
HAL Id: hal-01867331
https://hal.science/hal-01867331v1

Submitted on 4 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constrained Path Planning using Quadratic
Programming

Franco Fusco, Olivier Kermorgant, Philippe Martinet

To cite this version:
Franco Fusco, Olivier Kermorgant, Philippe Martinet. Constrained Path Planning using Quadratic
Programming. IROS 2018 - IEEE/RSJ International Conference on Intelligent Robots and Systems,
Oct 2018, Madrid, Spain. �10.1109/iros.2018.8593373�. �hal-01867331�

https://hal.science/hal-01867331v1
https://hal.archives-ouvertes.fr

Constrained Path Planning using Quadratic Programming

Franco Fusco1, Olivier Kermorgant1 and Philippe Martinet1,2

Abstract— Sampling-based planning algorithms have been
extensively exploited to solve a wide variety of problems. In
recent years, many efforts have been dedicated to extend these
tools to solve problems involving constraints, such as geometric
loop-closure, which lead the valid Configuration Space (CS) to
collapse to a lower-dimensional manifold.

One proposed solution considers an approximation of the
constrained Configuration Space that is obtained by relaxing
constraints up to a desired tolerance. The resulting set has then
non-zero measure, allowing to exploit classical planning algo-
rithms to search for a path connecting two given states. When
constraints involve kinematic loops in the system, relaxation
generally bears to undesired contact forces, which need to be
compensated during execution by a proper control action.

We propose a new tool that exploits relaxation to plan in
presence of constraints. Local motions inside the approximated
manifold are found as the result of an iterative scheme that
uses Quadratic Optimization to proceed towards a new sample
without falling outside the relaxed region. By properly guiding
the exploration, paths are found with smaller relaxation factors
and the need of a dedicated controller to compensate errors is
reduced. We complete the analysis by showing the feasibility of
the approach with experiments on a real platform.

I. INTRODUCTION

Planning a motion via exact techniques for a robot with
many degrees of freedom (dof) is hard and often impractical.
Sampling-based planners overcome computational issues by
exploring only a finite subset of the Configuration Space
(CS) and checking for collisions at the considered states,
rather than attempting to obtain a full representation of the
C-obstacle regions. In particular, algorithms like Probabilistic
Road Maps (PRM) [1] and Rapidly-exploring Random Trees
(RRT) [2] approximate the valid CS of a system by means
of a graph whose nodes correspond to configurations and
edges to motions between pairs of samples. To expand the
graph, random configurations can be obtained by drawing
each component independently from a given random distri-
bution, while local motions are often created using linear
interpolation.

These techniques can be applied to a number of contexts,
but when dealing with tasks like sliding an object on a
surface or carrying a load with two arms their performances
become unsatisfactory. The reason is that in presence of such
category of constraints the CS degenerates to a manifold
with zero-measure. The probability of randomly sampling
a valid configuration belonging to an n-dimensional subset
using uniform distributions is directly related to the measure
of the set itself, being null in case of lower-dimensional

1Centrale Nantes, Laboratoire des Sciences du Numérique de Nantes
LS2N, France franco.fusco/olivier.kermorgant@ls2n.fr

2Inria Sophia Antipolis, France philippe.martinet@inria.fr

Fig. 1. The experimental platform at LS2N: a dual-arm robot featuring
two Kuka LWR manipulators with a Schunk SDH (left hand) and Schunk
SVH (right hand).

manifolds. Furthermore, linear interpolation fails to connect
valid samples, since it produces straight paths that likely fall
outside the valid CS.

Different strategies can be found in the literature to
tackle the problem and extend randomized techniques to
the constrained setup, to generate both feasible samples [3]
and valid motions. A projection approach is used by the
Constrained Bi-Directional Rapildy-exploring Random Tree
(CBiRRT) [4] which exploits the gradient descent algorithm
to push invalid configurations onto the manifold. Two sam-
ples are connected by alternately performing a linear step
toward the goal and a projection of the resulting (infeasible)
configuration back to the valid set. Other recent works [5],
[6] rely on the construction of an Atlas whose charts consist
in local linearizations of the constraint manifold. A planner is
then required to explore the charts rather than the manifold,
using linear interpolation while moving inside a single chart.

The concept of relaxation [7], [8] consists in allowing a
small constraint violation during planning. As a result, the
valid CS is approximated by a full-dimensional set, which
can then be explored by standard sampling-based planners.
The technique was exploited to plan motions for compliant
closed-loop systems, for whom infeasible samples lead to
undesired internal forces. These efforts are compensated by
a proper control action which steers the configuration back
to the constraint manifold.

Since relaxation highly relies on system’s compliance and
on the control action, it might be infeasible in many scenarios
involving rigid robots. These systems would need paths with
lower constraint violation directly from the planning step,
which can be achieved only by reducing the considered relax-
ation factor. However, by doing so the topology of the valid

Configuration Space changes to a set of extremely narrow
passages and the planning time increases significantly.

We propose a new approach based on relaxation which al-
lows to find, in a shorter amount of time, paths characterized
by lower constraint violation. The objective is to reduce the
necessity of a control action during execution. We support
the feasibility of the approach by including real experiments
on a dual-arm system that carries an object while avoiding
obstacles.

The rest of the paper is organized as follows. In Section II
constraints are formally introduced and the relaxed Config-
uration Space is defined, while the planning algorithm is
detailed in Section III. Real experiments involving geometric
loop-closure constraints were performed to test the planner,
and are discussed in Section IV. We report our conclusions
and future work in Section V.

II. CONSTRAINTS AND RELAXATION

In this Section constraints are introduced, distinguishing
between two classes, and a formal definition of the relaxed
manifold is presented. We then detail the formulation of loop-
closure constraints exploited in real experiments.

The Configuration Space C is assumed to be an n-
dimensional subset of Rn, i.e., C ⊂ Rn, n corresponding
to the dof of the system. The configuration vector, denoted
as q =

[
q1 · · · qn

]T
, is assumed to have bounded

coordinates qi ∈ [qi,min , qi,max] (i = 1, · · · , n).
Constraints are distinguished in two classes: (1) differ-

entiable and (2) non-differentiable. The first category is
represented by a set of n1 functions in the form Ci : C → R,
for whom the gradient vector is assumed to be well defined
and available in analytic form. They define the constraint
manifold as the set M = {q ∈ C : Ci(q) = 0, ∀i}. Ex-
amples from this category are kinematic loop-closure or
orientation constraints on the end-effector.

The second class of constraints is instead described by n2

functions Di : C → {0, 1}. A configuration q satisfies a
constraint in this form if Di(q) = 1. This formulation can
be used, e.g., to describe the collision state of a robot, and in
general those constraints that do not cause the CS to collapse
to lower-dimensional sets.

Relaxation is introduced by considering n1 constants εi >
0, each one quantifying the maximum allowed violation of
the corresponding differentiable constraint. This bears to a
natural definition of the relaxed Configuration Space as:

CR = {q ∈ C : |Ci(q)| ≤ εi ∩Di′(q) = 1 ∀i, i′} (1)

As functions Ci provide a numerical value for constraints
violation, we adopt in the rest of this work the terminol-
ogy error to refer to the value of constraints at a given
configuration q. We therefore introduce the vector e =[
C1(q) · · · Cn1

(q)
]T

to group all constraints violations
and introduce the Jacobian matrix Je =

∂e
∂q , whose i-th row

is given by the gradient (as a row vector) of Ci. In order to
explore CR, the Jacobian is used to locally approximate M,
and motions are performed with the objective of minimizing
the norm of e.

0Tl
0Tr

lTr
Fl Fr

F0

Fig. 2. Reference frames and transformations in a dual-arm system.

We conclude this section by showing a possible choice of
constraint functions to describe loop-closure for a dual-arm
system rigidly grasping an object with both end-effectors.
Fig. 2 shows a sketch of a dual-arm system, wherein three
frames are considered: F0 (world reference frame), Fl (left
end-effector frame) and Fr (right end-effector frame). We
assume the full configuration vector to be partitioned as q =[
qT
l qT

r

]T
.

Rigid grasp of an object constrains relative translation and
rotation of frames Fl and Fr, that is, the transformation
matrix lTr needs to be constant. Let t? be the desired
translation and lR

?
r the desired rotation matrix in lTr. It

is then possible to define the constraint error as:

e
.
=

[
tl +

0R l t
? − tr

θu

]
(2)

tl and tr being the position of the end-effectors in world
frame, and θu the angle-axis decomposition of the rotation
matrix 0R

T
r

0R l
lR

?
r.

Finally, the Jacobian writes:

Je =

[
MJl −J

(v)
r

B 0R
T
r J

(ω)
l −B 0R

T
r J

(ω)
r

]
(3)

where: Jl is the Jacobian matrix of the left end-effector, J(v)
r

the right arm Jacobian of linear velocity, J(ω)
l , J(ω)

r are the
left and right Jacobians of angular velocity. Matrices M and
B are given by:

M =
[
I3 −

[
0R l t

?
]
×

]
(4)

B = I3 −
θ

2
[u]× +

(
1− sinc θ

sinc2 θ
2

)
[u]

2
× (5)

I3 representing the 3-by-3 identity matrix and [·]× the skew-
matrix operator. The derivation of the Jacobian is detailed in
the Appendix.

III. PLANNING WITH CONSTRAINTS

In this section the relaxation-based planner is presented.
The core of the algorithm, presented in Section III-A, is
a local router that tries to reach a given configuration
starting from an initial sample. It produces a discrete set

of configurations, each one being obtained after solving a
Quadratic Optimization. In Section III-B we show how the
connection algorithm is integrated in a Bi-directional RRT
to explore the manifold and connect the start configuration
to the goal one. We finally propose some post-processing
techniques to refine a path in Section III-C.

A. Local Router

The idea behind the local routing algorithm is that the
motion toward a desired configuration can be generated by
optimizing both the current distance to the local goal and
the error vector e. The two objectives will be in general
in contrast, since to approach the goal a system will often
be required to leave the constraint manifold. Quadratic
Programming (QP) is then exploited to find a compromise
that allows to shorten the distance towards the goal without
excessively violating the constraints.

To enforce also non-differentiable constraints such as
collision checking, we require the optimization to produce
a sample that is not far away from the current configuration.
If at the new point qnew the condition Di(qnew) = 1
is satisfied for every non-differentiable constraint, a new
step can be performed using QP. Thus, the local motion
is generated and validated iteratively by repeating the two
phases.

In the sequel, we firstly show how a single optimization
is formulated and solved and then we detail the full iterative
scheme.

1) Quadratic Programming: For the purposes of this
work, a QP optimization problem is modeled as follows:

q(j+1) = argmin
q(j+1)∈C

∥∥∥Q(j) q(j+1) − v(j)
∥∥∥2 (6)

subject to: A(j) q(j+1) ≤ b(j) (7)

The optimization variable, q(j+1), corresponds to the new
configuration that will be appended to the local motion. Since
the router will produce a number of intermediate samples,
we use the index j to denote the last generated configuration.
The objective is modeled via Q(j) ∈ Rm×n and v(j) ∈ Rm.
The superscript (j) is used to underline that these quantities
are constant during the optimization, fully determined by the
value of q(j). The optimization is subject to the set of linear
inequalities given by (7) (A(j) and b(j) being of dimension
p× n and p respectively).

In a first instance, the minimization of
∥∥q(j+1) − qg

∥∥2 +∥∥∥α e
(j+1)
lin

∥∥∥2 could be considered, qg being the local goal

configuration, α a diagonal weighting matrix and e
(j+1)
lin the

linearized error corresponding to q(j+1), given by:

e
(j+1)
lin = e(j) + J(j)

e

(
q(j+1) − q(j)

)
(8)

This formulation however presents a drawback: in early
steps the distance to qg will be higher, and it will reduce
after each iteration. The relative weight between the two
terms in the objective would then be non-uniform during the
iterative procedure, resulting in generally higher violations

at the beginning of a local motion. A better behavior can
be obtained by minimizing in the objective the distance to
an intermediate point q(j)

g , obtained using linear interpolation
from q(j) to qg , i.e., q(j)

g = q(j)+δ
(
qg − q(j)

)
, for a given

scalar δ ∈ (0, 1] selected to ensure homogeneous relative
weight of the two objectives.

The objective is then defined, in a single iteration, by the
following values:

Q(j) =

[
In

αJ
(j)
e

]
v(j) =

[
q
(j)
g

α
(
J
(j)
e q(j) − e(j)

)] (9)

To complete the definition of a QP instance, the set
of inequalities (7) is now detailed. As we assume each
coordinate of the configuration vector to be bounded, as
mentioned in Section II, a first set of inequalities is exploited
to enforce these limits:

qmin ≤ q(j+1) ≤ qmax (10)

A further set of inequalities imposes a maximum local
displacement on each coordinate during a single iteration:

q(j) − βk∆q ≤ q(j+1) ≤ q(j) + βk∆q (11)

the entries of vector ∆q being positive constants and in-
troducing β ∈ (0, 1) and k ∈ N. These inequalities play a
double role in the optimization: on one hand, they prevent
the distance between subsequent configurations from being
too large. This is fundamental in order to consistently check
non-differentiable constraints. Considering collision as an
example, small obstacles could be wrongly overtaken if the
path is too sparse, as depicted in Fig. 3(a). On the other
hand, the inequalities can be used to reduce the impact of
linearization introduced in (8). Depending on the manifold,
a first-order approximation may not well reflect the topology
of the valid set, as exeplified in Fig. 3(b). Thus, a step guided
by the error Jacobian might lead to a sample that is indeed
outside the relaxed CS. Whenever this happens, it is possible
to shrink the allowed displacement by increasing k and to
repeat the optimization step.

(a) (b)

Fig. 3. Pictorial justification of inequalities (11). In (a) an obstacle (in
gray) is not detected due to a large step, and two configurations are wrongly
connected. In (b) a manifold is represented as the bold black line, and it is
linearized around two points. Due to the high curvature at the red point, a
new configuration could easily fall outside the relaxed region (in light blue)
even with a small step, while around the green point the linear approximation
is valid in a larger area.

2) Iterative Scheme: The motion connecting two con-
figurations qs and qg is found by iteratively applying the
procedure illustrated above to produce new intermediate
samples. Algorithm 1 contains the pseudo-code of the local
router. At the beginning of an iteration, the QP instance is
initialized by computing Q(j), v(j) and A(j). An inner cycle
tries to generate a new sample q(j+1) for increasing values
of the parameter k. If the new configuration falls outside
the relaxed CS, the optimization is repeated using a smaller
maximum step size.

Algorithm 1 QP-based Motion Validator (QPMove)
1: QPMove(qs, qg) :
2: q(0) ← qs

3: σ ← { }
4: d(0) ← ‖qa − qb‖
5: for j=0 to jmax do
6: k ← 0
7: Q(j), v(j), A(j) ← INIT QP(q(j), qb)
8: do
9: if k ≥ kmax then

10: return “stop”, σ
11: end if
12: b(j) ← GET QP B VECTOR(q(j), k)
13: q(j+1) ← SOLVE QP(Q(j), v(j), A(j), b(j))
14: e(j+1) ← EVALUATE ERROR(q(j+1))
15: k ← k + 1
16: while not(−ε ≤ e(j+1) ≤ ε)

17: if ∃i : Di

(
q(j+1)

)
= 0 then

18: return “stop”, σ
19: end if
20: σ ← σ ∪

{
q(j+1)

}
21: d(j+1) ←

∥∥∥q(j+1) − qb

∥∥∥
22: if d(j+1) ≤ dmin then
23: return “success”, σ
24: end if
25: if d(j+1) ≤ d(j) and d(j) − d(j+1) ≤ ∆d(−) then
26: return “stop”, σ
27: end if
28: if d(j+1) ≥ d(j) and d(j+1) − d(j) ≥ ∆d(+) then
29: return “stop”, σ
30: end if
31: end for
32: return “stop”, σ

As soon as a new configuration lying in the relaxed region
is found, non-differentiable constraints are evaluated at the
sample. If any of them is violated the routine must be
interrupted and the local path is returned, otherwise q(j+1)

can be appended to the local path σ.
Four criteria are finally used to check if the local router

should stop:

1) If the current distance d(j+1) to the goal configura-
tion is smaller than a given threshold, the connection
attempt is considered valid.

2) If an iteration produced a very small improvement
in terms of distance d(j) to the target, the search is
stopped, as a stationary point might have been reached.

3) As not only the distance to the goal is optimized, but
also the linearized error, a new configuration might be
located farther from the goal than the previous sample.
Such configurations are rejected if the increment in
distance exceeds the limit.

4) A limit of iterations is set as well, to prevent spending
too much time on the connection of two samples.

(a) (b)

Fig. 4. Motions generated in CR after 10 iterations by QPMove (a) and a
projection approach (b). Start configurations are represented as blue circles,
while the goals as blue squares. The constrained Configuration Space is
a sinusoidal wave. Linear interpolation cannot produce any valid sample,
while our strategy is able to proceed toward the goal. The projection
approach moves slowly due to the fact that the goal is found almost
orthogonally to the constraint.

Fig. 4 contains an example of motion computed using
the proposed router. Starting from the given sample, linear
interpolation cannot produce any feasible motion toward the
goal configuration due to the small relaxation. Instead, using
the QPMove function it is possible to move inside CR by
keeping e sufficiently small (Fig. 4(a)). A comparison can
be made with respect to classical projection approaches, e.g.,
CBiRRT. These planners usually perform motions by firstly
stepping toward the goal and then re-projecting the sample
on the manifold. In the case of Fig. 4(b) the goal is found in a
direction that is almost perpendicular to the constraint curve
at the start configuration. This is an unlucky condition for a
projection approach, since a linearly interpolated sample is
reprojected almost at the same initial position of the previous
configuration. Despite being more expensive in terms of
computation time, our approach usually explores CR faster
than a projection technique, not blocking in these harder
configurations.

B. Sampling-based Planner

The connection routine presented above can be easily
inserted in classical Sampling-based planning algorithms.
We decided during tests to use a bidirectional RRT [9],
replacing the extend function with our custom router. In
its standard version, the bidirectional RRT firstly picks a
random configuration and then selects the nearest neighbor
from the current tree to attempt a connection. The motion is
however limited to a maximum length, which may prevent
from reaching the random sample. In this study, it was
considered a more aggressive approach, firstly proposed in
[10], that does not limit the length of an extension step.

Regarding state sampling, we exploit the simplest uniform
sampler that can extract any point from the Configuration
Space of the system with equal probability. This is justified
by the fact that the connection algorithm can produce new
motions even when heading toward infeasible samples. In
these cases, it will simply stop when the current branch
cannot be further extended. However, since the motions
are always constrained on the manifold, the new branches
that are added to the trees could cover the relaxed CS non

uniformly. In the future, it will be worth investigating the
use of better sampling techniques.

C. Post Processing

It is well-known that randomized planners usually find
rather irregular paths which would result in jerky trajectories
during execution. To smooth and shorten the solution path,
a number of shortcuts is therefore attempted. The operation
works by selecting two nodes at random from the final path
and trying to connect them. We again exploit QPMove for
this purpose, and the new local motion, if successfully found,
replaces the existing one if it reduces the total length of the
overall path.

Finally, as we handle constraints using a relaxation ap-
proach their violation will not be completely nullified along
local paths. A further post-processing phase is thus per-
formed to refine a solution by better enforcing the constraints
at each intermediate sample. This operation is carried out by
solving a number of QP instances formulated in a similar
way as the ones considered before. The main difference
is that regarding the objective the local goal is set to be
the initial path sample. This allows to optimize the error
without drastically change the path. It was noted, however,
that in some cases this operation might invalidate one or
more samples. As an example, if a path point was initially
located really near to an obstacle, after some iterations the
path could be moved in such a way that collision is not
satisfied anymore. To deal with such problem, we try to
re-optimize the initial path point by slightly changing the
position of the local goal in the opposite direction in which
collision or other non-differentiable constraints were invalid.

IV. EXPERIMENTAL RESULTS

We present in this Section some experimental results
obtained using the proposed planner. The algorithm was
tested to find motions for a dual-arm system featuring two
Kuka LWR4 arms (Fig. 1), having 14 dof in total. The
robot is required to move an object grasped with both hands
from an initial configuration to a given one while avoiding
obstacles. The bi-manual grasp adds six constraints to the
system, due to the presence of a closed kinematic loop in
the structure, which is described via (2) and (3).

The Open Motion Planning Library [11] was used to
implement planning-related capabilities, while ROS [12] and
MoveIt! [13] are used to send and execute planning requests.
Obstacles are assumed to be static and with known pose, as

perception of the environment is out of the scope of this
study.

Different simulations were run to experimentally tune the
parameters of QPMove. Regarding the choice of β, values
ranging between 0.7 and 0.85 gave the best results. It was
noted that high values of constraint weights in the objective
increase the planning time, as less importance is given to
the exploration of CR. Motions get often stuck due to very
small improvements or by reaching the maximum number
of iterations. Concerning the choice of the relaxation factor,
rather tolerant violations were allowed during the planning
phase (around 1 cm for translation and 1◦ for rotation).
Although these values would result inappropriate during
execution, by properly tuning the weights for error mini-
mization it is possible to achieve better results in practice.
In addition, while attempting to smooth and simplify the
path by shortcut operations higher weights can be used. As a
result violations can be reduced even without the final error
refinement operation to be less than 1mm and 1mrad in
average.

In Fig. 5 some frames taken from a real experiment are
shown. The robot is required to lift a metallic bar while
avoiding some obstacles, two of them forming a narrow
passage. Along the planned path the average violation is
of 0.27mm and 0.05◦ without running the final refinement
process (only shortcuts were performed). By repeatedly
attempt to solve the query, planning times were recorded. The
average runtime is 4.168 s (excluding the post-processing
phase), with a minimum of 0.931 s. Standard relaxation
techniques were tested for a comparison, and no feasible plan
was found within 60 s, using relaxation factors of 100mm
and 17.2◦.

An example of error evolution during actual execution is
shown in Fig. 6. It can be noted that violations increase
significantly with respect to the values obtained after the
planning phase, raising to a maximum of 5mm in translation
and 0.6◦ in rotation. This results from two factors: the
absence of a control loop that regulates the error during
the actual motion and a rough estimation of the dynamic
parameters of the end-effectors. Depending on the final
application these values may not be acceptable, and thus a
regulating control action would be required to compensate
them.

Fig. 5. Execution of a planned path, from initial configuration (left) to the final one (right). The full execution is included in the attached video.

V. CONCLUSIONS

In this work we proposed a new approach that exploits
Quadratic Programming to reduce constraints violations in
a relaxation-based context. Exploiting the Jacobian matrix
of constraints functions allows to formulate the problem of
moving toward a random sample as a local optimization of
the distance to the configuration and the error associated with
differentiable constraints.

As a result, paths of higher quality can be found in a
shorter time, reducing the need of control actions at the
execution level. The feasibility of our algorithm is confirmed
by successful experiments on a real platform.

A drawback of this approach is the presence of a number
of parameters which need to be tuned experimentally, and
whose value can affect significantly the planning time.

A naive sampling technique was exploited to generate
random configurations in the full Configuration Space of
the robot. A better sampling approach able to uniformly
cover the constraint manifold might lead to improvements in
planning time and quality of the resulting path, and should
therefore be investigated and integrated in the proposed
approach.

APPENDIX

We show in the sequel the derivation of (3) starting
from error’s definition. The translation component is easily
identified by considering that as t? is constant, it holds:

ṫl +
˙︷ ︷

0R l t
? − ṫr = vl + ωl ×

(
0R l t

?
)
− vr (12)

By definition, the linear/angular velocities vl, vr and ωl

are linked with joint vector’s derivatives by robot’s Jacobian
matrices Jl and Jr, thus leading to the first part of the error
Jacobian.

0 2 4 6 8 10 12 14 16
time [s]

�4

�2

0

2

4

tr
an

sl
at

io
n

er
ro

r
[m

m
]

∆tx

∆ty

∆tz

0 5 10 15
time [s]

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

ro
ta

ti
on

er
ro

r
[d

eg
]

∆θux

∆θuy

∆θuz

Fig. 6. Evolution of constraint errors during real execution. Translation
and rotation components are reported respectively in the top and bottom
pictures.

Regarding rotation, one needs to evaluate
˙︷ ︷
θu. The deriva-

tive of the angle-axis representation of a rotation matrix aR b

is in general given by B aω b/a, with aω b/a representing
the angular velocity vector of the generic frame b with
respect to a (expressed in frame a). The form of matrix
B was already given in (5). In the considered case the
rotation matrix for which the decomposition is evaluated
is 0R

T
r

0R l
lR

?
r. It is possible to consider a virtual frame

Fr? rigidly attached to the origin of the left end-effector,
characterized by the rotation lR r? = lR

?
r. In this sense

0R
T
r

0R l
lR

?
r represents the rotation of the virtual frame

Fr? with respect to Fr, and therefore:

˙︷ ︷
θu = B rω r?/r = B 0R

T
r (ωr? − ωr) (13)

In addition, as Fr? and Fl are rigidly linked to each other,
ωr? = ωl. Substituting ωl = J

(ω)
l q̇l and ωr = J

(ω)
r q̇r bears

to the final relation.

ACKNOWLEDGMENT

This work was carried out in the framework of the
PROMPT project, a project funded by RFI Atlanstic 2020.
Parts of the equipment used here were funded by the project
ROBOTEX, reference ANR-10-EQPX-44-01.

REFERENCES

[1] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[2] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planing,” Deptartment of Computer Science, Iowa State University,
Tech. Rep., 1998.

[3] J. Cortes and T. Simeon, “Sampling-based motion planning under
kinematic loop-closure constraints,” in Algorithmic Foundations of
Robotics VI. Springer, 2004, pp. 75–90.

[4] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Ma-
nipulation planning on constraint manifolds,” in IEEE Int. Conf. on
Robotics and Automation. IEEE, 2009, pp. 625–632.

[5] L. Jaillet and J. M. Porta, “Path planning under kinematic constraints
by rapidly exploring manifolds,” IEEE Trans. on Robotics, vol. 29,
no. 1, pp. 105–117, 2013.

[6] C. Voss, M. Moll, and L. E. Kavraki, “Atlas+ x: Sampling-based
planners on constraint manifolds,” Rice University, Tech. Rep., 2017.

[7] M. Bonilla, E. Farnioli, L. Pallottino, and A. Bicchi, “Sample-based
motion planning for soft robot manipulators under task constraints,”
in IEEE Int. Conf. on Robotics and Automation. IEEE, 2015, pp.
2522–2527.

[8] M. Bonilla, L. Pallottino, and A. Bicchi, “Noninteracting constrained
motion planning and control for robot manipulators,” in IEEE Int.
Conf. on Robotics and Automation. IEEE, 2017, pp. 4038–4043.

[9] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in IEEE Int. Conf. on Robotics and
Automation, vol. 2. IEEE, 2000.

[10] S. M. LaValle and J. J. Kuffner Jr, “Rapidly-exploring random trees:
Progress and prospects,” 2000.

[11] I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robot. Autom. Mag., vol. 19, no. 4, pp. 72–82, Dec.
2012, http://ompl.kavrakilab.org (hit on 2017-06-30).

[12] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[13] I. A. Sucan and S. Chitta. Moveit! [Online]. Available: http:
//moveit.ros.org

