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Abstract

This paper establishes a new formulation of the energy exchanges between
the different parts of total energy. The decomposition uses the Reynolds av-
eraging. This leads to a ternary decomposition of kinetic energy into the tur-
bulence kinetic energy, the mean kinetic energy and the mixed kinetic energy,
acting as an exchange term between the mean and turbulent motion. The for-
mulation is then extended to distinguish a mean and fluctuating density part
of each part of total energy. The formulation thus includes the mean density
turbulence kinetic energy, product of the mean density and the half-trace of
the velocity fluctuation correlation tensor. Its evolution equation is given in
the spectral domain.

1 Introduction

This paper addresses the energy exchanges in turbulent flows with highly variable
fluid properties. This covers flows with a high Mach number (high speed flows), such
as the flows around a high-speed aircraft, or through a high speed jet or a nozzle
[25], and low Mach number flows submitted to a strong temperature gradient, found
for instance in heat exchangers, propulsion systems or nuclear or concentrated solar
power plants [4, 37, 17, 45, 46, 47, 49]. The study of the energy exchanges between
the different parts of total energy is a useful tool for both turbulence modelling and
the fundamental understanding of turbulence. More detailed information is obtained
through the study of the energy exchanges in the spectral domain [34, 18, 19, 53, 54,
19, 36, 20, 7, 11, 12, 13, 14, 31, 38]. However, while kinetic energy is fundamental
property of any flow, it is not the case of its decomposition into turbulence kinetic
energy and mean kinetic energy.

In incompressible flows with constant fluid properties, such decomposition is
unique. The averaged kinetic energy is decomposed clearly, unambiguously and
straightforwardly into the sum of two contributions: the kinetic energy of the mean
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motion associated with the mean velocity and the kinetic energy of the turbulent
motion associated with the velocity fluctuation [see e.g. 51, 42]. In compressible flows
with highly variable density, this analysis is hindered by additional density-velocity
correlations. The decomposition of kinetic energy becomes more complex and ar-
bitrary. It is even more difficult in the spectral domain. The choice ultimately
depends on the physical role given to the additional density-velocity correlations
with respect to what constitutes the mean motion and the turbulent motion [10].
The most popular and successful decomposition extends the incompressible decom-
position to the compressible case through the introduction of a density weighted
averaging. This decomposition was widely developed by Favre [21, 22, 23]. Since, it
has been used extensively by various authors [32, 29, 26, 35, 41]. Another approach,
the mixed weighted decomposition, mixes density weighted averaging and Reynolds
averaging. It was first introduced by Bauer et al. [6] and further studied by Ha
Minh et al. [27, 28]. In this formulation, kinetic energy is seen as the product of
the velocity and the density weighted velocity. In a third method, kinetic energy is
decomposed using a change of variable based on the density square root weighted
velocity. This decomposition was first proposed by Yih [52] then adopted by var-
ious authors [30, 44, 15, 1, 2]. This change of variable allows the study of kinetic
energy to be extended easily to the spectral domain. Finally, Chassaing [8] [see
also 16, 3, 9, 10] suggested the decomposition of kinetic energy using the Reynolds
averaging. From a modelling perspective, the use of the unweighted averaging may
be advantageous in low Mach number flows, in which the energy conservation acts
as a constraint on the divergence of the velocity [40]. The square of the fluctuating
velocity (without the density) is also encountered for instance in the modelling of
two-phase flows [50] or in variable density flows, provided the momentum equation
is divided by the density before averaging [48]. In a variable density setting, the use
of the Reynolds averaging necessarily leads to the decomposition of kinetic energy
into three parts, called ternary decomposition. The kinetic energy is thus split into
turbulence kinetic energy, mean kinetic energy and a mixed kinetic energy, related
to both the mean and turbulent motions. However, we believe the underlying idea
behind the ternary decomposition has not been taken to its logical conclusion as no
interaction between the mixed kinetic energy and another part of total energy was
identified.

This paper aims to establish a new formulation of the energy exchanges between
the different parts of total energy in a ternary decomposition that gives to the
mixed kinetic energy a full role. The formulation is compared to the formulation of
Chassaing [8] and the differences between the two formulations with regard to the
physical interpretation of the terms are discussed. We then take the decomposition
further and split the density into a mean and fluctuating part. This leads to the
definition of the mean density part of total energy and the fluctuating density part
of total energy. The mean density turbulence kinetic energy, product of the mean
density and the half-trace of the velocity fluctuation correlation tensor, appears in
the mean density part of the decomposition as exchanging energy with the other
parts of total energy. This quantity is approximately equal to the turbulence kinetic
energy in flows satisfying Morkovin’s hypothesis [39].
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Once the new formulation of the energy exchanges established, we focus more
specifically on the mean density turbulence kinetic energy. We establish its evolution
equation in spectral domain, recognizing that the mean density turbulence kinetic
energy has with the Reynolds averaging a clear spectral equivalent. The spectral
equation extends the spatial equation to the spectral domain, associating to each
spatial term a spectral equivalent. To the knowledge of the authors, this has not
been achieved in the literature for variable density flows. A purely spectral term
that redistributes the energy between scales is identified, as in the work of Lee and
Moser [31] and Mizuno [38]. In order to carry out the Fourier transform, we consider
a flow with two homogeneous and periodic directions. This does not lead to a loss of
generality as the equations given may easily be adapted to a flow with one or three
homogeneous directions.

The complete representation of the energy exchanges between the different parts
of total energy is presented in section 2 and the equation of the mean density tur-
bulence kinetic energy in the spectral domain in section 3.

2 Energy exchanges between the different parts of
total energy in the ternary decomposition

2.1 General considerations

In this section, we describe a new formulation of the energy exchanges between
the different parts of total energy in a ternary decomposition. We will establish
the formulation obtained from the decomposition of velocity, but not density, with
the Reynolds averaging, referred to as the one-stage formulation in this paper, and
from the decomposition of both the velocity and density, referred to as the two-
stage formulation in this paper. The two-stage formulation is required to write the
spectral equation of the mean density turbulence kinetic energy. We first define
here a few useful quantities and give some general remarks on the derivation of the
formulation.

The total energy per unit volume ρ(E+I) is a conservative quantity. Its compo-
nents however are not as they exchange energy among themselves. In the following,
the evolution equation of each part of total energy in the ternary representation will
be given and we will identify the energy exchanges between these quantities. Many
consistent formulations of the energy exchanges can be proposed. The formulation
was devised according to the following criteria:

• Each term of the formulation must be either interpreted as a conservative
energy transfer or an interaction with exactly one of the other parts of total
energy.

• If a term is to be interpreted as a conservative energy transfer, it must be
written in a conservative form, that is as a divergence; otherwise, it must be
written in a non-conservative form.
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• The formulation must be symmetrical, in particular with respect to the manner
in which it deals with fluctuations and statistically averaged quantities.

• The formulation must correctly behave when considering a limit case such as
laminar, homogeneous or incompressible flows. In particular, a quantity that
becomes instantaneously equal to zero must not be associated with any energy
exchange.

We consider a non-relativistic compressible flow with highly variable fluid prop-
erties under the continuity hypothesis. Without loss of generality, no body forces
are taken into account which means gravity is neglected and there is no heat source.
The flow is governed by the Navier–Stokes equations under the following form [24]:

• mass conservation
∂ρ

∂t
+
∂ρUj
∂xj

= 0, (1)

• momentum conservation

∂ρUi
∂t

+
∂ρUjUi
∂xj

=
∂Υij
∂xj

, (2)

• energy conservation

∂ρI

∂t
+
∂ρUjI

∂xj
=

∂

∂xj

(
λ
∂T

∂xj

)
+ Υij

∂Ui
∂xj

, (3)

with ρ the density, T the temperature, I the internal energy per unit mass, t the
time, Ui the i-th component of the velocity, Υij the component of the total stress
tensor with the i and j indices and xi the Cartesian coordinate in the i-th direction.
Einstein summation convention is used. The total stress tensor Υij is given by the
contributions of the viscous shear stress tensor and of the pressure stress. We will
keep the total stress tensor undissociated throughout this paper because the pressure
and viscous contributions are formally similar.

2.2 One-stage formulation

The instantaneous total energy per unit volume ρ(E+I) is the sum of the instan-
taneous kinetic energy per unit volume ρE and the internal energy per unit volume
ρI. In the ternary decomposition, the kinetic energy is decomposed into three parts
by splitting the velocity into a mean and fluctuating part [following 43], namely
Ui = U i + u′i, where the overline ( ) denotes the statistical average and the prime
symbol (′) the fluctuating part. We use a lowercase u′ for the velocity fluctuation
for a better visual differentiation but there is no further underlying differences. We
obtain [8]

ρE =
1

2
ρUiUi = ρE + ρe+ ρe, (4)



Equations of energy exchanges 5

with ρE = 1
2
ρU i U i the mean kinetic energy, associated with the mean motion,

ρe = 1
2
ρu′iu

′
i the turbulence kinetic energy, associated with the turbulent motion, and

ρe = ρu′iU i the mixed kinetic energy, associated with both the mean and turbulent
motion. This results in a fourfold decomposition of total energy.

The evolution equation of total energy ρ(E + I) is given by

∂ρ(E + I)

∂t
= Φc + ΦΥ + Φλ, (5)

with: Φc the convection, ΦΥ the transfer by the total stress and Φλ the transfer by
conduction, given by:

Φc = − ∂ρUj(E + I)

∂xj
, (6)

ΦΥ =
∂ΥijUi
∂xj

, (7)

Φλ =
∂

∂xj

(
λ
∂T

∂xj

)
. (8)

These three terms are conservative terms that represent the transfer of total energy
by three different physical phenomena. With the fourfold decomposition of total
energy, this equation becomes four equations associated with each part of total
energy. This has two effects. First, the various conservative energy transfer terms
are distributed among the four parts of kinetic energy. Secondly, additional non-
conservative terms emerge. From the decomposition of total energy into kinetic
energy and internal energy appears a new term E that represents the interaction
between these two quantities. From the decomposition of kinetic energy into three
terms appears two new terms P and P that represent an interaction between the
different parts of kinetic energy.

The energy exchanges between the four parts of total kinetic energy may be
written as:

∂ρE

∂t
= Φc + ΦΥ + P + E , (9)

∂ρe

∂t
= ϕc + ϕΥ + P + ε, (10)

∂ρe

∂t
= ϕc − P − P , (11)

∂ρI

∂t
= ΦT,c + Φλ − E − ε, (12)

where we identify the following terms:

• the convection Φc, decomposed into: Φc associated with the mean kinetic
energy, ϕc associated with the turbulence kinetic energy, ϕc associated with
the mixed kinetic energy and ΦT,c associated with internal energy,

Φc = −∂ρUjE
∂xj

, (13)
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ϕc = −∂ρUje
∂xj

, (14)

ϕc = −∂ρUje
∂xj

, (15)

ΦT,c = −∂ρUjI
∂xj

, (16)

• the transfer by the total stress ΦΥ , decomposed into: ΦΥ associated with the
mean kinetic energy and ϕΥ associated with the turbulence kinetic energy,

ΦΥ =
∂ΥijU i

∂xj
, (17)

ϕΥ =
∂Υiju

′
i

∂xj
, (18)

• the interaction between the turbulence kinetic energy and the mixed kinetic
energy P ,

P = −ρu′iUj
∂U i

∂xj
+ ρu′iUj

∂Ui
∂xj
− ρu′i

1

ρ

∂Υij
∂xj

, (19)

• the interaction between the mean kinetic energy and the mixed kinetic en-
ergy P ,

P = −ρU iUj
∂u′i
∂xj

+ ρU i

(
Uj
∂Ui
∂xj

)′
− ρU i

(
1

ρ

∂Υij
∂xj

)′
, (20)

• the interaction between kinetic energy and internal energy E , decomposed into:
E associated with the mean kinetic energy and ε associated with the turbulence
kinetic energy,

E = −Υij
∂U i

∂xj
, (21)

ε = −Υij
∂u′i
∂xj

. (22)

This set of equations is represented in a schematic form in figure 1.

In the limit case U = 0, the mean kinetic energy E and the mixed kinetic energy
e vanish as do all energy exchange terms associated with these two quantities. The
formulation reduces to the sole exchanges between turbulence kinetic energy and
internal energy and describes the well-known rate of decay of turbulence kinetic
energy and the paired gain of internal energy [5]. Similarly, the formulation reduces
to the exchanges between mean kinetic energy and internal energy in the limit case
u′ = 0.

We compare the energy exchanges in the present formulation to the ternary de-
composition of Chassaing [8]. While Chassaing [8] did not explicitly give the energy
exchanges between the different parts of total energy, he gave enough information
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Figure 1 – Schematic representation of the energy exchanges between the four parts
of total kinetic energy (in the one-stage formulation). An arrow represents an in-
teraction between two quantities. The orientation of the arrow gives the sign of the
term according to classical thermodynamic convention. (The term is positive in the
right-hand side of the evolution equation of the quantity towards which the arrow
points and negative in the other). The conservative energy transfers are represented
within square brackets.

to identify the energy exchanges without ambiguity. The formulation of Chassaing
[8] may be written using the notations of this paper as:

∂ρE

∂t
= Φc + ΦΥ + Y +

(
P +X − Y

)
−X + E , (23)

∂ρe

∂t
= ϕc + ϕΥ +

(
P −X

)
+X + ε, (24)

∂ρe

∂t
= ϕc − Y −

(
P −X

)
−
(
P +X − Y

)
, (25)

∂ρI

∂t
= ΦT,c + Φλ − E − ε, (26)

with:

X = −ρu′iu′j
∂U i

∂xj
, (27)

Y = −
∂ρu′je

∂xj
. (28)

It is represented in a schematic form in figure 2.
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Figure 2 – Schematic representation of the energy exchanges between the four parts
of total kinetic energy according to the formulation of Chassaing et al. [10]. Refer
to the caption of figure 1 for some indications on how to read this diagram.

The formulation presented in this paper and the formulation of Chassaing [8]
are mathematically equivalent. However, the energy exchanges identified and the
interpretation given to the terms are different. The differences can be attributed
to two main changes. First, the present formulation associates to the four parts
of total energy a convective term related to both the mean and turbulent motion,
that is of the transport by advection and diffusion. However, the formulation of
Chassaing [8] only associates an advective term to the mixed kinetic energy ρe, but
no diffusive term. Due to this, the term Y , diffusion of mixed kinetic energy in the
present formulation, instead appears in the evolution equation of the mean kinetic
energy ρE and is interpreted as the power of the Reynolds stress through the mean
motion. In addition, there is in the formulation of Chassaing [8] a direct energy
exchange X between turbulence kinetic energy and mean kinetic energy whereas
any interaction between turbulence kinetic energy and mean kinetic energy occurs
through the mixed kinetic energy in the present formulation. Both of these changes
modify the energy exchange associated with mixed kinetic energy.

The formulation of Chassaing [8] is due to these two differences more similar
to the classical incompressible representation of the energy exchanges, in which the
term Y appears in the evolution equation of the mean kinetic energy and where
there is a direct energy exchange between turbulence kinetic energy and mean ki-
netic energy. However, some elements suggest that the present formulation is more
physical. Indeed, it associates a full convective term to each part of kinetic energy.
We consider this as necessary as it is part of the material derivative. Besides, the
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formulation is more symmetrical with regard to the manner it deals with fluctuations
and statistically averaged quantities. The formulation is not modified if the statisti-
cal average operator and the fluctuating part operator are substituted in equations
(13) to (22) and in the definitions of ρE, ρe and ρe. Finally, the formulation may be
used to consider the instantaneous energy exchanges as it does not rely on simplifi-
cations only valid in the statistically averaged case. This ensures the consistency of
the formulation, in the sense that the energy exchanges in both the instantaneous
and statistically averaged cases are well-defined and are not conflicting. This consis-
tency is important to give a physical interpretation to the energy exchange, as this
lets us consider the statistically averaged energy exchanges as the statistical average
of the associated instantaneous energy exchanges.

2.3 Two-stage formulation

The ternary decomposition of kinetic energy is taken further with the decompo-
sition of density into a mean and fluctuating part ρ = ρ+ ρ′. Namely, total energy
ρ(E + I) is decomposed into a mean density part ρ(E + I) and a fluctuating den-
sity part ρ′(E + I). Similarly, the mean kinetic energy ρE, the turbulence kinetic
energy ρe, the mixed kinetic energy ρe and the internal energy per unit volume
ρI are decomposed into a mean density part, ρE, ρe, ρe and ρI respectively, and a
fluctuating density part, ρ′E, ρ′e, ρ′e and ρ′I respectively. This results in a eightfold
decomposition of total energy.

In this eightfold decomposition of total energy, the terms of the ternary formu-
lation are decomposed further in a mean and fluctuating density part. Any term α
identified in the one-stage formulation is split into two terms in the two-stage formu-
lation: α0, associated with the mean density part of total energy and α1, associated
with the fluctuating density part of total energy. Moreover, additional terms appear
that represent an interaction between the mean and fluctuating density part of total
energy.

The energy exchanges between the eight parts of total energy may be written as:

∂ρE

∂t
= Φc0 + ΦΥ0 + P0 + Zc + ZΥ + E0, (29)

∂ρ′E

∂t
= Φc1 + ΦΥ1 + P1 − Zc − ZΥ + E1, (30)

∂ρe

∂t
= ϕc0 + ϕΥ0 + P0 + ζc + ζΥ + ε0, (31)

∂ρ′e

∂t
= ϕc1 + ϕΥ1 + P1 − ζc − ζΥ + ε1, (32)

∂ρe

∂t
= ϕc

0
− P0 − P0 + ζc, (33)

∂ρ′e

∂t
= ϕc − P1 − P1 − ζc, (34)

∂ρI

∂t
= ΦT,c0 + Φλ0 + ZT,c + Zλ − E0 − ε0, (35)
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∂ρ′I

∂t
= ΦT,c1 + Φλ1 − ZT,c − Zλ − E1 − ε1, (36)

with

Φc0 = −∂ρUjE
∂xj

, Φc1 = −∂ρ
′UjE

∂xj
,

ϕc0 = −∂ρUje
∂xj

, ϕc1 = −∂ρ
′Uje

∂xj
,

ϕc
0

= −∂ρUje
∂xj

, ϕc
1

= −∂ρ
′Uje

∂xj
,

ΦT,c0 = −∂ρUjI
∂xj

, ΦT,c1 = −∂ρ
′UjI

∂xj
,

ΦΥ0 =
∂

∂xj

(
Υij
ρ
ρU i

)
, ΦΥ1 =

∂

∂xj

(
Υij
ρ
ρ′U i

)
,

ϕΥ0 =
∂

∂xj

(
Υij
ρ
ρu′i

)
, ϕΥ1 =

∂

∂xj

(
Υij
ρ
ρ′u′i

)
,

Φλ0 =
∂

∂xj

(
ρ

ρ
λ
∂T

∂xj

)
, Φλ1 =

∂

∂xj

(
ρ′

ρ
λ
∂T

∂xj

)
,

P0 = −ρu′iUj
∂U i

∂xj
+ ρu′iUj

∂u′i
∂xj
− ρu′i

1

ρ

∂Υij
∂xj

,

P1 = −ρ′u′iUj
∂U i

∂xj
+ ρ′u′iUj

∂u′i
∂xj
− ρ′u′i

1

ρ

∂Υij
∂xj

,

P0 = −ρU iUj
∂u′i
∂xj

+ ρU i

(
Uj
∂Ui
∂xj

)′
− ρU i

(
1

ρ

∂Υij
∂xj

)′
,

P1 = −ρ′U iUj
∂u′i
∂xj

+ ρ′U i

(
Uj
∂Ui
∂xj

)′
− ρ′U i

(
1

ρ

∂Υij
∂xj

)′
,

E0 = −ρΥij
ρ

∂U i

∂xj
, E1 = −ρ

′Υij
ρ

∂U i

∂xj
,

ε0 = −ρΥij
ρ

∂u′i
∂xj

, ε1 = −ρ
′Υij
ρ

∂u′i
∂xj

,

and where we identify the following terms:

• the energy dilatation correlation Zc,

Zc = (E + I)
∂ρUj − ρUj

∂xj
, (37)

decomposed into: Zc associated with the mean kinetic energy, ζc associated
with the turbulence kinetic energy, ζc associated with the mixed kinetic energy
and ZT,c associated with the internal energy,

Zc = E
∂ρUj − ρUj

∂xj
, (38)
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ζc = e
∂ρUj − ρUj

∂xj
, (39)

ζc = e
∂ρUj − ρUj

∂xj
, (40)

ZT,c = I
∂ρUj − ρUj

∂xj
, (41)

• the interaction between the mean and fluctuating density part of total energy
by the total stress ZΥ ,

ZΥ = −ΥijUi
∂

∂xj

(
ρ

ρ

)
, (42)

decomposed into: ZΥ associated with the mean kinetic energy and ζΥ associ-
ated with the turbulence kinetic energy,

ZΥ = −ΥijU i
∂

∂xj

(
ρ

ρ

)
, (43)

ζΥ = −Υiju′i
∂

∂xj

(
ρ

ρ

)
, (44)

• the interaction between the mean and fluctuating density part of total energy
by conduction Zλ.

Zλ = −λ ∂T
∂xj

∂

∂xj

(
ρ

ρ

)
. (45)

This set of equations is represented in a schematic form in figure 3.

The two-stage formulation includes the mean density turbulence kinetic energy.
In the remaining part of the paper, we will establish its evolution equation in the
spectral domain.

3 Spectral equation of the mean density turbulence
kinetic energy

The investigation of the mean density turbulence kinetic energy evolution equa-
tion provides information on the energy exchanges associated with this quantity in
the spatial direction. The study may be extended to the spectral domain by estab-
lishing its spectral evolution equation. This investigation permits to give the effect
of the energy exchanges with regard to the size of the turbulent structures.

In order to write the spectral equation, we need to consider a flow with at least
one direction of homogeneity. Without loss of generality, we consider a turbulent
flow with two homogeneous and periodic directions, x and z. The inhomogeneous
direction is denoted y. The dimensions of the domain in the x, y and z directions
are denoted Lx, Ly and Lz respectively. Since the flow is periodic in the x and z
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Figure 3 – Schematic representation of the energy exchanges between the eight parts
of total kinetic energy (in the two-stage formulation). Refer to the caption of figure 1
for some indications on how to read this diagram.

directions, we perform the Fourier transform in the x and z directions only and leave
the y direction untransformed. Any physical quantity g(x, y, z) can be expressed as
a Fourier series,

g(x, y, t) =
∞∑

p,q=−∞

ĝ(kp,q, y, t)e
ikp,q ·x, (46)

where p and q are positive or negative integers, x = (x, z) is the position vector
in the xOz plane and kp,q = k = (kx, kz) = (2πp

Lx
, 2πq
Lz

) is the position vector in the
kxOkz plane. The Fourier coefficients of the Fourier series expansion of g are denoted
with the hat operator (̂) and are given by [33]:

ĝ(k, y, t) =
1

LxLz

∫ Lx

0

∫ Lz

0

g(x, y, t)e−ik·xdx. (47)

The half-trace of the velocity fluctuation correlation tensor e is equal to half the
correlation

C(r, y, t) = u′i(r, y, t)u
′
i(x + r, y, t) (48)
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in the particular case r = 0, that is e(y, t) = 1
2
C(0, y, t). We can express C as a

Fourier series from (46). The Fourier coefficients Ĉ can be written as [33, 42]

Ĉ(k, y, t) = û′i
∗
(k, y, t)û′i(k, y, t), (49)

where the asterisk (∗) denotes the complex conjugate. Henceforth, we denote ě and
call spectral equivalent of e the half of the spectral correlation Ĉ,

ě =
1

2
û′i
∗
û′i. (50)

From similar arguments, we shall associate to each term of the evolution equation
of the half-trace of the velocity fluctuation correlation tensor a spectral equivalent.

Spectral equations of the turbulence kinetic energy were given by Domaradzki
et al. [19], Marati et al. [36], Dunn and Morrison [20], Bolotnov et al. [7], Lee and
Moser [31], Mizuno [38] in the incompressible case and Aulery et al. [1] in the variable
density case. The present decomposition gives a clear one-to-one correspondence
between the terms of the spectral and spatial decompositions. To this end, a purely
spectral term with no spatial contribution has to be considered. The decomposition
is similar to the decomposition of Mizuno [38] at the incompressible limit.

The spectral evolution equation of the mean density turbulence kinetic energy
may be written as:

∂ě

∂t
= ϕ̌c0 + ϕ̌Υ0 + P̌0 + ζ̌c + ζ̌Υ + ε̌0, (51)

where we identify the following terms:

• the convection ϕ̌c0, associated with the spatial convection ϕc0,

ϕ̌c0 = −Re

−1

2

∂ρû′i
∗
û′iUj

∂xj

 , (52)

• the transfer by the total stress ϕ̌Υ0 , associated with the spatial transfer by the
total stress ϕΥ0 ,

ϕ̌Υ0 = Re

(
∂

∂xj
ρû′i
∗Υij
ρ

∧)
, (53)

• the interaction with mixed kinetic energy P̌0, associated with the spatial in-
teraction with mixed kinetic energy P0,

P̌0 = Re
(
−ρû′i

∗
û′j
∂U i

∂xj

)
, (54)

• the kinetic energy dilation correlation ζ̌c, associated with the spatial kinetic
energy dilation correlation ζc,

ζ̌c = Re

1

2
û′i
∗
u′i
∂ρUj − ρUj

∂xj

∧ , (55)
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• the interaction with fluctuating density kinetic energy by the total stress ζ̌Υ ,
associated with the spatial interaction with fluctuating density kinetic energy
by the total stress ζΥ ,

ζ̌Υ = Re

û′i∗Υij ∂

∂xj

(
ρ

ρ

)∧ , (56)

• the interaction between kinetic energy and internal energy ε̌0, associated with
the spatial interaction with internal energy ε0,

ε̌0 = Re

−ρ ∂̂u′i
∂xj

∗
Υij
ρ

∧ , (57)

• the purely spectral term Ξ̌, with no contribution in the spatial domain,

Ξ̌ = Re

1

2

∂̂ρu′i
∂xj

∗

û′iu
′
j −

1

2
û′i
∗ ̂
u′j
∂ρu′i
∂xj

 , (58)

where Re denotes the real part operator.

The terms are decomposed in order to have a one-to-one correspondence with
the terms of the spatial decomposition. The inverted hat operator (ˇ) is used to
indicate the spectral equivalent of a spatial term. The spectral and spatial terms
are tied closely. Given a spectral term written in the form Re(ûi’∗â), for any a, the
associated spatial term is u′ia. The spectral term comes from the Fourier coefficients
of the spatial two-point correlation between u′i and a [33].

The purely spectral term Ξ̌ has no associated spatial term. The summation over
the whole wavenumber space of its spectra is zero. In other words, this term has
no effect on the spatial balance of kinetic energy but contributes to the interscale
redistribution of kinetic energy.

4 Conclusion

The ternary decomposition of kinetic energy gives another angle of approach to
the study of energy exchanges in turbulent flows. Based on the classical Reynolds
averaging, the decomposition leads to the definition of a turbulence kinetic energy,
a mean kinetic energy and a mixed kinetic energy. This new term, specific to the
formulation, is related to the interaction between the turbulent motion and the
mean motion. In the formulation, any energy exchange between the turbulence
kinetic energy and the mean kinetic energy goes through the mixed term, which
adds its contribution to the exchange. The formulation is decomposed further in
order to include the mean density turbulence kinetic energy, product of the mean
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density and the half-trace of the velocity fluctuation correlation tensor. This is
done by splitting the density in a mean part and a fluctuating part. Contrary to the
turbulence kinetic energy, the equation of the mean density turbulence kinetic energy
can easily be extended to the spectral domain. This associates a spectral equivalent
to each spatial term and adds a purely spectral term to the decomposition.
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