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Abstract

A graph G of order n is implicit claw–heavy if in every induced copy
of K1,3 in G there are two non–adjacent vertices with sum of their im-
plicit degrees at least n. We study various implicit degree conditions
(including, but not limiting to, Ore– and Fan–type conditions) impos-
ing of which on specific induced subgraphs of a 2–connected implicit
claw–heavy graph ensures its hamiltonicity. In particular, we improve
a recent result of [X. Huang, Implicit degree condition for hamiltonic-
ity of 2–heavy graphs, Discrete Appl. Math. 219 (2017) 126–131] and
complete the characterizations of pairs of o–heavy and f–heavy sub-
graphs for hamiltonicity of 2–connected graphs.

Keywords: Implicit degree; Implicit o–heavy; Implicit f–heavy; Implicit
c–heavy; Hamilton cycle.
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1 Introduction
We use [3] for terminology and notation not defined here. In the paper only
finite, simple and undirected graphs are considered.

Let G be a graph and H be a subgraph of G. For a vertex u ∈ V (G), the
neighbourhood of u in H is denoted by NH(u) = {v ∈ V (H) : uv ∈ E(G)}
and the degree of u in H is denoted by dH(u) = |NH(u)|. For two vertices
u, v ∈ V (H), the distance between u and v in H, denoted by dH(u, v), is

∗Corresponding author.
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Fig. 1: Graphs B (bull), H (hourglass), N (net), D (deer), W (wounded)
and Zi.

the length of a shortest (u, v)–path in H (if there are no (u, v)–paths in H,
then dH(u, v) := +∞). When there is no danger of ambiguity, we can use
N(u), d(u) and d(u, v) in place of NG(u), dG(u) and dG(u, v), respectively.
We use N2(u) to denote the set of vertices which are at distance two from
u, i.e., N2(u) = {v ∈ V (G) : d(u, v) = 2}.

Let S be a graph. If there are no induced copies of S in G, then G is said
to be S–free. Similarly, for a family S of graphs, G is S–free if it is S–free for
every S ∈ S. If one demands G being S–free, then the family S is forbidden
in G. A cycle in a graph G is called its Hamilton cycle (or hamiltonian cycle),
if it contains all vertices of G, and G is called hamiltonian if it contains a
Hamilton cycle. Forbidden subgraph conditions and degree conditions are
two important types of sufficient conditions for the existence of Hamilton
cycles in graphs.

The only connected graph of order at least three forbidding of which
in a 2–connected graph G implies hamiltonicity of G, is the path P3 (we
use Pi for a path with i vertices). When disconnected subgraphs are also
considered, forbidding of 3K1 also ensures hamiltonicity. The former fact
can be deduced from [17] and the latter from Chvátal–Erdős theorem [13].
Actually, the graphs P3 and 3K1 are the only graphs of order at least three
having this property. In [26], Li and Vrána proved the necessity part of the
following theorem.

Theorem 1 (Li and Vrána [26]). Let G be a 2–connected graph and S
be a graph of order at least three. Then G being S–free implies that G is
hamiltonian if and only if S is P3 or 3K1.

The case with pairs of forbidden subgraphs other than P3 and 3K1 is
much more interesting. The complete characterization of forbidden pairs of
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connected subgraphs for hamiltonicity, based partially on results from [5],
[14], [18] and [19], was obtained by Bedrossian in [1]. The ‘only if’ part of
the following theorem is due to Faudree and Gould.

Theorem 2 (Bedrossian [1]; Faudree and Gould [17]). Let R and S be
connected graphs with R, S 6= P3 and let G be a 2-connected graph. Then G
being {R, S}-free implies G is hamiltonian if and only if (up to symmetry)
R = K1, 3 and S = P4, P5, P6, C3, Z1, Z2, B, N or W (see Fig.1).

In [26], Li and Vrána considered pairs of forbidden subgraphs that are
not necessarily connected.

Theorem 3 (Li and Vrána [26]). Let R and S be graphs of order at least
three other than P3 and 3K1 and let G be a 2-connected graph. Then G
being {R, S}-free implies G is hamiltonian if and only if (up to symmetry)
R = K1, 3 and S is an induced subgraph of P6, W, N or K2 ∪ P4.

A widely studied way of relaxing the forbidden subgraph conditions for
hamiltonicity is allowing the subgraphs in the graph, but with some require-
ments regarding degrees of their vertices imposed on them. Some of these
extensions exploit the concept of implicit degree, introduced by Zhu et al.
in [32].

Definition 1 (Zhu, Li and Deng [32]). Let v be a vertex of a graph G and
d(v) = l + 1. Set M2 = max{d(u) : u ∈ N2(v)}. If N2(v) 6= ∅ and d(v) ≥ 2,
then let d1 ≤ d2 ≤ d3 ≤ ... ≤ dl ≤ dl+1 ≤ ... be the degree sequence of
vertices of N(v) ∪N2(v). Define

d∗(v) =
{

dl+1, if dl+1 > M2,

dl, otherwise.

Then the implicit degree of v in G is defined as id(v) = max{d(v), d∗(v)}.
If N2(v) = ∅ or d(v) ≤ 1, then define id(v) = d(v).

Observe that, by the above definition, for every v ∈ V (G) the inequality
id(v) ≥ d(v) holds.

Some of the (implicit) degree conditions suitable for relaxing the forbid-
den subgraph conditions originate from the following classical results.

Theorem 4 (Fan [15]). Let G be a 2-connected graph of order n ≥ 3. If

d(u, v) = 2⇒ max{d(u), d(v)} ≥ n/2

for every pair of vertices u and v in G, then G is hamiltonian.

Theorem 5 (Ore [31]). Let G be a graph of order n. If for every pair of its
non-adjacent vertices the sum of their degrees is not less than n, then G is
hamiltonian.
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The authors of [32] prove a counterpart of Ore’s Theorem 5, where the
degree sum condition is replaced with the implicit degree sum condition.
Similar extension of Thereom 4 can be found in [10]. Theorems 4 and
5, and their extensions, gave rise to notions of f–heavy [30], o–heavy [7],
[30], implicit f–heavy [9] and implicit o–heavy graphs. Here, we cite the
definitions of o–heavy and f–heavy from [30] which are given as follows. Let
G be a graph of order n. A vertex v of G is called heavy (or implicit heavy)
if d(v) ≥ n/2 (or id(v) ≥ n/2). If v is not heavy (or not implicit heavy), we
call it light (implicit light, respectively). For a given graph H we say that
G is H–o–heavy (or implicit H–o–heavy) if in every induced subgraph of G
isomorphic to H there are two non-adjacent vertices with the sum of their
degrees (implicit degrees, respectively) in G at least n. And G is said to be
H–f–heavy (or implicit H–f–heavy), if for every subgraph S of G isomorphic
to H, and every two vertices u, v ∈ V (S) holds

dS(u, v) = 2⇒ max{d(u), d(v)} ≥ n/2

(max{id(u), id(v)} ≥ n/2, respectively).
For a family of graphs H, G is said to be (implicit) H–o–heavy, if G is

(implicit) H–o–heavy for every H ∈ H. Classes of H–f–heavy and implicit
H–f–heavy graphs are defined similarly. We note that the above definitions
about H–f–heavy, H–o–heavy, and H–f–heavy are also all from [30]. When
a graph is implicit K1,3–o–heavy we will call it implicit claw–heavy.

Observe that every H–free graph is trivially H–o–heavy and H–f–heavy.
Furthermore, every H–o–heavy (or H–f–heavy) graph is implicit H–o–heavy
(implicit H–f–heavy, respectively). Replacing forbidden subgraph condi-
tions with conditions expressed in terms of heavy subgraphs yielded the
following extensions of Theorem 2.

Theorem 6 (B. Li, Ryjáček, Wang and S. Zhang [25]). Let R and S be
connected graphs with R 6= P3, S 6= P3 and let G be a 2-connected graph.
Then G being {R, S}–o–heavy implies G is hamiltonian if and only if (up
to symmetry) R = K1, 3 and S = C3, P4, P5, Z1, Z2, B, N or W .

Theorem 7. Let R and S be connected graphs with R 6= P3, S 6= P3 and
let G be a 2-connected graph. Then G being {R, S}–f–heavy implies that G
is hamiltonian if and only if (up to symmetry) R = K1, 3 and S is one of
the following:
- P4, P5, P6 (Chen, Wei and X. Zhang [12]),
- Z1 (Bedrossian, Chen and Schelp [2]),
- B (G. Li, Wei and Gao [27]),
- N (Chen, Wei and X. Zhang [11]),
- Z2, W (Ning and S. Zhang [30]).

Recently, motivated by the main result of [20], Li and Ning [23] intro-
duced another type of heavy subgraphs. We say that an induced subgraph
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H of G is c–heavy in G, if for every maximal clique C of H every non–trivial
component of H−C contains a vertex that is heavy in G. Graph G is said to
be H–c–heavy if every induced subgraph of G isomorphic to H is c–heavy.
For a family H of graphs, G is called H–c–heavy if G is H–c–heavy for every
H ∈ H.

Observe that every graph is trivially {K1,3, C3, P3}–c–heavy, since re-
moval of a maximal clique from any of the three subgraphs results in a
graph consisting of trivial components (or an empty graph). With that
remark in mind, the authors of [23] extended Theorem 2 in the following
way.

Theorem 8 (B. Li, Ning [23]). Let S be a connected graph of order at least
three and let G be a 2-connected claw–o–heavy graph. Then G being S–c–
heavy implies that G is hamiltonian if and only if S = P4, P5, P6, Z1, Z2, B,
N or W .

Similarly to implicit o–heavy and implicit f–heavy graphs, we can define
implicit H–c–heavy and implicit H–c–heavy graphs by replacing the degree
condition in the definition of c–heavy graphs with implicit degree condition.
In the light of the results presented so far, and noting that every implicit
claw–f–heavy graph is implicit claw–heavy, it seems worthwhile to tackle the
following problems.

Problem 1. Characterize all graphs S such that every 2–connected implicit
claw–heavy and implicit S–o–heavy graph is hamiltonian.

Problem 2. Characterize all graphs S such that every 2–connected implicit
claw–heavy and implicit S–f–heavy graph is hamiltonian.

Problem 3. Characterize all graphs S such that every 2–connected implicit
claw–heavy and implicit S–c–heavy graph is hamiltonian.

As byproducts of the proof of our main result, we obtained the following
partial answers to Problems 1– 3.

Theorem 9. Let G be a 2–connected implicit claw-heavy graph. If G is
implicit S–o–heavy for S being a subgraph of K2∪P4, then G is hamiltonian.

Theorem 10. Let G be a 2–connected implicit claw-heavy graph. If G is
implicit S–f–heavy, with S being one of the graphs K1∪P3, K2∪P3, K1∪P4,
K2 ∪ P4, P4, Z1 and Z2, then G is hamiltonian.

Theorem 11. Let G be a 2–connected implicit claw-heavy graph. If G is
implicit S–c–heavy, with S being one of the graphs K1 ∪ K2, 2K1 ∪ K2,
K1 ∪ 2K2, K2 ∪K2, K1 ∪P3, K2 ∪P3, K1 ∪P4, K2 ∪P4, P4, P5 and P6 then
G is hamiltonian.

5



Clearly, for S being any of the graphs K1 ∪K2, 2K1 ∪K2, K2 ∪K2 and
K1∪2K2, every graph is S–f–heavy. Observe also that each of the remaining
subgraphs of K2 ∪ P4 appear in each of Theorems 9–11. Hence, as corollar-
ies from these theorems and Theorems 6–8, we get the following complete
characterizations of heavy pairs of (not necessarily connected) subgraphs for
hamiltonicity.

Corollary 1. Let R and S be graphs other than P3 and 3K1, and let G be a
2-connected graph. Then G being {R, S}–o–heavy implies G is hamiltonian
if and only if (up to symmetry) R = K1, 3 and S is an induced subgraph of
P5, W, N or K2 ∪ P4.

Corollary 2. Let R and S be graphs other than P3 and 3K1, and let
G be a 2-connected graph. Then G being {R, S}–f–heavy implies G is
hamiltonian if and only if (up to symmetry) R = K1, 3 and S is one of
P4, P5, P6, Z1, Z2, B, N, W , K1 ∪ P3, K2 ∪ P3, K1 ∪ P4 and K2 ∪ P4.

Corollary 3. Let S be a graph of order at least three other than P3 and
3K1, and let G be a 2-connected graph, claw–o–heavy graph. Then G being
S-c-heavy implies G is hamiltonian if and only if S is one of P4, P5, P6, Z1,
Z2, B, N , W , K1 ∪K2, 2K1 ∪K2, K1 ∪ 2K2, K2 ∪K2, K1 ∪ P3, K2 ∪ P3,
K1 ∪ P4 and K2 ∪ P4.

We note that the assumption of the graph S being of order at least three
in Corollary 3 is necessary, since every graph is trivially {K1, 2K1, K2}–c–
heavy.

For triples of forbidden subgraphs there are also many results. The
following are two well–known results of this type (graphs D and H, called
deer and hourglass, respectively, are represented on Fig. 1).

Theorem 12 (Broersma and Veldman [5]; Brousek [6]). Let G be a 2-
connected graph. If G is {K1,3, P7, D}–free, then G is hamiltonian.

Theorem 13 (Faudree, Ryjáček and Schiermeyer [16]; Brousek [6]). Let G
be a 2-connected graph. If G is {K1,3, P7, H}–free, then G is hamiltonian.

Note that the pair {K1,3, P6} that is present in Theorem 2 is missing
in Theorem 6. A construction of a 2–connected, claw–free and P6–o–heavy
graph that is not hamiltonian can be found in [25] 1. Since every P6–o–heavy
graph is also implicit {P7, D}–o–heavy, it is clear that Theorems 12 and 13
can not be improved by imposing the condition of implicit o–heaviness on
all of their forbidden subgraphs. However, a slightly stronger implicit degree
sum conditions are sufficient to ensure hamiltonicity. Our main result is the
following.

1Nevertheless, the condition of P6–o–heaviness can be replaced with other degree con-
ditions on paths P6 to ensure hamiltonicity of 2-connected claw–o–heavy graphs. We refer
an interested reader to [24] for details.
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Theorem 14. Let G be a 2-connected, implicit claw–heavy graph of order
n such that in every path v1v2v3v4v5v6v7 induced in G at least one of the
following conditions is satisfied:

(1) id(v4) ≥ n/2, or

(2) id(vi) + id(vj) ≥ n for some i ∈ {1, 2}, j ∈ {6, 7}.

If

(1) in every induced D of G with the set of vertices {u1, u2, u3, u4, u5, u6,
u7} and the set of edges {u1u2, u2u3, u3u4, u3u5, u4u5, u5u6, u6u7} at
least one of the following conditions is satisfied: (a) id(u4) ≥ n/2, or
(b) id(ui) + id(uj) ≥ n for some i ∈ {1, 2, 4}, j ∈ {6, 7}, or

(2) in every induced H of G with the set of vertices {u1, u2, u3, u4, u5} and
the set of edges {u1u2, u2u3, u1u3, u3u4, u3u5, u4u5} at least one of the
following conditions is satisfied: (a) both u1 and u2 are implicit heavy,
or (b) id(ui) + id(uj) ≥ n for some i ∈ {1, 2}, j ∈ {4, 5},

then G is hamiltonian.

Note that the conditions imposed on paths of order seven in Theorem 14
are satisfied in particular by implicit P7–f–heavy and implicit P7–c–heavy
graphs. Similarly, the conditions imposed on induced deers are satisfied by
implicit D–f–heavy graphs and implicit D–c–heavy graphs, and the condi-
tions imposed on hourglasses are satisfied by implicit H–c–heavy graphs,
implicit H–f–heavy graphs and implicit H–o–heavy graphs. Hence, Theo-
rem 14 implies the following new results.

Corollary 4. Let G be a 2-connected, implicit claw–heavy graph. If G is

– implicit {P7, D}–c–heavy or implicit {P7, H}–c–heavy, or

– implicit P7–f–heavy and implicit D–c–heavy, or

– implicit P7–f–heavy and implicit H–c–heavy, or

– implicit P7–f–heavy and implicit H–o–heavy, or

– implicit P7–c–heavy and implicit H–o–heavy, or

– implicit P7–c–heavy and implicit H–f–heavy,

then G is hamiltonian.

Some previously known results, including recent extensions of Theo-
rem 12 and Theorem 13, can also be deduced from Theorem 14.

Corollary 5 (Huang [21]). Let G be a 2–connected, implicit claw–heavy
graph. If G is P6–free, then G is hamiltonian.
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Corollary 6 (Broersma, Ryjáček and Schiermeyer [4]). Let G be a 2–
connected, claw–f–heavy graph. If G is {P7, D}–free or {P7, H}–free, then
G is hamiltonian.

Corollary 7 (Cai and H. Li [8]). Let G be a 2–connected, implicit claw–f–
heavy graph. If G is {P7, D}–free or {P7, H}–free, then G is hamiltonian.

Corollary 8 (Ning [29]). Let G be a 2–connected, claw–f–heavy graph. If
G is {P7, D}–f–heavy or {P7, H}–f–heavy, then G is hamiltonian.

Corollary 9 (Huang [22]). Let G be a 2-connected, claw–f–heavy graph. If
G is implicit {P7, D}–f–heavy or implicit {P7, H}–f–heavy, then G is hamil-
tonian.

Corollary 10 (Cai and Zhang [9]). Let G be a 2-connected, implicit claw–
heavy graph. If G is implicit {P7, D}–f–heavy or implicit {P7, H}–f–heavy,
then G is hamiltonian.

The rest of the paper is organized as follows. In Section 2 we define some
auxiliary notions and present lemmas used throughout the proof. The proof
of Theorems 9, 10, 11 and 14 is presented in Section 3.

2 Preliminaries
In this section we present three lemmas that will be used throughout the
proofs of our main results. They make use of the notion of an implicit heavy
cycle, which is a cycle that contains all implicit heavy vertices of a graph.
For a vertex v ∈ V (G) lying on a cycle C with a given orientation, we denote
by v+ its successor on C and by v− its predecessor. For a set A ⊂ V (C)
the sets A+ and A− are defined analogously, i.e., A+ = {v+ : v ∈ A} and
A− = {v− : v ∈ A}. We write xCy for the path from x ∈ V (C) to y ∈ V (C)
following the orientation of C, and xCy denotes the path from x to y opposite
to the direction of C. Similar notation is used for paths.

The next lemma is implicit in [28].

Lemma 1 (Li, Ning and Cai [28]). Every 2-connected graph contains an
implicit heavy cycle.

A cycle C is called nonextendable if there is no cycle longer than C in G
containing all vertices of C. We use E∗(G) to denote the set
{xy : xy ∈ E(G) or id(x) + id(y) ≥ n}.

Lemma 2 (Huang [21]). Let G be a 2-connected graph on n ≥ 3 vertices
and C be a nonextendable cycle of G of length at most n − 1. If P is an
xy–path in G such that V (C) ⊂ V (P ), then xy /∈ E∗(G).

8



3 Proofs of Theorems 9–11 and 14
For a proof by contradiction suppose that a graph G satisfying the assump-
tions of any of the Theorems 9, 10, 11 or 14 is not hamiltonian. Then G is
a 2-connected implicit claw-heavy graph. By Lemma 1, there is an implicit
heavy cycle in G. Let C be a longest implicit heavy cycle in G and give C an
orientation. From the assumption of 2-connectivity of G it follows that there
is a path P connecting two vertices x1, x2 ∈ V (C) internally disjoint with
C such that |V (P )| ≥ 3. Let P = x1u1u2...urx2 be such a path of minimum
length. Note that this implies that P is induced unless x1x2 ∈ E(G). The
following four claims, as readers can see, also appeared in [9, 21, 22] since
they are basic properties of a longest implicit heavy cycle. We also use them
to start our proof.

Claim 1. ukx+
i /∈ E∗(G) and ukx−i /∈ E∗(G) for every k ∈ {1, 2, . . . , r} and

i ∈ {1, 2}.

Proof. Since P1 = x+
1 Cx1Puk and P2 = x−1 Cx1Puk are paths such that

V (C) ⊂ V (P1) and V (C) ⊂ V (P2), ukx+
1 /∈ E∗(G) and ukx−1 /∈ E∗(G) by

Lemma 2. Similarly, ukx+
2 /∈ E∗(G) and ukx−2 /∈ E∗(G).

Claim 2. x−1 x+
1 ∈ E∗(G) and x−2 x+

2 ∈ E∗(G).

Proof. If x−1 x+
1 /∈ E(G), then the set {x1, x−1 , x+

1 , u1} induces a claw. By
Claim 1, we have id(u1) + id(x−1 ) < n and id(u1) + id(x+

1 ) < n. Since
G is implicit claw–heavy, this implies that id(x−1 ) + id(x+

1 ) ≥ n. Thus,
x−1 x+

1 ∈ E∗(G). Similarly, x−2 x+
2 ∈ E∗(G).

Claim 3. x−1 x−2 /∈ E∗(G) and x+
1 x+

2 /∈ E∗(G).

Proof. Observe that the paths P1 = x−1 Cx2Px1Cx−2 and P2 = x+
1 Cx2Px1Cx+

2
are paths such that V (C) ⊂ V (P1) and V (C) ⊂ V (P2). Thus, the Claim
follows from Lemma 2.

Claim 4. x−1 x+
1 ∈ E(G) or x−2 x+

2 ∈ E(G).

Proof. Suppose to the contrary that x−1 x+
1 /∈ E(G) and x−2 x+

2 /∈ E(G).
Then id(x−1 ) + id(x+

1 ) ≥ n and id(x−2 ) + id(x+
2 ) ≥ n by Claim 2. Thus,

id(x−1 ) + id(x−2 ) ≥ n or id(x+
1 ) + id(x+

2 ) ≥ n, contradicting Claim 3.

By Claim 4, without loss of generality, we assume that x−1 x+
1 ∈ E(G).

The following two claims were proved in [9], here we omit their proofs.

Claim 5 (Cai and Zhang [9]). xix
−
3−i /∈ E∗(G) and xix

+
3−i /∈ E∗(G) for

i ∈ {1, 2}.
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By Claim 5, there is a vertex in x+
i Cx−3−i not adjacent to xi in G for

i = 1, 2. Let yi be the first vertex in x+
i Cx−3−i not adjacent to xi in G for

i = 1, 2. Let u be any vertex of P other than x1 and x2 and let zi be an
arbitrary vertex in x+

i Cyi for i = 1, 2.

Claim 6 (Cai and Zhang [9]). uz1, uz2, z1x2, z2x1, z1z2 /∈ E∗(G).

The proof splits now into subcases, depending on the conditions satisfied
by G.

Case 1. G is implicit K2 ∪ P4–o–heavy or implicit K2 ∪ P4–f–heavy.
By Claim 6, we have that both sets {y−1 , y1, ur, x2, y−2 , y2} and {y−2 , y2, u1,

x1, y−1 , y1} induce a graph isomorphic to K2 ∪ P4 in G.
Assume that G is implicit K2 ∪ P4–f–heavy. Since none of the vertices

u1 and ur belongs to C, both these vertices are implicit light. This im-
plies that both y−2 and y−1 are implicit heavy, contradicting Claim 6. This
contradiction proves the part of Theorem 10 regarding implicit K2 ∪ P4–f–
heavy graphs. By taking induced subgraphs from {y−1 , y1, ur, x2, y−2 , y2} and
{y−2 , y2, u1, x1, y−1 , y1} corresponding to K1 ∪ P4, P4, K1 ∪ P3 and K2 ∪ P3,
we get the same contradiction which can also prove the part of Theorem 10
regarding implicit K1 ∪P4–f–heavy graphs, implicit P4–f–heavy graphs, im-
plicit K1 ∪P3–f–heavy graphs and implicit K2 ∪P3–f–heavy graphs, respec-
tively.

Consider now the case when G is implicit K2 ∪ P4–o–heavy. Then
there is a pair of nonadjacent vertices in both {y−1 , y1, ur, x2, y−2 , y2} and
{y−2 , y2, u1, x1, y−1 , y1} which have implicit degree sum not less than n. Let
us focus on the set {y−1 , y1, ur, x2, y−2 , y2}. Since uz1, z1x2, z1z2 /∈ E∗(G) by
Claim 6, it follows that the pair of nonadjacent vertices with implicit degree
sum at least n belongs to the set {ur, x2, y−2 , y2}. Since uz2 /∈ E∗(G) by
Claim 6, we have id(x2) + id(y2) ≥ n. Now by id(x1) + id(y1) + id(x2) +
id(y2) ≥ 2n, we have id(x1) + id(y2) ≥ n or id(x2) + id(y1) ≥ n, which con-
tradicts Claim 6. This contradiction proves the part of Theorem 9 regarding
implicit K2 ∪ P4–o–heavy graphs, and the left part regarding implicit S–o–
heavy graphs for any proper subgraph S of K2∪P4 is implied by the validity
of theorem for K2 ∪ P4. Thus, the proof of Theorem 9 is completed.

Case 2. G is implicit S–f–heavy for S being one of Z1 and Z2.
Suppose first that G is implicit Z1–f–heavy. Then, since the vertex u1

is implicit light by the choice of C and the set {x−1 , x+
1 , x1, u1} induces Z1,

both vertices x−1 and x+
1 are implicit heavy. Now it follows from Claim 3

that both x−2 and x+
2 are implicit light. Then x−2 x+

2 ∈ E(G), by Claim 2.
But now the set {x−2 , x+

2 , x2, ur} induces Z1. A contradiction. Thus, G is
Z2–f–heavy.

Suppose that r ≥ 2 or r = 1 and x1x2 /∈ E(G). Then one of the
sets {x−1 , x+

1 , x1, u1, u2} or {x−1 , x+
1 , x1, u1, x2} induces Z2. Similarly to the
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previous paragraph, this implies that both x−1 and x+
1 are implicit heavy,

and in consequence x−2 and x+
2 are implicit light vertices forming an edge in

G. But then either {x−2 , x+
2 , x2, ur, ur−1} or {x−2 , x+

2 , x2, ur, x1} also induces
a Z2, a contradiction.

Thus, r = 1 and x1x2 ∈ E(G). But now both sets {u1, x2, x1, y−1 , y1}
and {u1, x1, x2, y−2 , y2} induce Z2, implying that both y−1 and y−2 are implicit
heavy. This contradicts Claim 6. Together with Case 1, this contradiction
completes the proof of Theorem 10.

Case 3. G is implicit K1 ∪ P3–c–heavy.

Claim 7. x1 and x2 are implicit heavy.

Proof. By Claim 6, we have that both sets {x+
1 , x2, y−2 , y2} and {x+

2 , x1, y−1 , y1}
induce a graph isomorphic to K1 ∪ P3 in G. Since G is implicit K1 ∪ P3–c–
heavy and the independent vertex of K1 ∪ P3 is a maximal clique, there is
an implicit heavy vertex in both sets {x2, y−2 , y2} and {x1, y−1 , y1}. If y1 or
y−1 is implicit heavy, then none of the vertices of {x2, y−2 , y2} can be implicit
heavy by Claim 6, a contradiction. Hence, x1 is implicit heavy. Similarly,
x2 is also implicit heavy.

Claim 8. x−2 x+
2 ∈ E(G).

Proof. By Claim 5 and Claim 7, we have that x−2 and x+
2 are implicit light.

Since G is implicit claw-heavy, x−2 x+
2 ∈ E(G).

By Claim 3, there is a vertex in x+
i Cx−3−i not adjacent to x−i in G for

i = 1, 2. Let wi be the first vertex in x+
i Cx−3−i not adjacent to x−i in G for

i = 1, 2. Note that wi 6= x+
i .

Claim 9. uw−i /∈ E(G) and uwi /∈ E(G).

Proof. Suppose that uw−1 ∈ E(G). By Claim 1, we have that w−1 6= x+
1 .

Then C ′ = x1Puw−1 Cx−1 w−−1 C̄x1 is a cycle such that V (C) ⊂ V (C ′), a con-
tradiction. Hence, uw−1 /∈ E(G). We also have that uw1 /∈ E(G); otherwise,
C ′′ = x1Puw1Cx−1 w−1 C̄x1 is a cycle such that V (C) ⊂ V (C ′′), a contradic-
tion. By symmetry, we have that uw−2 /∈ E(G) and uw2 /∈ E(G).

From Claim 1 and Claim 9 we have that {u, x−1 , w−1 , w1} induces a graph
isomorphic to K1 ∪ P3 in G. Since G is implicit K1 ∪ P3–c–heavy, there is
an implicit heavy vertex in the set {x−1 , w−1 , w1}. By Claim 5 and Claim 7
we have that x−1 is implicit light. If w−1 is implicit heavy, then w−1 6= x+

1
by Claim 5 and Claim 7. Thus P1 = w−1 Cx−2 x+

2 Cx−1 w−−1 C̄x1Px2 is a path
such that V (C) ⊂ V (P1) and w−1 x2 ∈ E∗(G), contradicting Lemma 2. If
w1 is implicit heavy, then P2 = w1Cx−2 x+

2 Cx−1 w−1 C̄x1Px2 is a path such
that V (C) ⊂ V (P2) and w1x2 ∈ E∗(G), contradicting Lemma 2. Thus, the
part of Theorem 11 regarding implicit K1 ∪ P3–c–heavy graphs is finished
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by these contradictions. The validity of the remaining part of Theorem 11
will be completed in the following.

Case 4. G satisfies the assumptions of Theorem 14.

Claim 10. x1x2 ∈ E(G).

Proof. Suppose that x1x2 /∈ E(G). By the choice of P , Claim 1 and Claim 6
we have that P ′ = y1y−1 x1u1u2 . . . urx2y−2 y2 is an induced Pr+6, where r ≥ 1.
Let y1y−1 x1u1v5v6v7 be the path induced by the first seven vertices of P ′.
Since u1 is implicit light, it follows from the assumptions of Theorem 14
that for some a ∈ {y1, y−1 } and b ∈ {v6, v7} the inequality id(a) + id(b) ≥ n
holds. Since b ∈ V (P ) ∪ {x2, y−2 , y2} , this contradicts Claim 6.

We complete the proof by considering two cases, depending on the value
of r. When r ≥ 2, we can use the method of the proof of Case 2 in [9]
completely, because the proof does not involve any heavy subgraphs other
than the claw. Here we omit the proof and consider the case when r = 1.

Suppose that r = 1. Then the set {y1, y−1 , x1, u1, x2, y−2 , y2} induces
a D. Since the vertex u1 is implicit light, Claim 6 implies that G does not
satisfy the conditions imposed on induced deers in Theorem 14. Hence, it
satisfies the conditions imposed on H.

Observe that {x−1 , x+
1 , x1, u1, x2} induces an H. Now it follows from

Claim 5 and Claim 6 that both vertices x−1 and x+
1 are implicit heavy. Sim-

ilarly as in Case 2, this implies that both x−2 and x+
2 are implicit light and

x−2 x+
2 ∈ E(G). But now the set {u1, x1, x2, x−2 , x+

2 } induces an H. By
Claim 5 and Claim 6, this contradicts the assumptions of Theorem 14. This
final contradiction completes the proof of Theorem 14.

Observe that every 2–connected implicit–claw–heavy graph that is im-
plicit S–c–heavy for S being one of K1 ∪K2, 2K1 ∪K2, K1 ∪ 2K2, K2 ∪K2,
K2 ∪ P3, K1 ∪ P4, K2 ∪ P4, P4, P5 and P6 satisfies the assumptions of The-
orem 14. Hence, together with Case 3, Case 4 completes also the proof of
Theorem 11.
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