b) Hot side, semi-local scaling.

(c) Cold side, constant scaling. (d) Cold side, semi-local scaling.

Figure 32 – Thermal interaction with internal energy ε̌Γ .

side and towards small scales at the hot side.

5 Conclusion

The energy exchanges associated with the half-trace of the velocity fluctuation
correlation tensor are investigated in the spatial and spectral domains from two di-
rect numerical simulations of a fully developed turbulent channel flow: one isother-
mal and one anisothermal, in which the flow is subjected to a strong temperature
gradient. The flow in the anisothermal channel is mainly an incompressible flow
with variable fluid properties. The most significant thermal terms are associated
with the rate of deformation part of the viscous shear stress while the viscous terms
associated with dilatation are very small. The temperature gradient generates an
asymmetry between the profiles of the energy exchanges between the hot and cold
sides. This asymmetry consists of: (1) an asymmetry in the position of the extrema
explained by the mean local variations of the fluid properties and (2) an asymmetry
in the amplitude of the extrema, explained with, in addition, the combined effect of
local Reynolds number variations and of the local fluctuations of the fluid properties.
The asymmetry originates both from the subtle modification of the behaviour of the
incompressible terms compared to the isothermal configuration and the addition of
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(a) Hot side, constant scaling. (b) Hot side, semi-local scaling.

(c) Cold side, constant scaling. (d) Cold side, semi-local scaling.

Figure 33 – Sum of all thermal terms ϕ̌Γ + ζ̌ + ε̌Γ .

thermal terms. Both effects are found necessary to obtain the correct behaviour of
the energy exchanges for the interaction with internal energy, the viscous transfer
and hence the conservative energy transfer.

The spectral evolution equation of the half-trace of the velocity fluctuation cor-
relation tensor allows us to carry on the analysis of the energy exchanges into the
spectral domain. In the isothermal configuration, the purely spectral term is found
to represent a significant part of the spectral energy exchanges. It redistributes the
energy among scales through both direct and inverse cascades. The extension of
the spectral decomposition to the anisothermal configuration shows that the larger
spatial amplitudes at the cold side come from a larger number of scales handled in
the spectral domain. Additionally, an asymmetry in the wavenumber position of the
spectral extrema is observed near the wall. This additional effect moves the cold
side to the large scales and the hot side to the small scales.
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