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Abstract—Energy storage revenue estimation is essential for
analyzing financial feasibility of investment in batteries. We
quantify the cycles of operation considering depth-of-discharge
(DoD) of operational cycles and provide an algorithm to calculate
equivalent 100% DoD cycles. This facilitates in comparing cycles
of different DoDs. The battery life is frequently defined as a
combination of cycle and calendar life. We propose a battery
capacity degradation model based on the cycle and the calendar
life and operational cycles. Using equivalent 100% DoD cycles
and revenue generated, we calculate the dollars per cycle revenue
of storage performing electricity price based arbitrage and
ancillary services for load balancing in real time. Using PJM’s (a
regional transmission organization in the United States) real data
we calculate short term and long term financial potential for the
year of 2017. We observe that participating in ancillary services
is significantly more beneficial for storage owners compared to
participating in energy arbitrage.

I. INTRODUCTION

Estimation of financial returns of energy storage is very
essential due to its high cost. In modern power networks
energy storage devices can perform many different tasks from
price based arbitrage, incentive based demand response, volt-
age and frequency regulation as ancillary service participants
or peak demand shaving for consumers [1]. The goal of this
work is to identify the monetary potential of energy stor-
age devices, specifically batteries, in performing price based
energy arbitrage and dynamic regulation, while considering
the degradation of energy storage batteries over time and
due to operational cycles. Based on the present compensation
mechanism we calculate the dollar value of per cycle operation
of a battery.

Prior work by Sandia National Laboratories [2] analyses
the financial potential of batteries performing arbitrage and
regulation in CAISO, California during 2010-11. The authors
discovered that participating in dynamic regulation is four
times more beneficial compared to participating in arbitrage.
However, their work does not consider battery degradation.
Furthermore, volatility in prices have changed significantly
compared to rates in 2011. And without huge investment in en-
ergy storage and flexible load control, the volatility is expected
to increase even more as the share of renewable increases in
power network [3]. Prior work [4] on energy storage valuation
for performing ancillary services concludes that in presence
of performance based compensation and battery degradation,
installing batteries are a profitable investment.

1M.U.H. and A.B are with INRIA, DI ENS, Ecole Normale
Supérieure, CNRS, PSL Research University, Paris, France. Email: md-
umar.hashmi@inria.fr

2W.L. and T.C. are with Telecom Sud Paris, France.
3S.E.E. is with Orange Labs, Chatillon, France.

The authors in [5] optimize the DoD for a battery operating
in a dynamic pricing environment that can perform one or
two cycles per day and evaluate the gains per cycle. In [6],
the authors evaluate the impact of cycle and calendar life on
the gain achieved by arbitrage in smart grid networks for both
Lead-acid and Lithium batteries. In [7], the authors proposed
a linear programming algorithm to optimize the charge and
discharge decisions for battery performing regulation and
evaluates the return on investment taking into account the
battery performances degradation due to the aging effect. The
authors in [8] used policy iteration technique to devise an
optimal battery management strategy for a Mobile Network
operator powered by a smart grid with dynamic pricing in
order to minimize the operator daily expenses for energy.

We believe it is essential to take into account the cycles
of operation of the battery, due to finite battery cycle and
calendar life. The value of cycle and calendar life is often
provided by the manufacturers in their data-sheets [9], [10].
These values represent an upper limit of cycles of operation
and age of battery by which the battery will reach its End-of-
Life (EoL) with high probability. EoL is defined as a state
of the battery when the maximum capacity of the battery
reduces to 80% of its rated initial capacity. Calendar life
refers to the number of years the battery is expected to last
until the battery will reach EoL. It is independent of how
much the battery is charged and discharged. However, calendar
life is dependent on the state of charge of the battery and
the temperature. Cycle life limits the number of cycles of
operation a battery could perform before reaching EoL. It is
governed by charge-discharge trajectory and temperature. In
this paper we do not consider the effect of temperature on
battery degradation. The number of cycles of operation will
depend on storage parameters and charging and discharging
efficiency losses. Batteries performing more cycles each day
would imply the gains per cycles will be lower. In lithium-
ion batteries the growth of solid-electrolyte inter-phase layer
increases the impedance of the battery and therefore, reduces
the battery capacity because of the consumption of cyclable
lithium from the battery. The battery capacity thus degrades
[11]. There are various models providing the remaining battery
capacity as a combination of cycle life and calendar life: (i)
summation of calendar and cycling degradation, (ii) greater of
calendar or cycling degradation [12], or (iii) a multiplicative
coupling between calendar and cycling degradation. In this
paper we consider the second model where the greater of
cycling and calendar degradation decides the remaining battery
capacity and the EoL of the battery. This work is a qualitative
study to compare dollars per cycle a storage would make if



they participate in dynamic regulation or in energy arbitrage.
Note the volatility of electricity price across days in a year

can vary drastically, implying battery should perform more
cycles when the volatility is high. The number of cycles
of operation ideally should be selected adaptively ensuring
maximizing gains and battery’s operational life. The cycles
should be controlled based on volatility. In our prior work [13]
we propose a framework to eliminate low returning transaction
for battery performing arbitrage. The friction coefficient is
introduced in that work. This friction coefficient needs to be
tuned based on nominal operation of battery with no cycles
limitations. The battery life can at maximum be equal to its
calender life. If the battery is over-used, then the battery EoL
is achieved due to cycle life and if the battery is under-
used than EoL is achieved due to calender life. In order to
maximize the battery’s operational life, the degradation due
to aging and cycles of operation should be equal in per unit
of time. The value of friction coefficient is calculated based
on past data, assuming the mean volatility across a longer
time horizon in the past will be equal in the future. We
consider the longer time scale as a year as it would cover
the effects of seasonality too. Similarly, batteries performing
dynamic regulation in the ancillary service market should
consider maximizing battery life by eliminating low returning
transactions. For PJM interconnection it is observed that unlike
arbitrage the amount of regulation required is independent of
seasonality and remains fairly constant over the year, see Fig.4.

The key contributions of this paper are:
• Financial potential of batteries: We use real data to calculate
dollar per cycle potential of storage performing arbitrage
versus ancillary service market participation.
• Equivalent 100% DoD cycles: Battery operates with no fixed
DoD. We propose a computationally efficient algorithm to
calculate equivalent 100% cycles for varying DoD operational
cycles. It is essential to consider DoD in comparing cycles, as
the relationship between different DoD cycles and equivalent
100% DoD cycles is not linear.
• Controlling cycles of operation: Considering cycle and
calendar degradation and DoD of each cycle we calculate
the battery degradation and provide a mechanism to control
cycles of operation to maximize gains and operational life
of battery performing arbitrage and ancillary services. We
present a mechanism for calculating the friction coefficient
for calculating arbitrage gains.

For ancillary services, participants commit in advance the
amount of regulation they can provide. The regulation pro-
vided should be achieved with high performance score. By
adjusting ramping commitment, storage owners can control
the cycles of operation for storage performing regulation.

This paper is organized as follows. In Section II we describe
the model of the battery. Section III deals with storage
performing energy arbitrage using the optimal arbitrage al-
gorithm proposed in [14]. We also propose a mechanism to
control cycles of operation. Section IV presents energy storage
performing ancillary services for the grid. Section V presents
the numerical results. Section VI concludes the work.

II. BATTERY DEGRADATION AND MATHEMATICAL MODEL

In this section we present the battery model and the need to
control cycles of operation. We present an algorithm to identify
cycles based on DoD and calculate the equivalent 100% DoD
cycles. We observe that storage operation with short cycles
significantly increases the cycle life of battery. We present the
mathematical model of a battery combining short and long
time scales. Degradation of a battery is insignificant in shorter
time scale, while it cannot be ignored in longer time horizon.

A. Battery Degradation

Batteries are energy storage devices which convert electrical
energy into chemical energy while charging and chemical
energy into electrical energy while discharging. These con-
versions are not completely efficient, incurring charging and
discharging losses in shorter time frame. Furthermore, for
longer time horizon batteries degrade because of time and
operational cycles, providing us with distinct calendar and
cycle life of the battery.

Degradation due to cycles of operation: What is a cycle
for a battery? One would say if the battery at State of Charge
(SoC) level x1 charges to level x2 and then discharges back to
x1 is called a cycle. But how could we differentiate between
cycles; cycles with more change in SoC compared to cycles
with less change in SoC. The change in SoC for the cycle
example presented is x2−x1, this is also called the DoD. Let
the cycle life, Tcycle, at 100% DoD be given as N100 cycles.
The proposed cycle degradation model of battery used in this
paper is derived from prior work [7]. The number of cycles at
d DoD that the battery can operate if N100 is the rated cycle
life at 100% DoD is assumed to be [7]

f(d) = N100d
−kp , (1)

where kp is a constant that ranges from 0.8 to 2.1.
DoD plays a significant role in deciding the cycle life

especially because the growth in cycle life for a battery
performing higher DoD cycles to smaller DoD cycles is not
linear, as shown in Eq.(1) (would be linear if kp = 1). We
will demonstrate this with an example. In Forsee Power’s Li-
Ion battery system HE 48 V data-sheet [10], they show the
relationship between cycle life with DoD. At 100% DoD the
battery performs approximately 1500 cycles and at 5% DoD
the battery performs ≈ 106 cycles. We used the battery life
model given by Eq.(1) to fit the DoD vs. cycle life plot in
[10]. Fig. 1 shows an approximate fit for kp = 1.1. In Fig. 1
we also show the linear battery model which assumes for
instance 10 cycles of 10% DoD as equivalent to 1 cycle of
100% DoD. From Fig. 1 it is evident that a battery model
ignoring the effect of DoD in counting cycles of operation
would hugely underestimate the life of battery and thus would
be very pessimistic. If a battery performs nd cycles at d DoD
then this is equivalent to n100 cycles at 100% DoD, this is
given as n100 = ndd

kp . By this analogy Tcycle at 100% DoD
is N100 then Tcycle at d% DoD is N100d

kp .
We propose an algorithm to calculate DoD efficiently. The

new algorithm calculates DoD based on the change in SoC
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Fig. 1: Li-ion cycle of operation with DoD [10]

of the battery between mode reversals, i.e., from charging to
discharging or vice versa. The Algorithm 1 finds the half cycle
DoD and calculates equivalent 100% DoD cycles using Eq. 1.
The input to the algorithm is the charge-discharge trajectory of
the storage and the output is cumulative number of equivalent
100% DoD cycles the storage operated.

Algorithm 1 total100cycle = DoDofVector(x)
Inputs: x
Function: Equivalent 100% DoD Cycles
Initialize: aminus = 0, aplus = 0, vec = [ ], i = 1, N =length(x)

1: while i < N do
2: if x(i) >= 0 then C1 = 1,
3: if aplus == 0 then aplus = x(i)
4: end if
5: else C1 = 0,
6: if aminus == 0 then aminus = x(i)
7: end if
8: end if
9: if x(i+1) >= 0 then C2 = 1,

10: else C2 = 0,
11: end if
12: if C1 == 1 and C2 ==1 then aplus = aplus + x(i+ 1)
13: else
14: if C1 == 0 and C2 ==0 then aminus = aminus+x(i+1)
15: else
16: if C1 == 1 and C2 ==0 then
17: vec = [vec aplus], aplus = 0, aminus = 0
18: else
19: if C1 == 0 and C2 ==1 then
20: vec=[vec aminus], aplus = 0, aminus = 0
21: end if
22: end if
23: end if
24: end if
25: i = i+ 1
26: end while
27: dodhalf = abs(vec)
28: eqdod100cyc (j) = 0.5 ∗ (dodhalf(j))

kp ,∀j ∈ [1, .., length(vec)]
29: Return total100

cycle = sum(eqdod100cyc )

B. Battery Model

The total duration on shorter time-scale of a day is de-
noted as T , of operations divided into N steps indexed by
i ∈ {1, ..., N}. The duration of time-step is denoted as h.
Hence, T = hN . The total duration of storage operation on
longer time-scale is denoted as τ , represents the day index.
The day index, τ ∈ {1, ..., Lcal}, where Lcal is the calendar
life in days.

The efficiency of charging and discharging of battery is
denoted by ηch ∈ (0, 1] and ηdis ∈ (0, 1], respectively. We
denote the change in the energy level of the battery at ith

instant by xτi = hδτi , where δτi denotes the storage ramp rate at
the ith instant such that δτi ∈ [δmin, δmax]∀i and δmin ≤ 0 and
δmax ≥ 0 are the minimum and maximum ramp rates (kW);
δτi > 0 implies charging and δτi < 0 implies discharging.
Energy consumed by the storage in the ith instant is given by
sτi =

[xτi ]
+

ηch
−ηdis[xτi ]−. Let bτi denote the energy stored in the

battery at the ith step. Then, bτi = bτi−1+x
τ
i . The rated battery

capacity at the beginning of battery life is denoted by Brated.
The available battery capacity at day τ is approximated as

Ba(τ) = Brated − 0.2×
(
max

(Ocy(τ)
Lcy

,
τ

Lcal

))
(2)

where Ocy(τ) is the number of cycles operated until day
index τ , Lcy denotes the battery cycle life and Lcal is the
calendar life of the battery in days. Eq. (2) assumes a linear
capacity degradation. When the battery is new Ba(0) = Brated
and when the battery reaches EoL then the battery capac-
ity is denoted as Ba(EoL) = 0.8 × Brated. The state-of-
charge of the battery is denoted as SoCτi =

bτi
Ba(τ)

. The
SoC is bounded by SoCτi ∈ [SoCmin, SoCmax], therefore,
bτi ∈ [SoCminBa(τ), SoCmaxBa(τ)]. The cycles of operation
is calculated as Ocy(τ) =

∑τ
j=1 n

j
100, where nj100 represents

the equivalent 100% DoD cycles for jth day.

C. Tuning Cycles of Operation

The cycles of operation have to be tuned based on price
volatility across a longer time-horizon (months or years)
to maximize the battery life and arbitrage gains. The ideal
number of cycles of operation on average per unit of time
(Iop) is approximated as the ratio of cycle life and calender
life. Let us define IN as the number of cycles of operation per
unit of time that the battery performs with no cycle limitations.
The scenarios of operations are:
• IN >> Iop: for example Lead Acid with calendar life
of 6 years and cycle life of 1500 cycles. In this case the
storage cycles of operation should be controlled in such a
way that calendar life equals cycle life. If no cycle control is
implemented then battery will reach EoL due to over use, prior
to reaching its calendar life. It is essential to ensure that the
strategy to limit cycles should only eliminate storage operation
for low returning transactions.
• IN ≈ Iop: for example Li-Ion with calendar life of 10 years
and cycle life of 6000 cycles. In this case no control is required
as the number of cycles of operation without controlling cycles
approximates the optimal cycles of operation per unit of time.
• IN << Iop: in such a case controlling the cycles of battery
operation is not required. In this case the battery will reach
EoL due to under-use. The battery owner should consider
using the battery for multiple applications in order to maximize
its gains. This case is not dealt with in our present work.



III. BATTERY PERFORMING ARBITRAGE

In this section we present the threshold based mechanism
to identify the optimal arbitrage decisions and efficiently
controlling the cycles of operation. We present an iterative
framework to tune the number of cycles of operation to
maximize battery life by matching calendar life degradation
to cycle life degradation.

A. Optimal Arbitrage Algorithm

When energy storage devices perform arbitrage, the buy and
sell decisions are coupled because of the finite storage size; a
decision to buy or sell in the present time instant will influence
the potential to charge or discharge in future.

An optimal control problem for an energy storage device
such as a battery is proposed in [15], [16] using convexity
property of the optimization function and saddle point in-
equality. Authors in [14] propose optimal energy arbitrage
algorithm under time varying electricity prices. In this work
it is shown that a time horizon of optimization can be sub-
divided into sub-horizons. In each of these sub-horizons, the
shadow price is a function of price levels in a sub-horizon
and is independent of all past and future sub-horizons. This
value of the shadow price is altered only when the battery
capacity reaches its maximum or minimum permissible charge
levels. Based on the value of shadow price in a sub-horizon,
the optimal control decisions are selected depending on the
level of price of electricity at that instant. The threshold based
structure of the optimal solution is presented in Remark 1.

Remark 1. The optimal control decision x∗i for some day τ
in the ith instant minimizes the function C(i)

storage(x)−µ∗
i x for

x ∈ [Xmin, Xmax]. The optimal decision x∗i (µ) is [14]

x∗i (µ) =





Xmin, if µ < pdis(i),

[Xmin, 0] , if µ = pdis(i),

0, if pch(i) > µ > pdis(i),

[0, Xmax] , if µ = pch(i),

Xmax, if µ > pch(i),

if pi ≥ 0

{
[0, Xmax] , if µ ≤ pch(i),

Xmax, if µ > pch(i),
if pi < 0

(3)
where pch(i) = pτi /ηch, pdis(i) = pτi ηdis, C

(i)
storage(xi) = sip

τ
i

and µ represents the shadow price of the transaction.

Note for µ = pch(i) or µ = pdis(i), x∗i (µ) takes an envelope
of values and for any other value of µ it is a singleton set. In
order to find optimal decisions among an envelope of possible
solutions based on the price variations, the Backward Step
algorithm is used one time. The details of the algorithm can
be found in prior work [14].

B. Controlling Cycles of Operation

The average monthly arbitrage gains is shown in Fig. 2. It
is evident that opportunity for users is different for different
months of the year. The results are for 1C/1C battery and
the price signal used is for the year 2016. For instance, it

will be beneficial for users in MISO and NEISO to operate
more number of cycles during August than any other month.
However, for CAISO it is November. Storage in PJM in 2016
performing arbitrage would earn almost 15% of the total gains
in the year for just the month of April. In our prior work
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Fig. 2: Monthly Average Arbitrage Gains

Algorithm 2 OptimalCycles
Inputs: h, ηch, ηdis, δmax, δmin, SoCmax, SoCmin

Function: Optimal operation of storage with battery degradation
Initialize: Ocy, b0, ηfric = 1, ηpreviousfric = 1

1: (O∗
cy)time = Lcy/Lcal

2: while (Ocy − (O∗
cy)time) > ε do

3: x = Optimal arbitrage gains calculated using algorithm
proposed in [14]

4: Calculate (B̄a)time = 0.5((Ba)initial + (Ba)time)
5: Calculate (N100)time = DoDofVector(x)
6: Calculate Ocy = (N100)time

(B̄a)time
7: if Ocy > (O∗

cy)time then
8: Reduce ηfric w.r.t. ηpreviousfric such that ηfric ∈ [0, 1]
9: end if

10: ηpreviousfric = ηfric

11: if Ocy
<∼ (O∗

cy)time then
12: Break While Loop
13: end if
14: end while
15: Return the friction coefficient, ηfric

[13], we proposed a mechanism to eliminate the low returning
transactions of storage operation while performing arbitrage
by introducing a friction coefficient in mode change. Adding
friction will ensure that the battery does not operate for lower
returns. This idea of creating dead-band of no operation is
motivated by Eq.(3). The threshold based structure of the
optimal solution indicates that the optimal decision for the
battery when the condition pch(i) > µ > pdis(i) is true, is
to do nothing. This band signifies the additional profit the
charge-discharge cycle of a battery should make in order to
compensate the losses incurred due losses in charging and
discharging. Increase of this band will indicate eliminating low
returns transactions in arbitrage. We define modified charging
and discharging cost as a function of friction coefficient
denoted as pLch(i) = pch(i)/ηfric and pLdis(i) = pdis(i)ηfric.



Algorithm 2 uses the algorithms proposed in [14], [13] to
control cycles of operation in such a way that the calendar
degradation is approximately equal to the cycle degradation,
implying maximization of battery’s operational life. Note that
the proposed algorithm is sensitive to the accuracy of infor-
mation, in this paper we operate under deterministic setting
as our objective is to identify the maximum dollar per cycle
potential of a battery.

IV. BATTERY PARTICIPATING IN ANCILLARY SERVICE

Ancillary services are essential components of power system
to ensure reliable operation of the power grid. In this work we
focus on ancillary service market of PJM in the US. We list
the compensation mechanism used under PJM and the amount
of capacity needed to perform regulation. We also look into
fluctuations of monthly regulation needs requested by PJM for
the year 2017.

A. Compensation Mechanism

The value of regulation provided under PJM depends on
the performance score, mileage ratio, market clearing prices.
The compensation mechanism is described in this subsection.
Performance score is calculated for each regulation resource
for each hour. Performance scores reflect the benefits each
resource provides to system control by focusing on the re-
sources response to PJM control signals. All ISO in the USA
have some sort of performance evaluation mechanism for
comparing service provided by regulating resources.

PJMs performance score has 3 components: Accuracy
score, Delay score and Precision Score [17], [18], [19]. PJM
calculates performance score for hourly data. The dynamic
regulation signal is sampled every 2 seconds. Performance
scores reflect how well the resource is following the regulation
signal. Performance Score is defined as the equal weighted
sum of accuracy score, delay score and precision score.

RegA and RegD represents the low and high frequency
ancillary service requirement needs at PJM ISO. Batteries are
suitable for tracking RegD regulation signal. Mileage is the
absolute sum of movement of the regulation signal in a given
time period with n samples. Mileage for RegA and RegD
are denoted as MileageRegA =

∑n
i=0 |RegAi − RegAi−1|,

MileageRegD =
∑n
i=0 |RegDi − RegDi−1|. Mileage is a

proxy metric for measuring the amount of work done by reg-
ulation resources, i.e., their contribution towards area control
error correction [20]. At the beginning of each hour, Hour
Signal Mileage is measured for the previous operating hour.
Hour Signal Mileage is the actual mileage used in settlements
for service credits. Mileage ratio is defined as the ratio of
MileageRegD and MileageRegA. Mileage ratio measures the
relative work done or the movement of RegD resources relative
to RegA [20].

The end user compensation is governed by hourly values
of Regulation Market Capability Clearing Price (RMCCP),
Regulation Market Performance Clearing Price (RMPCP),
Mileage Ratio (M), Cumulative Regulation provided in MW
(G) and performance score (ηperf ). It is in the best interest for

storage owners to maintain a high performance score. In order
to maintain a high performance score battery owners must
commit regulation appropriately. The integrated regulation
provided in MW is used for calculating the compensation
(Page 28 of [21]). The cumulative regulation provided for the
kth hour is denoted as Gk =

∑i=ik
i=ik−1+1 |gi|, where gi is the

power output of regulation resource (MW) at ith, ik denotes
the sample index of end of the kth hour.

The RMCCP (USD/MWh) used in settlement is multiplied
by the actual performance score and the hourly integrated
megawatts operated each hour to determine capability rev-
enues. Regulation RMCCP Credit for kth hour is given as

RMCCPkcredit = ηkperfGk RMCCPk.

FERC order 755 provides the pay-for-performance in com-
pensation design for regulating resources [22]. The RMPCP
(USD/MWh) is used for calculating Regulation RMPCP Credit
for hour index k, it is given as

RMPCPkcredit = ηkperfGk RMPCPkMk.

Regulation Clearing Price Credit = Regulation RMCCP Credit
+ Regulation RMPCP Credit [21]. The typical variation of
RMCCP and RMPCP is shown in Fig. 3.
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Fig. 3: RMCP variation for 1st week of April, 2017 [23]

B. Controlling the Cycles

The design of regulation signal is done in such a way
that energy storage owners participating in PJM’s ancillary
service market can track the regulation signal in a sustainable
manner. Energy storage is a buffer of energy and consumes
finite amount of power in charging and discharging cycles due
to efficiency losses in power conversion. This implies if the
regulation signal is not designed appropriately then battery
charge level will drift to one of its boundaries and will not be
able to provide regulation in the other direction. Fig. 4 shows
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Fig. 4: Monthly Average Ramp Up & Down Regulation, PJM 2017

the mean ramp-up and ramp-down required monthly for the
year 2017 in PJM ISO. Mean ramp-up for M days in a month
is calculated as 1

M

∑M
τ=1

∑T
i=0[ri]

+
τ , where [ri]

+
τ denoted the



up regulation for τ th day and ith instant. Similarly, mean ramp
down for a month is calculated as 1

M

∑M
τ=1

∑T
i=0[ri]

−
τ . PJM’s

thoughtful design of regulation signal is evident from Fig. 4,
where the ratio of cumulative mean ramp up over ramp down
is maintained between 0.8 to 0.96 for each month in the year
of 2017. Due to this attribute of regulation signal batteries
can consume extra energy while performing ramping down
(i.e. charging) compared to ramping up (i.e. discharging),
compensating the loss in energy due to efficiency losses. Fig. 4
shows the histogram of mean regulation for each day in each
month for ramping up and ramping down. The key take away
from this figure is that the regulation requirements remain
quite the same for the whole year and the variability is not
governed by seasonality unlike price variability over the year.

The regulation provided by the batteries can be controlled
by controlling the maximum ramp rate of the battery. The oper-
ational ramp rate can be adjusted such that δi ∈ [−δmax

op , δmax
op ]

where δmax
op ∈ [0,min(δmax,−δmin)]. The parameter used for

controlling the cycles of operation is the operational maximum
ramp rate of the battery, δmax

op . Algorithm 3 describes the

Algorithm 3 CapacityNeededRegulation
Inputs: r, k = 1
Function: Maximum Capacity Needed to Perform Regulation

1: Calculate N = length(r)
2: for i = 1 : N do
3: for j = 1 : i do
4: cummat(k) = cummat(k) + ηch[r]+ − [r]−

ηdis
5: end for
6: k=k+1
7: end for
8: Return Capacity Needed, bneed = h(max(cummat)−min(cummat)

SoCmax−SoCmin

mechanism to calculate the maximum capacity needed to track
regulation signal sustainably for longer time horizons. It is ob-
served that battery capacity is not a constraint for sustainable
tracking of regulation signals using batteries pertaining to the
design of regulation signal under PJM ISO.

V. NUMERICAL RESULTS

For the numerical results we use a Li-Ion battery with
calendar life of 10 years and cycle life at 100% DoD is
4000 cycles. For degradation model, kp is selected as 1.1,
implying battery will perform approximately 5971 cycles at
70% DoD. We present simulation results at two different
time scales, to make gains per cycle comparison between
arbitrage and regulation more robust to short term volatilities.
The shorter time scale is considered as 1 day and longer
time scale is considered to be a year. The simulations are
conducted using PJM real time price data and RegD data
for the year 2017. In order to understand the volatility of
price, data for the year 2016 is used. With our model we
observe that the arbitrage and the regulation gains are affected
by the ratio of ramp rate and storage capacity. Replacing a
smaller battery with a big one with same ratio of ramp rate
over storage capacity will increase the gains proportional to
the factor of increase in battery capacity, assuming charging

and discharging efficiencies are the same. This implies the
current analysis is valid for different capacity battery with
same ratio of the ramp rate and the capacity of the battery.
For all numerical analysis we consider a 1kWh battery with
SoCmin = 0.1 and SoCmax = 0.98, ηch = ηdis = 0.95. The
ratio of battery capacity over ramp rate is often used to denote
battery type. For instance xC-yC battery will require 1/x hours
to fully charge and 1/y hours to fully discharge. We use this
nomenclature in results in this section. In order to calculate the
financial potential of storage in ancillary service market, we
assume that the performance index is equal to 0.95. The real
time electricity data used for arbitrage simulation is of PJM
[24] and ancillary service market parameters are downloaded
from [23], [25].

A. Short Time-Scale: A typical Day

Arbitrage and regulation gains are calculated for price data
and RegD signal for 2nd Feb. 2017. Storage with varying
ramping capabilities are simulated for gains and gains per
cycle. Results tabulated in Table I and Table II indicate

TABLE I: Dollars/Cycle for storage performing arbitrage

Ramp Rate Cycles Performed Gain ($) Dollars/Cycle
2C-2C 4.029 0.2015 0.0500
1C-1C 4.029 0.2015 0.0500

0.5C-0.5C 2.714 0.1675 0.0617
0.25C-0.25C 2.259 0.1380 0.0611

TABLE II: Dollars/Cycle for storage performing regulation

Ramp Rate Cycles Performed Gain ($) Dollars/Cycle
2C-2C 11.045 9.0530 0.8196
1C-1C 5.153 4.5265 0.8785

0.5C-0.5C 2.404 2.2632 0.9415
0.25C-0.25C 1.121 1.1316 1.0091

that a high ramping storage will perform many more cycles
while performing regulation. It is clear that gains per cycle
is significantly higher for storage performing regulation com-
pared to arbitrage.

For storage performing regulation, the number of 100%
DoD cycles using the linear DoD model (i.e., kp = 1) is
more than 3 cycles. However, 100% cycles calculated for
kp = 1.1 is 1.121. Storage performing regulation takes the
advantage of short-cycling, evident from histogram of DoD
shown in Fig. 5, while storage performing arbitrage performs
deep discharge cycles, regulation due to shorter sampling time
performs short DoD cycles, as pointed out earlier short DoD
cycles significantly improves the cycle life of battery. It is
evident from Table II that the efficient manner to calculate
cycles of operation is by adjusting the maximum ramping
of battery. Furthermore, it is observed that storage operating
at lower ramp rate has a higher dollars per cycle potential
implying higher revenue in the long term.
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B. Long Term Simulation - One Year

For the battery considered in this numerical example, the
battery should perform ≈ 400 cycles per year in order to match
the calendar and cycle degradation, thus maximizing battery
life. Long term simulations for the year of 2017 is conducted.
For arbitrage, the friction coefficient is adjusted to match the
optimal number of cycles, as shown in Fig. 6. The dollar per
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Fig. 6: Arbitrage Gains, cycles of operation with ηfric for 2017

cycle potential of storage performing regulation for the year
2017 is listed in Table III. From the short term and long term

TABLE III: Dollars/Cycle for storage performing regulation

Ramp Rate Cycles Performed Gain ($) Dollars/Cycle
2C-2C 4451.34 7709.62 1.7320
1C-1C 2076.62 3854.81 1.8562

0.5C-0.5C 968.77 1927.40 1.9895
0.25C-0.25C 451.95 963.70 2.1323

0.125C-0.125C 210.84 481.85 2.2854

simulations it is evident that performing regulation is much
more beneficial for storage owners compared to arbitrage.

VI. CONCLUSION

In order to maximize the battery life, the calendar life
degradation has to be matched with cycle life degradation. For
a battery performing arbitrage, the cycles can be controlled by
tuning friction coefficient and for battery performing regula-
tion the cycles can be controlled by adjusting the ramping
rate. By adjusting ramp rate of the battery the amount of
regulation provided by the battery is controlled. As the ramp
rate increases the amount of regulation provided by the battery
proportionally increases.

We propose an algorithm to calculate equivalent 100%
cycles performed by battery. The financial potential of battery
performing arbitrage and regulation is compared based on
dollars per cycle potential identified using simulations based

on real data from PJM ISO. The simulations results indicate
that storage participating in ancillary services will gain
significantly higher than storage performing energy arbitrage.
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