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Dynamic scheduling of distributed real-time systems with multiparty interactions is acknowledged to be a very hard task. For such systems, multiple schedulers are used to coordinate the parallel activities of remotely running components. In order to ensure global consistency and timing constraints satisfaction, these schedulers must cope with significant communication delays while moreover, use only point-to-point message passing as communication primitive on the platform. In this paper, we investigate a formal model for such systems as compositions of timed automata subject to multiparty interactions, and we propose a distributed implementation method aiming to overcome the communication delays problem through planning ahead interactions. Moreover, we identify static conditions allowing to make the planning decisions local to different schedulers, and thus to decrease the overall coordination overhead. The method has been implemented and we report preliminary results on benchmarks.

Introduction

Over the past few decades, real-time systems have undergone a shift from the use of single processor based hardware platforms, to large sets of interconnected and distributed computing nodes. Such evolution stems from an increase in complexity of real-time software embedded on such platforms (e.g. electronic control in avionics and automotive domains [START_REF] Charette | This car runs on code[END_REF]), and the need to integrate formerly isolated systems [START_REF] Kopetz | An integrated architecture for dependable embedded systems[END_REF] so that they can cooperate as well as share resources, improving functionality and reducing costs.

The design and the implementation of distributed systems is acknowledged to be a very difficult task. A central question is how to efficiently coordinate parallel activities in a distributed system by means of primary communication primitives offered by the platform, such as point-to-point messages or broadcast. Considering real-time constraints brings additional complexity since any scheduling or control decision may not only impact system performance, but may also affect the satisfaction of timing constraints. To deal with such complexity, the community of safety critical systems often restricts its scope to predictable systems, which are represented with domain specific models (e.g. periodic tasks, synchronous systems, time-deterministic systems) for which the range of possible executions is small enough to be easily analyzed, allowing the precomputation of optimal control strategies. For non-critical systems, the standard practice is not to rely on models for precomputing scenarios but rather to design systems dynamically adapting at runtime to the actual context of execution. Such approaches do not offer any formal guarantee of timeliness. The lack of a priori knowledge on system behavior leaves also little room for static optimization.

In our framework, systems consist of components represented as timed automata that may synchronize on particular actions to coordinate their activities. Timed automata are strictly more expressive [START_REF] Abdellatif | Model-based implementation of real-time applications[END_REF] than time-deterministic systems considered in time-triggered approaches [START_REF] Kopetz | Time-triggered real-time computing[END_REF], [START_REF] Chabrol | Deterministic distributed safety-critical real-time systems within the oasis approach[END_REF], [START_REF] Ghosal | Event-driven programming with logical execution times[END_REF], [START_REF] Henzinger | Composable code generation for distributed giotto[END_REF]. Our framework also differs from the one proposed in [START_REF] Behrmann | UPPAAL 4.0[END_REF] and [START_REF] Zhao | A programming model for time-synchronized distributed real-time systems[END_REF] by considering not only binary, but also multiparty (n-ary) synchronizations, a.k.a. interactions, expressing the fact that a subset of components may jointly (and atomically) switch their states if given preconditions are fulfilled. Such high level coordination means are rarely part of the built-in primitives offered by distributed platforms, and thus need to be implemented using simpler ones, e.g. exchange of messages. This has been extensively studied in the untimed context [START_REF] Bagrodia | Process synchronization: Design and performance evaluation of distributed algorithms[END_REF], [START_REF] Bagrodia | A distributed algorithm to implement n-party rendevouz[END_REF], [START_REF] Chandy | Parallel Program Design: A Foundation[END_REF], [START_REF] Chandy | The drinking philosopher's problem[END_REF], [START_REF] Pérez | An order-based, distributed algorithm for implementing multiparty interactions[END_REF], [START_REF] Parrow | Multiway synchronizaton verified with coupled simulation[END_REF], [START_REF] Bensalem | Methods for Knowledge Based Controlling of Distributed Systems[END_REF], [START_REF] Bensalem | Knowledge-based Distributed Conflict Resolution for Multiparty Interactions and Priorities[END_REF] but to the best of our knowledge, it has been solved for timed systems only under the assumption of non-decreasing deadlines in [START_REF] Bensalem | Rigorous system design flow for autonomous systems[END_REF], [START_REF] Triki | Distributed Implementation of Timed Component-based Systems[END_REF].

We contribute to this research field by proposing methods for scheduling interactions with bounded horizons, which aims to reduce the impact of communication delays on systems execution. In particular, (i) we define a semantics for planning interactions with bounded horizons, (ii) we provide sufficient conditions for this semantics to be correct, and (iii) we present an operational method to check those conditions using system knowledge.

The rest of the paper is organized as follows. In Section 2 we provide a formal definition of composition of timed automata with respect to multiparty interactions. We also present a semantics for planning interactions with bounded horizons. In Section 3, we study sufficient conditions for a safe planning of interactions. Thereafter, we use global knowledge of the system to refine the latest conditions for more precise results and in order to avoid unnecessary verification (Section 4). Finally, the application of previous results on various examples is presented in Section 5. Note that all the proofs can be found in the technical report [START_REF] Mahieddine Dellabani | Local planning of multiparty interactions with bounded horizon[END_REF].

Timed Systems and Properties

Global State Semantics

In the framework of the present paper, components are timed automata and systems are compositions of timed automata with respect to multiparty inter-actions. The timed automata we use are essentially the ones from [START_REF] Alur | A theory of timed automata[END_REF], however, slightly adapted to embrace a uniform notation throughout the paper.

Definition 1 (Component).

A component is a tuple (L, 0 , A, T, X , tpc) where L is a finite set of locations, 0 ∈ L is an initial location, A a finite set of actions, X is a finite set of clocks, T ⊆ L × (A × C × 2 X ) × L is a set of transitions labeled with an action, a guard, and a set of clocks to be reset, and tpc : L → C assigns a time progress condition, tpc , to each location, where C is the set of clock constraints defined by the following grammar:

C := true | x ∼ ct | x -y ∼ ct | C ∧ C | false,
with x, y ∈ X , ∼ ∈ {<, ≤, =, ≥, >} and ct ∈ R ≥0 . Time progress conditions are restricted to conjunctions of constraints of the form x ≤ ct.

Throughout the paper, we consider that components are deterministic timed automata, that is, at a given location and for a given action a, there is at most one outgoing transition from labeled by a. Given a timed automaton (L, 0 , A, T, X , tpc), we write a,g,r ---→ if there exists a transition τ = , (a, g, r), ∈ T . We also write:

guard (a, ) = g, if ∃τ = , (a, g, r), ∈ T false, otherwise Let V be the set of all clock valuation functions v : X → R ≥0 . For a clock constraint C, C(v) is a boolean value corresponding to the evaluation of C on v. For a valuation v ∈ V, v + δ is the valuation satisfying (v + δ)(x) = v(x) + δ,
while for a subset of clocks r, v[r] is the valuation obtained from v by resetting clocks of r, i.e. v[r](x) = 0 for x ∈ r, v[r](x) = v(x) otherwise. We also denote by C + δ the clock constraint C shifted by δ, i.e. such that C(v + δ) iff C(v).

Definition 2 (Semantics).

A component B = (L, 0 , A, T, X , tpc) defines the labeled transition system (LTS) (Q, A ∪ R >0 , →) where Q ⊆ L × V(X ) denotes the states of B and →⊆ Q × (A ∪ R >0 ) × Q denotes the set of transitions between states according to the rules:

-( , v) a -→ ( , v[r]) if a,g,r ---→ , and g(v) is true (action step). -( , v) δ -→ ( , v + δ) if tpc (v + δ) (time progress).
We define the predicate urg(tpc ) characterizing the urgency of a time progress condition tpc = m i=1

x i ≤ ct i at a state ( , v) as follows:

urg(tpc ) = m i=1 (x i = ct i ),
An execution sequence of B from a state ( , v) is a path in the LTS starting at ( , v) and that alternates action steps and time steps (time progress), that is:

( 1 , v 1 ) σ1 -→ . . . σi -→ ( n , v n ), n ∈ Z ≥0 , σ ∈ A ∪ R >0
In this paper, we always assume components with well formed guards meaning that transitions a,g,r ---→ satisfy g(v) ⇒ tpc (v) ∧ tpc (v[r]) for any v ∈ V. We say that a state ( , v) is reachable if there is an execution sequence from the initial configuration ( 0 , v 0 ) leading to ( , v), where v 0 assigns 0 to all clocks. Notice that the set of reachable states is in general infinite, but it can be partitioned into a finite number of symbolic states [START_REF] Tripakis | The analysis of timed systems in practice[END_REF][START_REF] Bengtsson | On clock difference constraints and termination in reachability analysis of timed automata[END_REF][START_REF] Henzinger | Symbolic model checking for real-time systems[END_REF]. A symbolic state is defined by a pair ( , ζ) where, is a location of B, and ζ is a zone, i.e. a set of clock valuations defined by a clock constraint (as defined in Definition 1). Efficient algorithms for computing symbolic states and operations on zones are fully described in [START_REF] Bengtsson | On clock difference constraints and termination in reachability analysis of timed automata[END_REF]. Given symbolic states {( j , ζ j )} j∈J of B, the predicate Reach(B) characterizing the reachable states can be formulated as:

Reach(B) = j∈J at( j ) ∧ ζ j ,
where at( j ) is true on states whose location is j , and clock constraint ζ j is straightforwardly applied to clock valuation functions of states.

We also define the predicate Enabled (a) characterizing states ( , v) at which an action a is enabled, i.e. such that ( , v) a -→ ( , v ). It can be written:

Enabled (a) = ( ,a,g,r, )∈T at( ) ∧ guard (a, )
Definition 3 (Deadlock). We say that a state ( , v) of a component B deadlocks, if neither action steps nor time steps can be done from this state. The following equation characterizes those states: ∀a ∈ A. ¬Enabled (a) ∧ urg(tpc )

In our framework, components communicate by means of multiparty interactions. A multiparty interaction is a rendez-vous synchronization between actions of a fixed subset of components. It takes place only if all the participants agree to execute the corresponding actions. Given n components B i , i = 1, . . . , n, with disjoint sets of actions A i , an interaction is a subset of actions α ⊆ ∪ 1≤i≤n A i containing at most one action per component, i.e. α ∩ A i is either empty or a singleton {a i }. That is, an interaction α can be put in the form {a i } i∈I with I ⊆ {1, . . . , n} and a i ∈ A i for all i ∈ I.

Definition 4 (Composition). For n components

B i = (L i , i 0 , A i , T i , X i , tpc i ), with L j ∩ L j = ∅, A i ∩ A j = ∅,
and X i ∩ X j = ∅ for any i = j, the composition γ(B 1 , . . . , B n ) w.r.t. a set of interactions γ is defined by a timed automaton S = (L, 0 , γ, T γ , X , tpc) where

0 = ( 1 0 , . . . , n 0 ), X = X 1 ∪. . .∪X n , L = L 1 ×. . .×L n , tpc = tpc 1 ∧ . . . ∧ tpc n for = ( 1 , . . . , n ), and T γ is such that α,g,r ---→ for α = {a i } i∈I , = ( 1 , .
. . , n ), and = ( 1 , . . . , n ), if for i ∈ I we have i = i , and for i ∈ I we have i ai,gi,ri -----→ i , and g α = i∈I g i and r = i∈I r i .

In practice we do not explicitly build compositions of components as presented in Definition 4. We rather interpret their semantics at runtime by evaluating enabled interactions based on current states of components. In a composition of n components B i∈{1,••• ,n} , denoted by γ(B 1 , . . . , B n ), an action a i can execute only as part of an interaction α such that a i ∈ α, that is, along with the execution of all other actions a j ∈ α, which corresponds to the usual notion of multiparty interaction.

Property 1 (Semantics of a Composition). Given a set of components {B 1 , • • • , B n } and an interaction set γ. The semantics of the composite component S = (L, 0 , γ, T γ , X , tpc) w.r.t the set of interaction γ, is the LTS (Q g , γ ∪ R >0 , → γ ) where:

-Q g = L × V(X ) is the set of global states, where L = L 1 × • • • × L n and X = n i=1 X i . We write a state q = ( , v) where = ( 1 , • • • , n ) ∈ L is a global location and v = (v 1 , • • • , v n ) ∈ V(X ) is a global clocks valuations.
γ is the set of interactions -→ γ is the set of labeled transitions defined by the rules:

• Action steps:

α = {a i } i∈I ∈ γ, ∀i ∈ I.( i , v i ) ai -→ ( i , v i ), ∀i / ∈ I.( i , v i ) = ( i , v i ) ( , v) α -→ γ ( , v )
• Time steps:

δ ∈ R >0 ∀i ∈ {1, • • • , n} tpc i (v i + δ) ( , v) δ -→ γ ( , v + δ)
In what follows, we consider only deadlock-free systems w.r.t the presented semantics. By abuse of notation, predicates at( i ) of individual components B i are interpreted on states of S, being true for ( , v)

iff B i is at location i in , i.e. iff ∈ L 1 × . . . × L i-1 × { i } × L i+1 × . . . × L n .
Similarly, clock constraints of components B i are applied to clock valuation functions v of the composition S = (L, 0 , γ, T γ , X , tpc) by restricting v to clocks X i of B i . Given an interaction α ∈ γ, these notations allow us to write Enabled (α) as:

Enabled (α) = =( 1,••• , n )∈Lα at( ) ∧ guard (α, ), = ( 1,••• , n )∈Lα at( ) ∧ ai∈α guard (a i , i ), = ( 1,••• , n )∈Lα n i=1 at( i ) ∧ ai∈α guard (a i , i ), = ai∈α Enabled (a i ),
where Let us consider as a running example the composition of four components C, T 1 , T 2 , and R of Figure 1. Component C represents a controller that initializes, releases, and ends tasks T 1 and T 2 . Tasks use the shared resource R during their execution. To implement such behavior, we consider the following interactions between C, R, and T 1 : α 1 = {init 0 , init 1 }, α 3 = {run, start 1 }, α 5 = {take, process 1 }, α 7 = {end 0 , f ree, end 1 }, and similar interactions α 2 , α 4 , α 6 , α 8 for task T 2 , as shown by connections on Figure 1. The controller is responsible for firing the execution of each task. First, it nondeterministically initializes one of the two tasks, i.e. executes α 1 or α 2 , and then releases it through interaction α 3 or α 4 . Tasks perform their processing independently of the controller, after being granted an access to the shared resource (α 5 or α 6 ). When ended by the controller, a task releases the resource (interactions α 7 or α 8 ) and go back to its initial location. An example of execution sequence of the system of Figure 1 is given below, in which valuations v of clocks x, y, and z are represented as a tuples (v(x), v(y), v(z)):

L α = { ∈ L| α,g,r ---→ }. 1 0 1 1 C end0 init0 z > 4 end0 run z := 0 2 0 2 1 2 2 x ≤ 3 T1 2 3 init1 start1 x := 0 process1 1 ≤ x ≤ 3 end1 3 1 3 0 3 2 y ≤ 3 T2 3 3 init2 start2 y := 0 process2 1 ≤ y ≤ 3
(( 1 0 , 2 0 , 3 0 , 4 0 ), (0, 0, 0)) 5 -→γ (( 1 0 , 2 0 , 3 0 , 4 0 ), (5, 5, 5)) α 1 --→γ (( 1 1 , 2 1 , 3 0 , 4 0 ), (5, 5, 5)) α 3 --→γ (( 1 0 , 2 2 , 3 0 , 4 0 ), (0, 5, 0)) 2 -→γ (( 1 0 , 2 2 , 3 0 , 4 0 ), (2, 7, 2)) α 5 --→γ (( 1 0 , 2 3 , 3 0 , 4 1 ), (2, 7, 2)) 3 -→γ (( 1 0 , 2 3 , 3 0 , 4 1 
), (5, 10, 5))

α 2 --→γ (( 1 1 , 2 3 , 3 1 , 4 
1 ), (5, 10, 5))

Weak Planning Semantics

The presented semantics is based on a global state operational semantics, that is, the operational semantics rules and the computation of possible interactions between timed components is achieved through global states. Considering a distributed context, components are intrinsically concurrent and their execution is asynchronous. This means that even if states of components participating in an interaction α are known, α cannot be executed in the global state semantics until the states of all components are known, which breaks the principle of distribution. Usually, components are mapped at different areas on the distributed platform in a way that better suits their interactions. In other terms, components that synchronize their actions are more likely to be next to each others. However, there are cases where several components participate in the same interaction but are mapped far from each other, which adds on communication delays to the interaction corresponding to the exchange of messages.

In order to reach an efficient scheduling, able of taking decisions ahead and using only partial (local) information, we define a different semantics based on a local planning of interactions. It aims to alleviate the problem of communication delays through an early decision making mechanism while preserving deadlock freedom property of the system. This is achieved by planning each interaction ahead, which means to choose an execution time within a certain horizon for each interaction, based only on the states of components involved in that interaction. Consequently, components are notified ahead through communication primitive, and will wait until the chosen execution time to perform their corresponding actions. Our approach is to define for each interaction its earliest planning date, which correspond to the maximum horizon value that ensure a safe planning of the considered interaction.

Preliminaries

We define the predicate Enabled δ (α) characterizing all states from which α is enabled if time progresses by δ units of time, that is:

Enabled δ (α) = ∈Lα at( ) ∧ ai∈α (guard (a i , i ) + δ) , (1) 
Property 2. Let ( , v) be a state of the composition S. For any interaction

β ∈ γ such that, part(α) ∩ part(β) = ∅ and ( , v) β -→ γ ( , v
), where part(α) (resp. part(β)) represents components participating in interaction α (resp. β), if Enabled δ (α) holds at state ( , v) then it still holds at state ( , v ).

This property derives from the fact that executing interactions with disjoint set of components than α does not change the states of components participating in α, that is, for a i ∈ α we have i = i and v i = v i .

Property 3. Let ( , v) and ( , v + δ ), with δ ∈ R >0 be two states of the composition S.

If Enabled δ (α) is true at state ( , v) then Enabled δ-δ (α) is true at state ( , v + δ ) for δ ≤ δ.
This property can be found directly by writing Equation 1 on state ( , v + δ ). Let δ max be a partial function δ max : γ → R ≥0 that defines for each interaction a maximum horizon to be planned with. We define the predicate Enabled [0,δmax(α)] (α) characterizing all states from which α can be planned with a δ max (α)-horizon as follows:

Enabled [0,δmax(α)] (α) = ∈Lα (at( )∧ δmax(α) ( ai∈α guard (a i , i ))),
with δmax(α) represents an adaptation of the backward operators [START_REF] Tripakis | The analysis of timed systems in practice[END_REF] that satisfies: δmax(α) g(x) ⇔ ∃δ ≤ δ max (α).g(x + δ), Property 4. If the predicate Enabled δ (α) is true at a state ( , v), then the predicate Enabled [0,δmax(α)] (α) is also true for δ ≤ δ max (α).

Definition 5 (Plan). We say that two interactions α and β, α = β, conflicts if part(α) ∩ part(β) = ∅, and we write α#β. A plan π is a partial function π : γ → R ≥0 defining relative times for executing a subset of non conflicting interactions, i.e.:

α = α , π(α) =⊥, π(α ) =⊥ =⇒ ¬(α#α ).
We also denote by conf (π) the set of interactions conflicting with the plan π, i.e. conf (π) = {α | ∃β#α . π(β) = ⊥}, and part(π) the set of components involved in interactions planned by π, i.e. part(π

) = {B i | ∃α . π(α) = ⊥∧B i ∈ part(α)}.
We denote by min π the closest relative execution time of interactions in the plan π, i.e. min π = min {π(α) | α ∈ γ ∧ π(α) = ⊥} ∪ {+∞}. Notice that since π stores relative times, whenever time progresses by δ the value π(α) assigned by π to an interaction α should be decreased by δ, until it reaches 0 which means that α have to execute. We write π -δ describing the progress of time over the plan, that is, (π -δ)(α) = π(α) -δ for interactions α such that π(α) = ⊥.

We also write π -α to denote the removal of interaction α from the plan π, i.e. (π -α)(β) = π(β) for any interaction β = α, (π -α)(α) = ⊥. Similarly, π ∪ {α → δ} assigns relative time δ to α, α / ∈ conf (π), into existing plan π, i.e. (π ∪ {α → δ})(β) = δ for β = α, (π ∪ {α → δ})(β) = π(α) otherwise. Finally, the plan π such that π(α) = ⊥ for all interactions α ∈ γ is denoted by ∅.

We define below the semantics for planning each interaction α ∈ γ with δ max (α)-horizon.

Definition 6 (Weak Planning Semantics). Given a set of components {B 1 , • • • , B n } and an interaction set γ, we define the weak planning semantics of the composite component S = (L, 0 , γ, T γ , X , tpc), as the labeled transition system S p = (Q π , γ ∪ R >0 ∪ {plan}, ∼∼∼>) where:

-Q π = L × V(X ) × Π,
where L is the set of global location, V(X ) is the set of global clocks valuations, and Π is the set of plans.

-plan defines the action of planning interactions -∼∼∼> is the set of labeled transitions defined by the rules:

• Plan:

δ ≤ δ max (α), α ∈ γ, part(α) ∩ part(π) = ∅ Enabled δ (α) ( , v, π) ∼∼∼∼> plan(α,δ) ( , v, π ∪ {α → δ}).
• Exec:

π(α) = 0 ( , v, π) ∼∼∼> α ( , v , π -α)} • Time Progress: δ ∈ R >0 δ ≤ min π ∧ tpc i (v i + δ) i∈{1,••• ,n} ( , v, π) ∼∼∼> δ ( , v + δ, π -δ)
Example 2. Let us consider the following execution sequence for the example of Figure 1 under the weak planning semantics rules and for a value δ max = 5 for all interactions except α 5 and α 6 that will be assigned a δ max = 3:

(( 1 0 , 2 0 , 3 0 , 4 0 ), (0, 0, 0), ∅) ∼∼∼∼∼∼> plan(α 1 ,5)

(( 1 0 , 2 0 , 3 0 , 4 0 ), (0, 0, 0), {α1 → 5})∼∼∼>

5

(( 1 0 , 2 0 , 3 0 , 4 0 ), (5, 5, 5), {α1 → 0}) ∼∼∼> α 1 (( 

(( 1 0 , 2 3 , 3 2 , 4 1 ), (5, 0, 0), {α7 → 4})∼∼∼> 3 (( 1 0 , 2 3 , 3 2 , 4 1 ), (8, 3, 3), {α7 → 1})
This execution sequence represents a path that alternates plan actions, time steps and execution of some interactions. We can see that for interaction α 7 which is planned 4 units of time ahead, the system cannot reach the state from which it can be executed since there is a time progress expiration in component T 2 after 3 time units from planning this interaction. This means that local planning of interactions doesn't always allow the progress of time and may thus, introduce deadlocks even if the system under the global semantics rules is deadlock-free.

Relation between Global and Weak Planning Semantics

We use weak simulation to compare the model under the global semantics rules and the one under the weak planning semantics rules by considering plantransitions unobservable. As explained in Example 2, the weak planning semantics does not preserve the deadlock property of our system. Nevertheless, the following proves weak simulation relations between the two semantics.

Theorem 1. For all the reachable states ( , v, π) of the weak planning semantics, and ∀α ∈ π, the predicate Enabled π(α) (α) is true.

Let S g = (Q g , γ ∪ R >0 , - → γ ) (resp. S p = (Q p , γ ∪ R >0 ∪ {plan}, ∼∼∼>)
) the labeled transition system characterizing the global (resp. weak planning) semantics.

Proposition 1. Relation 1 ∀δ ∈ R >0 .( , v, π) ∼∼∼> δ ( , v , π ) ⇒ ( , v) δ -→ γ ( , v ) Relation 2 ∀α ∈ γ.( , v, π) ∼∼∼> α ( , v , π ) ⇒ ( , v) α -→ γ ( , v )
It is straightforward that Relation 1 is a consequence of the definition of time progress in the weak planning semantics. For Relation Relation 2, using Definition 6, we can deduce that:

( , v, π) ∼∼∼> α ( , v , π ) ⇒ π(α) = 0,
By Theorem 1, this implies that Enabled 0 (α) is true at state ( , v, π), meaning that Enabled (α) is also true, which allows to infer Relation 2.

Corollary 1. If a state ( , v, π) ∈ Reach(S p ), then ( , v) ∈ Reach(S g ).

Definition 7 (Weak Simulation). A weak simulation over

A = (Q A , ∪{β}, → A ) and B = (Q B , ∪{β}, → B ) is a relation R ⊆ Q A × Q B such that we have: ∀(q, r) ∈ R, a ∈ .q a -→ A q =⇒ ∃r : (q , r ) ∈ R ∧ r β * aβ * ----→ B r and ∀(q, r) ∈ R : q β -→ A q =⇒ ∃r : (q , r ) ∈ R ∧ r β * -→ r . B simulates A, denoted by A R B, means that B can do everything A does.
The definition of weak simulation is based on the unobservability of β-transitions. In our case, β-transitions corresponds to plan-transitions.

Corollary 2. S p R1 S g with R 1 = {(q, π); q) ∈ Q p × Q g }.
Corollary 2 corresponds to a notion of correctness of the weak planning semantics: any execution in weak planning semantics corresponds to an execution in the global state semantics.

Theorem 2. S g R2 S p with R 2 = {(q; (q, π)) ∈ Q g × Q p |π = ∅}.
Theorem 2 states that the weak planning semantics preserves all execution sequences of the global state semantics. They are obtained using immediate planning, i.e. plans π such that π(α) = 0 or π(α) = ⊥. The weak planning semantics aims to reduces the impact of communication delays in the system through planning interactions execution ahead, and by considering only the state of components involved in the planned interaction, which is more suitable for distributed real-time systems than the global state semantics. It does not restrict the behavior of the global state semantics (see Theorem 2), and it executes ony sequences allowed by the global state semantics (see Corollary 2). However, it may introduce deadlocks as shown by the scenario presented in Example 2.

In the following, we present sufficient conditions for deadlock-free planning of interactions.

Deadlock-free Planning

As explained in Example 2, local planning of interactions can introduce deadlocks in the system since it does not consider time progress conditions of components not participating in the planned interactions. Effectively, the weak planning semantics ensures that time can progress until the chosen execution date only w.r.t timing constraints of participating components, but such progress may be disallowed by the rest of the system leading to deadlock states. In this section, we provide sufficient conditions for having deadlock-free planning.

Planning an interaction α implies not only blocking components participating in α until α executes, but also preventing the system from planning interactions involving these components, that is, interactions of conf (α). Consequently, the subset of interactions γ ⊆ γ that can be planned at a given state ( , v, π) depends on the content of the plan π. It satisfies γ = {γ \ π ∪ conf (π)}.

By Corollary 1, a (reachable) deadlock state ( , v, π) of the weak planning semantics S p is such that ( , v) is a reachable state of the global state semantics S g . Since we assume that S g is deadlock-free, ( , v) is not a deadlock in S g . A deadlock state ( , v, π) of S p is caused by the plan π which is restricting the execution in S p w.r.t. S g : interactions α of π cannot execute before π(α) time units, and interactions α ∈ conf (π) are blocked for (at least) max {π(β) | β#α}. Notice that due to well-formed guards, in a deadlock state ( , v, π) we have necessarily at( i ) ∧ urg(tpc i ) for a location i of a component B i / ∈ part(π).

Theorem 3. If a state ( , v, π) ∈ Reach(S p ) deadlocks, the following equation is satisfied:

α∈π Enabled π(α) (α) A ∧ Bi∈S\part(π) i∈Li at( i ) ∧ urg(tpc i ) B ∧ α∈π π(α) = 0 ∧ α∈π (Enabled (α) ∨ α∈conf (π) Enabled (α) C (2) 
From Theorem 1, Term A of Equation 2 represents an invariant of the system. On the other hand, terms B and C characterize the deadlock: Term B expresses the urgency of time progress condition in components not involved in the planned interactions, whereas, term C specifies the origin of the deadlock: it characterizes states ( , v, π) of S p for which π restricts the execution of an interaction α whereas it can be executed at ( , v) in S g . As explained above, such an interaction satisfies π(α) > 0 or α ∈ conf (π).

It is clear that Equation 2 depends on the reachable states of the planning semantics since it explicitly depends on plans π. The following gives weaker conditions for deadlocks which are independent of the plan. Theorem 4. Let Φ(α) be the following predicate:

Enabled [0,δmax(α)] (α) ∧ Bi∈S\part(α) i∈Li at( i )∧urg(tpc i )∧ β∈α∪conf (α) Enabled (β) (3) 
where Enabled [0,δmax(α)] (α) is the result of transforming all the timing con-

straints of the form x ≤ ct by x < ct in δmax(α) ( ai∈α guard (a i , i )) of Enabled [0,δmax(α)] (α).
If a reachable state of the system ( , v, π) deadlocks then the following is satisfied:

∃α ∈ γ, Φ(α) ∧ δ max (α) = 0 (4) 
Let schedule(α, δ max (α)) be the following predicate:

schedule(α, δ max (α)) = ¬Φ(α) ∨ (δ max (α) = 0)
Using Theorem 4 and Corollary 1, we can conclude that for all interactions α ∈ γ and for all reachable states of the global state semantics S g , if the predicate schedule(α, δ max (α)) is satisfied, then the weak planning semantics is deadlock-free. Notice that given an interaction α ∈ γ the satisfaction of schedule(α, δ max (α)) on Reach(S g ) depends only on δ max (α). Moreover, it is monotonic, that is, if it holds for δ max (α) then it holds for any δ max (α) < δ max (α). This provides means for building implementations that plan interactions as soon as possible by taking for δ max (α) the maximal value of δ such that schedule(α, δ) holds on Reach(S g ).

Using Knowledge to Enhance Deadlock-free Planning

In Section 3, we presented sufficient conditions that ensure a deadlock-free planning of interactions. Effectively, we use an SMT solver to check the satisfiability of those conditions on the reachable states of the planning semantics. As explained in Section 3 to prove deadlock-freedom of weak planning semantics it is sufficient to prove that for all interactions α ∈ γ the following formula:

Reach(S g ) ∧ ¬schedule(α, δ max (α))
is unsatisfiable. In practice, we do not calculate Reach(S g ) to avoid the combinatorial explosion problem inherent to composition of timed automata. Instead, we use over-approximations of the latter which enable us to build stronger conditions of deadlock freedom. As explained in more detail below, these overapproximations take the form of invariants I (i.e. such that Reach(S g ) ⇒ I) that are used to establish deadlock freedom by checking the unsatisfiability of:

I ∧ ¬schedule(α, δ max (α))

Timed Invariants

Our approach consists in leveraging global knowledge of the system in the form of invariants that will be used to approximate Reach(S g ). Locations reachable in a composition S = γ(B 1 , . . . , B n ) are necessary combinations of reachable locations of individual components B i , i.e, Reach(S g ) ⇒ n i=1 Reach(B i ). However, in general not all combinations are reachable since components are not fully independent as they synchronize through interaction set γ. Moreover, individual reachable states of components do not express the fact that time progresses the same way in all components.

For example, a global location may be not reachable because component locations having disjoint time progress conditions, or an interaction may be not enabled from a state because of an empty timing constraint. Such properties require additional relationships relating clocks of different components that are not available in Reach(B i ) as it is is restricted to clocks of a single component.

We follow the approach of [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF], [START_REF] Rayana | Compositional verification for timed systems based on automatic invariant generation[END_REF], [START_REF] Saddek Bensalem | Compositional invariant generation for timed systems[END_REF] for reinforcing individual reachable states of components with global invariants on clocks. They are induced by simultaneity of transitions execution when executing an interaction and the synchrony of time progress. To compute such invariants, additional history clocks are first introduced in components. History clocks are associated to actions of components and to interactions, and reset upon their execution. They do not modify the behavior since they are not involved in timing constraints. They only reveal local timing of components, relevant to the interaction layer, which allows to infer further properties referred as history clocks inequalities in [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF], expressing the fact that the history clock of an interaction is necessary equal to history clocks of its actions after its execution and until the execution of another interaction involving these actions. By combining history clocks inequalities E(S) and symbolic states of components, we have:

Reach(S g ) ⇒ n i=1 Reach(B i ) ∧ E(S g ) (5) 
Notice that for such systems with multiparty interactions, other types of invariants could be used, like those of [START_REF] Bensalem | Incremental generation of linear invariants for component-based systems[END_REF] that corresponds to the notion of Sinvariants in the Petri net community [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF]. Even if they are time abstracted, it is proved that they are appropriate for verifying non coverage of subsets of individual locations.

Example 3. We illustrate the application of (5) for a safe planning of interactions by considering again example of Figure 1. It can be shown that locations configuration including location 3 2 (resp. 2 2 ) does not satisfy the predicate schedule(α, δ max (α)) for interaction α 5 (resp. α 6 ). In the following, we prove how such configurations can be excluded using history clocks inequalities. Since action run of C is synchronized with either start 1 of T 1 or start 2 of T 2 , and since history clocks h a of an action a is reset whenever a is executed, by [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF] the history clock inequalities for run are:

(h run = h start1 < h start2 -4) ∨ (h run = h start2 < h start1 -4). (6) 
Equation ( 6) states that h run is equal to the history clock corresponding to the last synchronization, i.e. either h start1 or h start2 , and is lower than history clocks of previous synchronizations. Value 4 in ( 6) is obtained considering separation constraints computed from symbolic states of components [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF]: two occurrences of run are separated by at least 4 time units because of timing constraints of C, and so do occurrences of start 1 or start 2 which can only execute jointly with run. To relate history clocks with components clocks, we simply include history clocks when computing symbolic states of components (i.e. Reach(B i ) for components), which is used to establish here that x = h start1 and y = h start2 . That is, combined with (6) we obtain x < y -4 or y < x -4. By definition of Enabled we have Enabled (

α 6 ) = at( 2 2 ) ∧ (1 ≤ x ≤ 3). Similarly, Enabled (α 6 ) = at( 3 2 ) ∧ (1 ≤ y ≤ 3
). This proves that components T 1 and T 2 can never be at locations 3 2 and 2 2 at the same time. Thus, while checking for interaction α 5 (resp. α 6 ) that n i=1 Reach(B i )∧E(S g )∧¬schedule(α, δ max (α)) is unsatisfiable, this case will be excluded using history clock inequalities.

Implementation and Experiments

The presented method has been implemented as a middleend filter of the BIP compiler. BIP [START_REF] Basu | Modeling heterogeneous real-time components in bip[END_REF] is a highly expressive, component-based framework with rigorous semantics that allows the construction of complex, hierarchically structured models from single components characterized by their behavior. The method input consists of real-time BIP model and a file containing an approximation of the reachable states of components combined with history clock inequalities as explained in Section 4. The latter is generated using the RTD-Finder tool, a verification tool for real-time component based systems modeled in the RT-BIP language. Our filter generates for each interaction of the input model a Yices [START_REF] Dutertre | The yices smt solver[END_REF] file containing system invariants together with the condition for planning the considered interaction, that is, ¬schedule(α, δ max (α)). Thereafter, Yices checks the satisfiability of n i=1 Reach(B i )∧ E(S g ) ∧ ¬schedule(α, δ max (α)). We also define δ max (α) as free variable. If this condition is unsatisfiable, then planning interactions α is safe and unbounded that is, δ max = +∞. Otherwise, Yices generates a counter-example. Due to the monotony of the condition, this counter-example can be used to find the maximal value of δ max (α) satisfying the above condition using a binary search algorithm. Together, the determined values of the bounds δ max for each interaction will affect the dynamic of the hole system: for an interaction α the greater δ max (α) is, the more flexible the scheduling of α will be.

We ran our experiments on three other models besides of the model presented in Figure 1: Pacemaker [START_REF] Jiang | Modeling and verification of a dual chamber implantable pacemaker[END_REF], Fischer [START_REF] Lamport | A fast mutual exclusion algorithm[END_REF], and Gear controller [START_REF] Lindahl | Formal Design and Analysis of a Gearbox Controller[END_REF]. We developed an implementation of these models in RT-BIP. The following tables show the result of our experiments. Table 1 gives a detailed result of the experiments ran on the Task Manager model 1. It summarizes, for each interaction, its conflicting interactions and the potential locations for which a time progress condition may expire while planning it (column tpc). The last column, δ max (α), details the maximum horizon for planning interaction α. Notice that the symmetry of the model allows to perform the verification on interactions α 1 , α 3 , α 5 , and α 7 and deduce the results for the other interactions. Table 2 depicts the results of our experiments on different models. For each model, it summarizes the number of interactions that can be safely planned with an unbounded horizon (δ max = ∞). It also gives the number of interactions that cannot be planned in advance, and thus need to be executed immediately after being planned(δ max = 0). 

Conclusion and Future Work

We presented a method for scheduling real-time systems in a distributed context considering models including multiparty interactions. The proposed approach defines sufficient conditions ensuring a deadlock-free local planning of interactions with certain horizons. Moreover, it is proved that those conditions are interaction dependent, in other terms, this means that changing the planning horizon of an interaction does not affect the planning of other interactions. A key innovative idea is the use of global knowledge in addition to local components informations to enhance the local scheduling of interactions. The computed knowledge captures not only the way components synchronize through interactions, but it also consider the history clock inequalities between those interactions and express explicitly the synchrony of time progress.

There are many open problems to be investigated such as: (i) considering more conditions when planning an interaction based on the state of components involved in this interaction, and (ii) defining a lower bound for planning interaction. The latter represents an important point meaning that, if planning interactions can be ensured for a lower bound, that effectively represents the communication delays of the target platform, then all the problems induced by those delays, such as global consistency and performance dropping will be solved.
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 1 Fig. 1: Task Manager

Table 1 :

 1 Detailed Results of the Task Manager Experiments

	Interaction Conflicting Interactions tpc δmax(α)
	α1	α2, α4, α8	3 2	∞
	α3	α2, α4, α8	3 2	∞
	α5	α6, α8	3 2	∞
	α7	α2, α4	3 2	0

Table 2 :

 2 Results of Experiments

	Model	Number of Interactions δmax = 0 δmax = ∞ total
	Task Manager	2	6	8
	Pacemaker	0	6	6
	Gear	0	17	17
	Fischer	0	10	10