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A graph G of order n is implicit claw-heavy if in every induced copy of K 1,3 in G there are two non-adjacent vertices with sum of their implicit degrees at least n. We study various implicit degree conditions (including, but not limiting to, Ore-and Fan-type conditions) imposing of which on specific induced subgraphs of a 2-connected implicit claw-heavy graph ensures its hamiltonicity. In particular, we improve a recent result of [X. Huang, Implicit degree condition for hamiltonicity of 2-heavy graphs, Discrete Appl. Math. 219 (2017) 126-131] and complete the characterizations of pairs of o-heavy and f-heavy subgraphs for hamiltonicity of 2-connected graphs.

Introduction

We use [START_REF] Bondy | Graph Theory with Applications[END_REF] for terminology and notation not defined here. In the paper only finite, simple and undirected graphs are considered.

Let G be a graph and H be a subgraph of G. For a vertex u ∈ V (G), the neighbourhood of u in H is denoted by N H (u) = {v ∈ V (H) : uv ∈ E(G)} and the degree of u in H is denoted by d H (u) = |N H (u)|. For two vertices u, v ∈ V (H), the distance between u and v in H, denoted by d H (u, v), is Fig. 1: Graphs B (bull), H (hourglass), N (net), D (deer), W (wounded) and Z i .

the length of a shortest (u, v)-path in H (if there are no (u, v)-paths in H, then d H (u, v) := +∞). When there is no danger of ambiguity, we can use N (u), d(u) and d(u, v) in place of N G (u), d G (u) and d G (u, v), respectively. We use N 2 (u) to denote the set of vertices which are at distance two from u, i.e., N 2 (u) = {v ∈ V (G) : d(u, v) = 2}. Let S be a graph. If there are no induced copies of S in G, then G is said to be S-free. Similarly, for a family S of graphs, G is S-free if it is S-free for every S ∈ S. If one demands G being S-free, then the family S is forbidden in G. A cycle in a graph G is called its Hamilton cycle (or hamiltonian cycle), if it contains all vertices of G, and G is called hamiltonian if it contains a Hamilton cycle. Forbidden subgraph conditions and degree conditions are two important types of sufficient conditions for the existence of Hamilton cycles in graphs.

The only connected graph of order at least three forbidding of which in a 2-connected graph G implies hamiltonicity of G, is the path P 3 (we use P i for a path with i vertices). When disconnected subgraphs are also considered, forbidding of 3K 1 also ensures hamiltonicity. The former fact can be deduced from [START_REF] Faudree | Characterizing forbidden pairs for hamiltonian properties[END_REF] and the latter from Chvátal-Erdős theorem [START_REF] Chvátal | A note on hamiltonian circuits[END_REF]. Actually, the graphs P 3 and 3K 1 are the only graphs of order at least three having this property. In [START_REF] Li | Forbidden pairs of disconnected graphs implying hamiltonicity[END_REF], Li and Vrána proved the necessity part of the following theorem.

Theorem 1 (Li and Vrána [26]). Let G be a 2-connected graph and S be a graph of order at least three. Then G being S-free implies that G is hamiltonian if and only if S is P 3 or 3K 1 .

The case with pairs of forbidden subgraphs other than P 3 and 3K 1 is much more interesting. The complete characterization of forbidden pairs of connected subgraphs for hamiltonicity, based partially on results from [START_REF] Broersma | Contemporary Methods in Graph Theory[END_REF], [START_REF] Duffus | Forbidden subgraphs and the Hamiltonian theme[END_REF], [START_REF] Goodman | Sufficient conditions for a graph to be hamiltonian[END_REF] and [START_REF] Gould | Forbidden subgraphs and hamiltonian properties of graphs[END_REF], was obtained by Bedrossian in [START_REF] Bedrossian | Forbidden subgraph and minimum degree conditions for Hamiltonicity[END_REF]. The 'only if' part of the following theorem is due to Faudree and Gould.

Theorem 2 (Bedrossian [1]; Faudree and Gould [START_REF] Faudree | Characterizing forbidden pairs for hamiltonian properties[END_REF]). Let R and S be connected graphs with R, S = P 3 and let G be a 2-connected graph. Then G being {R, S}-free implies G is hamiltonian if and only if (up to symmetry) R = K 1, 3 and S = P 4 , P 5 , P 6 , C 3 , Z 1 , Z 2 , B, N or W (see Fig. 1).

In [START_REF] Li | Forbidden pairs of disconnected graphs implying hamiltonicity[END_REF], Li and Vrána considered pairs of forbidden subgraphs that are not necessarily connected.

Theorem 3 (Li and Vrána [26]). Let R and S be graphs of order at least three other than P 3 and 3K 1 and let G be a 2-connected graph. Then G being {R, S}-free implies G is hamiltonian if and only if (up to symmetry) R = K 1, 3 and S is an induced subgraph of P 6 , W, N or K 2 ∪ P 4 .

A widely studied way of relaxing the forbidden subgraph conditions for hamiltonicity is allowing the subgraphs in the graph, but with some requirements regarding degrees of their vertices imposed on them. Some of these extensions exploit the concept of implicit degree, introduced by Zhu et al. in [START_REF] Zhu | Implicit degrees and circumferences[END_REF].

Definition 1 (Zhu,Li and Deng [32]). Let v be a vertex of a graph G and

d(v) = l + 1. Set M 2 = max{d(u) : u ∈ N 2 (v)}. If N 2 (v) = ∅ and d(v) ≥ 2, then let d 1 ≤ d 2 ≤ d 3 ≤ ... ≤ d l ≤ d l+1 ≤ ... be the degree sequence of vertices of N (v) ∪ N 2 (v). Define d * (v) = d l+1 , if d l+1 > M 2 , d l , otherwise.
Then the implicit degree of v in G is defined as

id(v) = max{d(v), d * (v)}. If N 2 (v) = ∅ or d(v) ≤ 1, then define id(v) = d(v).
Observe that, by the above definition, for every v ∈ V (G) the inequality id(v) ≥ d(v) holds. Some of the (implicit) degree conditions suitable for relaxing the forbidden subgraph conditions originate from the following classical results.

Theorem 4 (Fan [15]). Let G be a 2-connected graph of order n ≥ 3. If

d(u, v) = 2 ⇒ max{d(u), d(v)} ≥ n/2
for every pair of vertices u and v in G, then G is hamiltonian.

Theorem 5 (Ore [31]). Let G be a graph of order n. If for every pair of its non-adjacent vertices the sum of their degrees is not less than n, then G is hamiltonian.

The authors of [START_REF] Zhu | Implicit degrees and circumferences[END_REF] prove a counterpart of Ore's Theorem 5, where the degree sum condition is replaced with the implicit degree sum condition. Similar extension of Thereom 4 can be found in [START_REF] Chen | Longest cycles in 2-connected graphs[END_REF]. Theorems 4 and 5, and their extensions, gave rise to notions of f-heavy [START_REF] Ning | Ore-and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs[END_REF], o-heavy [START_REF] Čada | Degree conditions on induced claws[END_REF], [START_REF] Ning | Ore-and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs[END_REF], implicit f-heavy [START_REF] Cai | Fan-type implicit-heavy subgraphs for hamiltonicity of implicit claw-heavy graphs[END_REF] and implicit o-heavy graphs. Here, we cite the definitions of o-heavy and f-heavy from [START_REF] Ning | Ore-and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs[END_REF] which are given as follows. Let G be a graph of order n.

A vertex v of G is called heavy (or implicit heavy) if d(v) ≥ n/2 (or id(v) ≥ n/2
). If v is not heavy (or not implicit heavy), we call it light (implicit light, respectively). For a given graph H we say that G is H-o-heavy (or implicit H-o-heavy) if in every induced subgraph of G isomorphic to H there are two non-adjacent vertices with the sum of their degrees (implicit degrees, respectively) in G at least n. And G is said to be H-f-heavy (or implicit H-f-heavy), if for every subgraph S of G isomorphic to H, and every two vertices u, v ∈ V (S) holds

d S (u, v) = 2 ⇒ max{d(u), d(v)} ≥ n/2 (max{id(u), id(v)} ≥ n/2, respectively).
For a family of graphs H, G is said to be (implicit)

H-o-heavy, if G is (implicit) H-o-heavy for every H ∈ H.
Classes of H-f-heavy and implicit H-f-heavy graphs are defined similarly. We note that the above definitions about H-f-heavy, H-o-heavy, and H-f-heavy are also all from [START_REF] Ning | Ore-and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs[END_REF]. When a graph is implicit K 1,3 -o-heavy we will call it implicit claw-heavy.

Observe that every H-free graph is trivially H-o-heavy and H-f-heavy. Furthermore, every H-o-heavy (or H-f-heavy) graph is implicit H-o-heavy (implicit H-f-heavy, respectively). Replacing forbidden subgraph conditions with conditions expressed in terms of heavy subgraphs yielded the following extensions of Theorem 2.

Theorem 6 (B. Li, Ryjáček, Wang and S. Zhang [START_REF] Li | Pairs of heavy subgraphs for hamiltonicity of 2-connected graphs[END_REF]). Let R and S be connected graphs with R = P 3 , S = P 3 and let G be a 2-connected graph. Then G being {R, S}-o-heavy implies G is hamiltonian if and only if (up to symmetry) R = K 1, 3 and S = C 3 , P 4 , P 5 , Z 1 , Z 2 , B, N or W . Theorem 7. Let R and S be connected graphs with R = P 3 , S = P 3 and let G be a 2-connected graph. Then G being {R, S}-f-heavy implies that G is hamiltonian if and only if (up to symmetry) R = K 1, 3 and S is one of the following: -P 4 , P 5 , P 6 (Chen, Wei and X. Zhang [START_REF] Chen | Degree-light-free graphs and hamiltonian cycles[END_REF]), -Z 1 (Bedrossian, Chen and Schelp [START_REF] Bedrossian | A generalization of Fan's condition for Hamiltonicity, pancyclicity and Hamiltonian connectedness[END_REF]), -B (G. Li, Wei and Gao [START_REF] Li | A structural method for hamiltonian graphs[END_REF]), -N (Chen, Wei and X. Zhang [START_REF] Chen | Forbidden graphs and hamiltonian cycles[END_REF]), -Z 2 , W (Ning and S. Zhang [START_REF] Ning | Ore-and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs[END_REF]).

Recently, motivated by the main result of [START_REF] Hu | A generalization of Fan's condition and forbidden subgraph conditions for hamiltonicity[END_REF], Li and Ning [START_REF] Li | Heavy subgraphs, stability and hamiltonicity[END_REF] introduced another type of heavy subgraphs. We say that an induced subgraph

H of G is c-heavy in G, if for every maximal clique C of H every non-trivial component of H -C contains a vertex that is heavy in G. Graph G is said to be H-c-heavy if every induced subgraph of G isomorphic to H is c-heavy. For a family H of graphs, G is called H-c-heavy if G is H-c-heavy for every H ∈ H.
Observe that every graph is trivially {K 1,3 , C 3 , P 3 }-c-heavy, since removal of a maximal clique from any of the three subgraphs results in a graph consisting of trivial components (or an empty graph). With that remark in mind, the authors of [START_REF] Li | Heavy subgraphs, stability and hamiltonicity[END_REF] extended Theorem 2 in the following way.

Theorem 8 (B. Li, Ning [START_REF] Li | Heavy subgraphs, stability and hamiltonicity[END_REF]). Let S be a connected graph of order at least three and let G be a 2-connected claw-o-heavy graph. Then G being S-cheavy implies that G is hamiltonian if and only if S = P 4 , P 5 , P 6 , Z 1 , Z 2 , B, N or W .

Similarly to implicit o-heavy and implicit f-heavy graphs, we can define implicit H-c-heavy and implicit H-c-heavy graphs by replacing the degree condition in the definition of c-heavy graphs with implicit degree condition. In the light of the results presented so far, and noting that every implicit claw-f-heavy graph is implicit claw-heavy, it seems worthwhile to tackle the following problems. Problem 1. Characterize all graphs S such that every 2-connected implicit claw-heavy and implicit S-o-heavy graph is hamiltonian. Problem 2. Characterize all graphs S such that every 2-connected implicit claw-heavy and implicit S-f-heavy graph is hamiltonian. Problem 3. Characterize all graphs S such that every 2-connected implicit claw-heavy and implicit S-c-heavy graph is hamiltonian.

As byproducts of the proof of our main result, we obtained the following partial answers to Problems 1-3.

Theorem 9. Let G be a 2-connected implicit claw-heavy graph. If G is implicit S-o-heavy for S being a subgraph of K 2 ∪P 4 , then G is hamiltonian. Theorem 10. Let G be a 2-connected implicit claw-heavy graph. If G is implicit S-f-heavy, with S being one of the graphs K 1 ∪P 3 , K 2 ∪P 3 , K 1 ∪P 4 , K 2 ∪ P 4 , P 4 , Z 1 and Z 2 , then G is hamiltonian. Theorem 11. Let G be a 2-connected implicit claw-heavy graph. If G is implicit S-c-heavy, with S being one of the graphs K 1 ∪ K 2 , 2K 1 ∪ K 2 , K 1 ∪ 2K 2 , K 2 ∪ K 2 , K 1 ∪ P 3 , K 2 ∪ P 3 , K 1 ∪ P 4 , K 2 ∪ P 4 , P 4 , P 5 and P 6 then G is hamiltonian.
Clearly, for S being any of the graphs

K 1 ∪ K 2 , 2K 1 ∪ K 2 , K 2 ∪ K 2 and K 1 ∪2K 2 ,
every graph is S-f-heavy. Observe also that each of the remaining subgraphs of K 2 ∪ P 4 appear in each of Theorems 9-11. Hence, as corollaries from these theorems and Theorems 6-8, we get the following complete characterizations of heavy pairs of (not necessarily connected) subgraphs for hamiltonicity.

Corollary 1. Let R and S be graphs other than P 3 and 3K 

, P 6 , Z 1 , Z 2 , B, N , W , K 1 ∪ K 2 , 2K 1 ∪ K 2 , K 1 ∪ 2K 2 , K 2 ∪ K 2 , K 1 ∪ P 3 , K 2 ∪ P 3 , K 1 ∪ P 4 and K 2 ∪ P 4 .
We note that the assumption of the graph S being of order at least three in Corollary 3 is necessary, since every graph is trivially {K 1 , 2K 1 , K 2 }-cheavy.

For triples of forbidden subgraphs there are also many results. The following are two well-known results of this type (graphs D and H, called deer and hourglass, respectively, are represented on Fig. 1).

Theorem 12 (Broersma and Veldman [5]; Brousek [START_REF] Brousek | Forbidden triples for hamiltonicity[END_REF]). Let G be a 2connected graph. If G is {K 1,3 , P 7 , D}-free, then G is hamiltonian.

Theorem 13 (Faudree, Ryjáček and Schiermeyer [START_REF] Faudree | Forbidden subgraphs and cycle extendability[END_REF]; Brousek [START_REF] Brousek | Forbidden triples for hamiltonicity[END_REF]). Let G be a 2-connected graph. If G is {K 1,3 , P 7 , H}-free, then G is hamiltonian.

Note that the pair {K 1,3 , P 6 } that is present in Theorem 2 is missing in Theorem 6. A construction of a 2-connected, claw-free and P 6 -o-heavy graph that is not hamiltonian can be found in [START_REF] Li | Pairs of heavy subgraphs for hamiltonicity of 2-connected graphs[END_REF] 1 . Since every P 6 -o-heavy graph is also implicit {P 7 , D}-o-heavy, it is clear that Theorems 12 and 13 can not be improved by imposing the condition of implicit o-heaviness on all of their forbidden subgraphs. However, a slightly stronger implicit degree sum conditions are sufficient to ensure hamiltonicity. Our main result is the following.

Theorem 14. Let G be a 2-connected, implicit claw-heavy graph of order n such that in every path v 1 v 2 v 3 v 4 v 5 v 6 v 7 induced in G at least one of the following conditions is satisfied:

(1) id(v 4 ) ≥ n/2, or (2) id(v i ) + id(v j ) ≥ n for some i ∈ {1, 2}, j ∈ {6, 7}.
If [START_REF] Bedrossian | Forbidden subgraph and minimum degree conditions for Hamiltonicity[END_REF] Note that the conditions imposed on paths of order seven in Theorem 14 are satisfied in particular by implicit P 7 -f-heavy and implicit P 7 -c-heavy graphs. Similarly, the conditions imposed on induced deers are satisfied by implicit D-f-heavy graphs and implicit D-c-heavy graphs, and the conditions imposed on hourglasses are satisfied by implicit H-c-heavy graphs, implicit H-f-heavy graphs and implicit H-o-heavy graphs. Hence, Theorem 14 implies the following new results. Some previously known results, including recent extensions of Theorem 12 and Theorem 13, can also be deduced from Theorem 14.

Corollary 5 (Huang [21]). Let G be a 2-connected, implicit claw-heavy graph. If G is P 6 -free, then G is hamiltonian. Corollary 6 (Broersma,Ryjáček and Schiermeyer [4]). Let G be a 2connected, claw-f-heavy graph. If G is {P 7 , D}-free or {P 7 , H}-free, then G is hamiltonian.

Corollary 7 (Cai and H. Li [START_REF] Cai | Hamilton cycles in implicit 2-heavy graphs[END_REF]). Let G be a 2-connected, implicit claw-fheavy graph. If G is {P 7 , D}-free or {P 7 , H}-free, then G is hamiltonian.

Corollary 8 (Ning [29]). Let G be a 2-connected, claw-f-heavy graph. If G is {P 7 , D}-f-heavy or {P 7 , H}-f-heavy, then G is hamiltonian.

Corollary 9 (Huang [22]). Let G be a 2-connected, claw-f-heavy graph. If G is implicit {P 7 , D}-f-heavy or implicit {P 7 , H}-f-heavy, then G is hamiltonian.

Corollary 10 (Cai and Zhang [START_REF] Cai | Fan-type implicit-heavy subgraphs for hamiltonicity of implicit claw-heavy graphs[END_REF]). Let G be a 2-connected, implicit clawheavy graph. If G is implicit {P 7 , D}-f-heavy or implicit {P 7 , H}-f-heavy, then G is hamiltonian.

The rest of the paper is organized as follows. In Section 2 we define some auxiliary notions and present lemmas used throughout the proof. The proof of Theorems 9, 10, 11 and 14 is presented in Section 3.

Preliminaries

In this section we present three lemmas that will be used throughout the proofs of our main results. They make use of the notion of an implicit heavy cycle, which is a cycle that contains all implicit heavy vertices of a graph. For a vertex v ∈ V (G) lying on a cycle C with a given orientation, we denote by v + its successor on C and by v -its predecessor. For a set A ⊂ V (C) the sets A + and A -are defined analogously, i.e., A + = {v + : v ∈ A} and A -= {v -: v ∈ A}. We write xCy for the path from x ∈ V (C) to y ∈ V (C) following the orientation of C, and xCy denotes the path from x to y opposite to the direction of C. Similar notation is used for paths.

The next lemma is implicit in [28].

Lemma 1 (Li, Ning and Cai [28]). Every 2-connected graph contains an implicit heavy cycle.

A cycle C is called nonextendable if there is no cycle longer than C in G containing all vertices of C.

We use E * (G) to denote the set {xy : xy ∈ E(G) or id(x) + id(y) ≥ n}.

Lemma 2 (Huang [21]). Let G be a 2-connected graph on n ≥ 3 vertices and C be a nonextendable cycle of G of length at most n -1. If P is an xy-path in G such that V (C) ⊂ V (P ), then xy / ∈ E * (G).

Corollary 4 .

 4 Let G be a 2-connected, implicit claw-heavy graph. If G is -implicit {P 7 , D}-c-heavy or implicit {P 7 , H}-c-heavy, or -implicit P 7 -f-heavy and implicit D-c-heavy, or -implicit P 7 -f-heavy and implicit H-c-heavy, or -implicit P 7 -f-heavy and implicit H-o-heavy, or -implicit P 7 -c-heavy and implicit H-o-heavy, or -implicit P 7 -c-heavy and implicit H-f-heavy, then G is hamiltonian.

  1 , and let G be a 2-connected graph. Then G being {R, S}-o-heavy implies G is hamiltonian if and only if (up to symmetry) R = K 1, 3 and S is an induced subgraph of P 5 , W, N or K 2 ∪ P 4 . Let R and S be graphs other than P 3 and 3K 1 , and let G be a 2-connected graph. Then G being {R, S}-f-heavy implies G is hamiltonian if and only if (up to symmetry) R = K 1, 3 and S is one of P 4 , P 5 , P 6 , Z 1 , Z 2 , B, N, W , K 1 ∪ P 3 , K 2 ∪ P 3 , K 1 ∪ P 4 and K 2 ∪ P 4 . Let S be a graph of order at least three other than P 3 and 3K 1 , and let G be a 2-connected graph, claw-o-heavy graph. Then G being S-c-heavy implies G is hamiltonian if and only if S is one of P 4 , P 5

	Corollary 2. Corollary 3.

  in every induced D of G with the set of vertices {u 1 , u 2 , u 3 , u 4 , u 5 , u 6 , u 7 } and the set of edges {u 1 u 2 , u 2 u 3 , u 3 u 4 , u 3 u 5 , u 4 u 5 , u 5 u 6 , u 6 u 7 } at least one of the following conditions is satisfied: (a) id(u 4 ) ≥ n/2, or (b) id(u i ) + id(u j ) ≥ n for some i ∈ {1, 2, 4}, j ∈ {6, 7}, or[START_REF] Bedrossian | A generalization of Fan's condition for Hamiltonicity, pancyclicity and Hamiltonian connectedness[END_REF] in every induced H of G with the set of vertices {u 1 , u 2 , u 3 , u 4 , u 5 } and the set of edges {u 1 u 2 , u 2 u 3 , u 1 u 3 , u 3 u 4 , u 3 u 5 , u 4 u 5 } at least one of the following conditions is satisfied: (a) both u 1 and u 2 are implicit heavy, or (b) id(u i ) + id(u j ) ≥ n for some i ∈ {1, 2}, j ∈ {4, 5},

then G is hamiltonian.

Nevertheless, the condition of P6-o-heaviness can be replaced with other degree conditions on paths P6 to ensure hamiltonicity

of 2-connected claw-o-heavy graphs. We refer an interested reader to[START_REF] Li | Degree conditions restricted to induced paths for hamiltonicity of claw-heavy graphs[END_REF] for details.
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Proofs of Theorems 9-11 and 14

For a proof by contradiction suppose that a graph G satisfying the assumptions of any of the Theorems 9, 10, 11 or 14 is not hamiltonian. Then G is a 2-connected implicit claw-heavy graph. By Lemma 1, there is an implicit heavy cycle in G. Let C be a longest implicit heavy cycle in G and give C an orientation. From the assumption of 2-connectivity of G it follows that there is a path P connecting two vertices x 1 , x 2 ∈ V (C) internally disjoint with C such that |V (P )| ≥ 3. Let P = x 1 u 1 u 2 ...u r x 2 be such a path of minimum length. Note that this implies that P is induced unless x 1 x 2 ∈ E(G). The following four claims, as readers can see, also appeared in [START_REF] Cai | Fan-type implicit-heavy subgraphs for hamiltonicity of implicit claw-heavy graphs[END_REF][START_REF] Huang | Hamilton cycles in implicit claw-heavy graphs[END_REF][START_REF] Huang | Implicit degree condition for hamiltonicity of 2-heavy graphs[END_REF] since they are basic properties of a longest implicit heavy cycle. We also use them to start our proof.

By Claim 1, we have id(u 1 ) + id(x - 1 ) < n and id(u 1 ) + id(x + 1 ) < n. Since G is implicit claw-heavy, this implies that id(x - 1 ) + id(x + 1 ) ≥ n. Thus,

Proof. Observe that the paths

are paths such that V (C) ⊂ V (P 1 ) and V (C) ⊂ V (P 2 ). Thus, the Claim follows from Lemma 2.

Proof. Suppose to the contrary that x -

By Claim 4, without loss of generality, we assume that x - 1 x + 1 ∈ E(G). The following two claims were proved in [START_REF] Cai | Fan-type implicit-heavy subgraphs for hamiltonicity of implicit claw-heavy graphs[END_REF], here we omit their proofs.

Claim 5 (Cai and Zhang [9]).

By Claim 5, there is a vertex in x + i Cx - 3-i not adjacent to x i in G for i = 1, 2. Let y i be the first vertex in x + i Cx - 3-i not adjacent to x i in G for i = 1, 2. Let u be any vertex of P other than x 1 and x 2 and let z i be an arbitrary vertex in x + i Cy i for i = 1, 2. Claim 6 (Cai and Zhang [9]).

The proof splits now into subcases, depending on the conditions satisfied by G.

Since none of the vertices u 1 and u r belongs to C, both these vertices are implicit light. This implies that both y - 2 and y - 1 are implicit heavy, contradicting Claim 6. This contradiction proves the part of Theorem 10 regarding implicit K 2 ∪ P 4 -fheavy graphs. By taking induced subgraphs from {y -

, K 1 ∪ P 3 and K 2 ∪ P 3 , we get the same contradiction which can also prove the part of Theorem 10 regarding implicit K 1 ∪ P 4 -f-heavy graphs, implicit P 4 -f-heavy graphs, implicit K 1 ∪ P 3 -f-heavy graphs and implicit K 2 ∪ P 3 -f-heavy graphs, respectively.

Consider now the case when G is implicit K 2 ∪ P 4 -o-heavy. Then there is a pair of nonadjacent vertices in both {y - 1 , y 1 , u r , x 2 , y - 2 , y 2 } and {y - 2 , y 2 , u 1 , x 1 , y - 1 , y 1 } which have implicit degree sum not less than n. Let us focus on the set {y - 1 , y 1 , u r , x 2 , y - 2 , y 2 }. Since uz 1 , z 1 x 2 , z 1 z 2 / ∈ E * (G) by Claim 6, it follows that the pair of nonadjacent vertices with implicit degree sum at least n belongs to the set {u r , x 2 , y - 2 , y 2 }. Since uz 2 / ∈ E * (G) by Claim 6, we have id(x 2 ) + id(y 2 ) ≥ n. Now by id(x 1 ) + id(y 1 ) + id(x 2 ) + id(y 2 ) ≥ 2n, we have id(x 1 ) + id(y 2 ) ≥ n or id(x 2 ) + id(y 1 ) ≥ n, which contradicts Claim 6. This contradiction proves the part of Theorem 9 regarding implicit K 2 ∪ P 4 -o-heavy graphs, and the left part regarding implicit S-oheavy graphs for any proper subgraph S of K 2 ∪P 4 is implied by the validity of theorem for K 2 ∪ P 4 . Thus, the proof of Theorem 9 is completed.

Case 2. G is implicit S-f-heavy for S being one of Z 1 and Z 2 . Suppose first that G is implicit Z 1 -f-heavy. Then, since the vertex u 1 is implicit light by the choice of C and the set {x - 1 , x By Claim 3, there is a vertex in

Proof. Suppose that uw - 1 ∈ E(G). By Claim 1, we have that w

From Claim 1 and Claim 9 we have that {u, Proof. Suppose that x 1 x 2 / ∈ E(G). By the choice of P , Claim 1 and Claim 6 we have that P = y 1 y - 1 x 1 u 1 u 2 . . . u r x 2 y - 2 y 2 is an induced P r+6 , where r ≥ 1. Let y 1 y - 1 x 1 u 1 v 5 v 6 v 7 be the path induced by the first seven vertices of P . Since u 1 is implicit light, it follows from the assumptions of Theorem 14 that for some a ∈ {y 1 , y - 1 } and b ∈ {v 6 , v 7 } the inequality id(a) + id(b) ≥ n holds. Since b ∈ V (P ) ∪ {x 2 , y - 2 , y 2 } , this contradicts Claim 6.

We complete the proof by considering two cases, depending on the value of r. When r ≥ 2, we can use the method of the proof of Case 2 in [START_REF] Cai | Fan-type implicit-heavy subgraphs for hamiltonicity of implicit claw-heavy graphs[END_REF] completely, because the proof does not involve any heavy subgraphs other than the claw. Here we omit the proof and consider the case when r = 1.

Suppose that r = 1. Then the set {y 1 , y - 1 , x 1 , u 1 , x 2 , y - 2 , y 2 } induces a D. Since the vertex u 1 is implicit light, Claim 6 implies that G does not satisfy the conditions imposed on induced deers in Theorem 14. Hence, it satisfies the conditions imposed on H.

Observe that {x - 1 , x + 1 , x 1 , u 1 , x 2 } induces an H. Now it follows from Claim 5 and Claim 6 that both vertices x - 1 and x + 1 are implicit heavy. Similarly as in Case 2, this implies that both x - 2 and x + 2 are implicit light and x - 2 x + 2 ∈ E(G). But now the set {u 1 , x 1 , x 2 , x - 2 , x + 2 } induces an H. By Claim 5 and Claim 6, this contradicts the assumptions of Theorem 14. This final contradiction completes the proof of Theorem 14.

Observe that every 2-connected implicit-claw-heavy graph that is implicit S-c-heavy for S being one of K 1 ∪ K 2 , 2K 1 ∪ K 2 , K 1 ∪ 2K 2 , K 2 ∪ K 2 , K 2 ∪ P 3 , K 1 ∪ P 4 , K 2 ∪ P 4 , P 4 , P 5 and P 6 satisfies the assumptions of Theorem 14. Hence, together with Case 3, Case 4 completes also the proof of Theorem 11.