
HAL Id: hal-01867134
https://hal.science/hal-01867134

Submitted on 4 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid High-Order method for the incompressible
Navier–Stokes equations based on Temam’s device

Lorenzo Botti, Daniele Antonio Di Pietro, Jérôme Droniou

To cite this version:
Lorenzo Botti, Daniele Antonio Di Pietro, Jérôme Droniou. A Hybrid High-Order method for the
incompressible Navier–Stokes equations based on Temam’s device. Journal of Computational Physics,
2019, 376, pp.786-816. �10.1016/j.jcp.2018.10.014�. �hal-01867134�

https://hal.science/hal-01867134
https://hal.archives-ouvertes.fr


A Hybrid High-Order method for the incompressible

Navier–Stokes equations based on Temam’s device

Lorenzo Botti∗ Daniele A. Di Pietro† Jérôme Droniou‡

July 19, 2018

Abstract

In this work we propose a novel Hybrid High-Order method for the incompressible Navier–
Stokes equations based on a formulation of the convective term including Temam’s device for
stability. The proposed method has several advantageous features: it supports arbitrary approx-
imation orders on general meshes including polyhedral elements and non-matching interfaces; it
is inf-sup stable; it is locally conservative; it supports both the weak and strong enforcement of
velocity boundary conditions; it is amenable to efficient computer implementations where a large
subset of the unknowns is eliminated by solving local problems inside each element. Particular
care is devoted to the design of the convective trilinear form, which mimicks at the discrete
level the non-dissipation property of the continuous one. The possibility to add a convective
stabilisation term is also contemplated, and a formulation covering various classical options is
discussed. The proposed method is theoretically analysed, and an energy error estimate in hk+1

(with h denoting the meshsize) is proved under the usual data smallness assumption. A thorough
numerical validation on two and three-dimensional test cases is provided both to confirm the the-
oretical convergence rates and to assess the method in more physical configurations (including,
in particular, the well-known two- and three-dimensional lid-driven cavity problems).

Keywords. Hybrid High-Order methods, incompressible Navier–Stokes equations, polyhedral el-
ement methods, a priori error estimate
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1 Introduction

In this work we propose a novel Hybrid High-Order (HHO) method for the incompressible Navier–
Stokes equations based on a formulation of the convective term including Temam’s device for stability
[54].

Introduced in [25], HHO methods are new generation discretisation methods for PDEs based on
discrete unknowns that are broken polynomials on the mesh and on its skeleton. Unlike classical
finite element methods, the notion of reference element is not present in HHO, and basis functions
are not explicitly defined. Instead, the discrete unknowns are combined to reconstruct relevant
quantities inside each element by mimicking integration by parts formulas. These local reconstructions
are used to formulate consistent Galerkin terms, while stability is achieved by stabilisation terms
devised at the element level. The HHO approach has several advantages: it is dimension-independent;
it supports arbitrary approximation orders on general meshes including polyhedral elements, non-
matching junctions and, possibly, curved faces [12]; it is locally conservative; it is amenable to efficient
(parallel or serial) computer implementations. The HHO method proposed in this work has additional
advantageous features specific to the incompressible Navier–Stokes problem: it satisfies a uniform inf-
sup condition, leading to a stable pressure-velocity coupling; it behaves robustly for large Reynolds
numbers; it supports both weakly and strongly enforced boundary conditions; at each nonlinear
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iteration, it requires to solve a linear system where the only globally coupled unknowns are the face
velocities and the mean value of the pressure inside each element.

The literature on the numerical approximation of the incompressible Navier–Stokes equations is
vast, and giving a detailed account lies out of the scope of the present work. We therefore mention here
only those numerical methods which share similar features with the HHO approach. Discontinuous
Galerkin (DG) methods, which hinge on discrete unknowns that are broken polynomials on the
mesh and have the potential to support polyhedral elements, have gained significant popularity in
computational fluid mechanics. Their application to the discretisation of incompressible flows has
been considered, e.g., in [5, 11, 18, 19, 26, 41, 43, 47, 51, 53]. We particularly mention here [26],
where a DG trilinear form based on Temam’s device was proposed which, unlike the one considered
here, leads to a non-conservative discretisation of the momentum equation. Linked to DG methods
are Cell Centered Galerkin methods, which hinge on incomplete polynomial spaces; see [20, Section 4]
for their application to the incompressible Navier–Stokes problem. A second family of discretisation
methods worth mentioning here are Hybridisable Discontinuous Galerkin (HDG) methods, which can
be regarded as an evolution of DG methods where both face and element unknowns are present.
Their application to the incompressible Navier–Stokes equations has been considered, e.g., in [16, 39,
49, 50, 55]; see also [30] (and, in particular, Remark 5 therein) for a comparison with HHO methods.
More recent polyhedral technologies have also been applied to the discretisation of the incompressible
Navier–Stokes equations. We cite here, in particular, the two-dimensional Virtual Element Method
(VEM) of [8]; see also the related work [7]. For a study of the relations among HDG, HHO, and VEM
in the context of scalar diffusion problems, we refer the reader to [10, 24]. Finally, as regards HHO
methods, applications to incompressible flows have been considered in [1, 13, 29, 30].

For a given integer k ≥ 0, the HHO method proposed here hinges on discrete velocity unknowns
that are vector-valued polynomials of total degree ≤ k on mesh elements and faces, and discontinuous
pressure unknowns of total degree ≤ k. Based on the discrete velocity unknowns, we reconstruct inside
each element: (i) a velocity one degree higher than element unknowns, leading to the characteristic
O(hk+1)-approximation of the viscous term; (ii) a divergence in the space of scalar-valued polynomials
of total degree≤ ` whose purpose its twofold: with ` = k, it is used in the discretisation of the pressure-
velocity coupling; with ` = 2k, it appears in Temam’s contribution to the convective trilinear form;
(iii) a directional derivative used to formulate the consistent contribution in the convective term. The
convective trilinear form embedding Temam’s device is the first main novelty of this paper, and it
mimicks at the discrete level the non-dissipation property valid at the continuous level. Stability in
the convection-dominated regime can be strenghtened by introducing a convective stabilisation term,
for which a variety of classical options are here adapted to the HHO framework. The main source
of inspiration is [23], where HHO methods for locally degenerate scalar diffusion-advection-reaction
problems are developed. The second important novelty of this work is the extension of Nitsche’s
technique to weakly enforce boundary conditions on the velocity in the HHO scheme. The weak
enforcement of boundary conditions can improve the resolution of boundary layers and simplifies the
practical implementation.

Theoretical justification and numerical validation of the proposed method are provided. From the
theoretical point of view, we prove an error estimate in hk+1 for the discrete H1

0 -like norm of the error
on the velocity and the L2-norm of the error on the pressure. As customary for the Navier–Stokes
equations, this error estimate is derived under a data smallness assumption. Following the ideas in
[30], one could also prove convergence without any smallness assumption on the data nor additional
regularity on the exact solution. These developments are omitted for the sake of brevity. From
the numerical point of view, we provide a thorough assessment of the proposed method using well-
known benchmark problems from the literature. Specifically, the convergence rates with or without
convective stabilisation and with strongly or weakly enforced boundary conditions are assessed using
Kovasznay’s solution [45]. The robustness in the convection-dominated regime is assessed, on the
other hand, simulating the two- and three-dimensional lid-driven cavity flows for Reynolds numbers
up to 20,000 and polynomial degrees up to k=8. For these test cases, no analytical solution is
available, so we compare with results from the literature.

The rest of this work is organised as follows. In Section 2 we discuss the continuous problem and
formulate a key remark that will inspire the design of the discrete trilinear form. In Section 3 we
discuss the discrete setting, with particular focus on the local reconstruction operators at the heart
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of the HHO method. In Section 4 we discuss the discretisation of the various terms, highlight the
properties relevant for the analysis, formulate the discrete problem, and carry out its convergence
analysis. Section 5 contains a thorough numerical validation on tests commonly used in the litera-
ture. The flux formulation of the method highlighting its local conservation properties is derived in
Section 6. Finally, Appendix A contains the proofs of intermediate technical results. Readers mainly
interested in the numerical recipe and results can skip this technical appendix at first reading.

2 Continuous setting and a key remark

Let Ω ⊂ Rd, d ∈ {2, 3}, denote a bounded connected polyhedral domain with boundary ∂Ω.
We consider here a Newtonian fluid with constant density. Denote by f ∈ L2(Ω)d a force per
unit volume, by ν > 0 a real number representing the kinematic viscosity, and set L2

0(Ω) :={
q ∈ L2(Ω) :

∫
Ω
q = 0

}
. The weak formulation of the incompressible Navier–Stokes equations reads:

Find (u, p) ∈ H1
0 (Ω)d × L2

0(Ω) such that

νa(u,v) + t(u,u,v) + b(v, p) =

∫
Ω

f ·v ∀v ∈ H1
0 (Ω)d, (1a)

−b(u, q) = 0 ∀q ∈ L2(Ω), (1b)

with bilinear forms a and b and trilinear form t such that

a(w,v) :=

∫
Ω

∇w : ∇v, b(v, q) := −
∫

Ω

(∇·v)q, t(w,v, z) :=

∫
Ω

(w·∇)v·z

Here, w·∇ is the differential operatorw·∇ =
∑d
j=1 wj∂j , so that, ifw = (wi)i=1,...,d, u = (ui)i=1,...,d,

and v = (vi)i=1,...,d, then (w·∇)u·v =
∑d
i,j=1 wj(∂jui)vi. In (1), we have considered wall boundary

conditions for the sake of simplicity: other usual boundary conditions can be considered.
The well-posedness of problem (1) for small data hinges on the coercivity of the viscous bilinear

form a, on the inf-sup stability of the pressure-velocity coupling bilinear form b, and on the non-
dissipativity of the convective trilinear form t. These same stability properties, along with suitable
consistency requirements, are key to the design of a convergent HHO method. A coercive discrete
counterpart of the bilinear form a has been proposed in [28]; see also [23] concerning the weak
enforcement of boundary conditions. Inf-sup stable HHO counterparts of the bilinear form b, on the
other hand, can be found, e.g., in [1, 9, 29]. Here, we generalise them to incorporate weakly enforced
boundary conditions.

Let us examine the non-dissipativity property of t in order to illustrate the strategy used to
mimick it at the discrete level. We start by noting the following integration by parts formula: For all
w,v, z ∈ H1(Ω)d,∫

Ω

(w·∇)v·z +

∫
Ω

(w·∇)z·v +

∫
Ω

(∇·w)(v·z) =

∫
∂Ω

(w·n)(v·z), (2)

where n denotes the outward unit normal vector to ∂Ω. Using (2) with w = v = z = u (u being the
velocity solution to (1)), we get

t(u,u,u) =

∫
Ω

(u·∇)u·u = −1

2

∫
Ω

(∇·u)(u·u) +
1

2

∫
∂Ω

(u·n)(u·u) = 0, (3)

where we have used (1b) to infer ∇·u = 0 and cancel the first term, and the fact that u vanishes on
∂Ω to cancel the second. This relation expresses the fact that the convective term does not contribute
to the kinetic energy balance, obtained taking v = u in (1a).

When attempting to reproduce property (3) at the discrete level, a difficulty arises: the discrete
counterparts of the terms in the right-hand side of (3) may not vanish, since the discrete solution may
not be “sufficiently” divergence-free (see Remark 13) and/or it may not be zero on ∂Ω. To overcome
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this difficulty, the following modified expression for t can be used as a starting point, an idea which
can be traced back to Temam [54]:

t̃(w,v, z) =

∫
Ω

(w·∇)v·z +
1

2

∫
Ω

(∇·w)(v·z)− 1

2

∫
∂Ω

(w·n)(v·z). (4)

Repeating the above reasoning, it is a simple matter to check that this trilinear form satisfies the
following generalised version of property (3): For all w,v ∈ H1(Ω)d, t̃(w,v,v) = 0. This means, in
particular, that t̃ is non-dissipative even if w is not divergence free and v does not vanish on ∂Ω (as
may be the case for the discrete velocity).

3 Discrete setting

In this section we establish the discrete setting. After briefly recalling the notion of mesh and
introducing projectors on local polynomial spaces, we define the spaces of discrete unknowns and the
local reconstructions upon which the HHO method is built.

3.1 Mesh

Throughout the paper, we will use for the sake of simplicity the three-dimensional nomenclature also
when d = 2, i.e., we will speak of polyhedra and faces rather than polygons and edges. We define
a mesh as a couple Mh := (Th,Fh), where Th is a finite collection of polyhedral elements T such
that h := maxT∈Th hT > 0 with hT denoting the diameter of T , while Fh is a finite collection of
planar faces F . It is assumed henceforth that the mesh Mh matches the geometrical requirements
detailed in [34, Definition 7.2]; see also [31, Section 2]. Boundary faces lying on ∂Ω and internal faces
contained in Ω are collected in the sets Fb

h and F i
h, respectively. For every mesh element T ∈ Th, we

denote by FT the subset of Fh containing the faces that lie on the boundary ∂T of T . Symmetrically,
for every F ∈ Fh, we denote by TF the subset of Th containing the elements that share F (one if
F ∈ F i

h, two if F ∈ Fb
h ). For each mesh element T ∈ Th and face F ∈ FT , nTF is the (constant) unit

normal vector to F pointing out of T . For any boundary face F ∈ Fb
h , we denote by TF the unique

element of Th such that F ∈ FTF and we let nF := nTFF .
Our focus is on the so-called h-convergence analysis, so we consider a sequence of refined meshes

that is regular in the sense of [31, Definition 3] with regularity parameter uniformly bounded away
from zero. The mesh regularity assumption implies, in particular, that the diameters of a mesh
element and its faces are uniformly comparable and that the number of faces in FT is bounded above
by an integer independent of h.

3.2 Notation and basic results

We abridge into a .C b the inequality a ≤ Cb with constant C > 0 independent of h, ν, and, for
local inequalities, on the mesh element or face. We also write a 'C b for C−1a ≤ b ≤ Ca with C as
above. When the constant name is not relevant, we simply write a . b and a ' b.

Let X denote a mesh element or face and, for an integer l ≥ 0, denote by Pl(X) the space
spanned by the restrictions to X of polynomials in the space variables of total degree ≤ l. We denote
by πlX : L1(X)→ Pl(X) the L2-orthogonal projector such that, for all v ∈ L1(X),∫

X

(v − πlXv)w = 0 ∀w ∈ Pl(X). (5)

The vector- and matrix-valued L2-orthogonal projectors, both denoted by πlX , are obtained apply-
ing πlX component-wise. The following optimal W s,p-approximation properties are proved in [22,
Appendix A.2] using the classical theory of [36] (cf. also [14, Chapter 4]). Let s ∈ {0, . . . , l + 1}
and p ∈ [1,∞]. It holds with hidden constant only depending on d, l, s, p, and the mesh regularity
parameter: For all T ∈ Th, all v ∈W s,p(T ), and all m ∈ {0, . . . , s},

|v − πlT v|Wm,p(T ) . hs−mT |v|W s,p(T ), (6a)
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and, if s ≥ 1 and m ≤ s− 1,

h
1
p

T |v − π
l
T v|Wm,p(FT ) . hs−mT |v|W s,p(T ), (6b)

where Wm,p(FT ) is the space spanned by functions that are in Wm,p(F ) for all F ∈ FT , endowed
with the corresponding broken norm.

At the global level, the space of broken polynomial functions on Th of total degree ≤ l is denoted
by Pl(Th), and πlh is the corresponding L2-orthogonal projector. Broken polynomial spaces form
subspaces of the broken Sobolev spaces W s,p(Th) :=

{
v ∈ Lp(Ω) : v|T ∈W s,p(T ) ∀T ∈ Th

}
, which

will be used to express the regularity requirements in consistency estimates. We additionally set, as
usual, Hs(Th) := W s,2(Th).

3.3 Discrete velocity space

Let a polynomial degree k ≥ 0 be fixed. We define the following space of hybrid discrete velocity
unknowns:

Uk
h :=

{
vh = ((vT )T∈Th , (vF )F∈Fh) : vT ∈ Pk(T )d ∀T ∈ Th and vF ∈ Pk(F )d ∀F ∈ Fh

}
.

For all vh ∈ U
k
h, we denote by vh ∈ Pk(Th)d the vector-valued broken polynomial function obtained

patching element-based unknowns, that is

vh|T := vT ∀T ∈ Th. (7)

The restrictions of Uk
h and vh ∈ U

k
h to a generic mesh element T ∈ Th are respectively denoted by Uk

T

and vT = (vT , (vF )F∈FT ). The vector of discrete variables corresponding to a smooth function on Ω
is obtained via the global interpolation operator Ikh : H1(Ω)d → Uk

h such that, for all v ∈ H1(Ω)d,

Ikhv := ((πkTv|T )T∈Th , (π
k
Fv|F )F∈Fh).

Its restriction to a generic mesh element T ∈ Th is IkT : H1(T )d → Uk
T such that, for all v ∈ H1(T )d,

IkTv = (πkTv, (π
k
Fv|F )F∈FT ). (8)

We equip Uk
h with the discrete H1

0 -like norm such that, for all vh ∈ U
k
h,

‖vh‖1,h :=

( ∑
T∈Th

‖vT ‖21,T +
∑
F∈Fb

h

h−1
F ‖vF ‖

2
L2(F )d

) 1
2

, (9)

where, for all T ∈ Th,

‖vT ‖1,T :=

(
‖∇vT ‖2L2(T )d×d +

∑
F∈FT

h−1
F ‖vF − vT ‖

2
L2(F )d

) 1
2

. (10)

In the analysis, we will frequently invoke the following discrete Sobolev embeddings in Uk
h, which

state that, up to a certain q depending on the space dimension, the Lq-norms of the broken polyno-
mial function (7) obtained patching element unknowns are controlled (uniformly with respect to the
meshsize) by the discrete H1

0 -like norm.

Proposition 1 (Discrete Sobolev embeddings). Let 1 ≤ q < ∞ if d = 2 and 1 ≤ q ≤ 6 if d = 3.
Then, it holds with hidden constant depending only on Ω, k, q, and the mesh regularity parameter:

∀vh ∈ U
k
h, ‖vh‖Lq(Ω)d . ‖vh‖1,h. (11)

Proof. See Section A.1. We also refer to [22, Proposition 5.4] for the proof of a similar result in the
subspace (51) of Uk

h with strongly enforced boundary conditions.

An immediate consequence of Proposition 1 is that the map ‖·‖1,h is a norm on Uk
h.
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3.4 Local reconstructions

We next introduce the local reconstructions at the core of the HHO method along with their relevant
properties. Throughout the rest of this section, we work on a fixed mesh element T ∈ Th.

3.4.1 Gradient

Inspired by the principles of [31, Sections 4.3.1.1 and 4.4.2], for any integer ` ≥ 0 we define the local
gradient reconstruction G`

T : Uk
T → P`(T )d×d such that, for all vT ∈ U

k
T and all τ ∈ P`(T )d×d,∫

T

G`
TvT : τ = −

∫
T

vT ·(∇·τ ) +
∑
F∈FT

∫
F

vF ·τnTF (12a)

=

∫
T

∇vT : τ +
∑
F∈FT

∫
F

(vF − vT )·τnTF . (12b)

The right-hand side of (12a) mimicks an integration by parts formula where the role of the function
represented by vT is played by vT in the volumetric term and by vF in the boundary term. The
reformulation (12b), obtained integrating by parts the first term in (12a), shows that Gk

TvT stems
from two contributions: the gradient of the element-based unknown and a boundary correction in-
volving the differences between element- and face-based unknowns. If ` ≥ k, it follows from [30, Eq.
(22)] that, for all v ∈ H1(T )d,∫

T

(G`
T I

k
Tv −∇v) : τ = 0 ∀τ ∈ Pk(T )d×d. (13)

Comparing with the definition (5) of the L2-orthogonal projector, this gives, in particular,

Gk
T I

k
Tv = πkT (∇v). (14)

The following approximation properties for (G`
T ◦ I

k
T ) have been proved in [30, Proposition 1]: For

all v ∈ Hm(T )d with with m = `+ 2 if ` ≤ k, m = k + 1 otherwise,

‖G`
T I

k
Tv −∇v‖L2(T )d×d + h

1
2

T ‖G
`
T I

k
Tv −∇v‖L2(∂T )d×d . hm−1

T |v|Hm(T )d . (15)

3.4.2 Velocity

From Gk
T , we can obtain a reconstruction rk+1

T : Uk
T → Pk+1(T )d of the velocity one order higher

than element-based unknowns as follows: For all vT ∈ U
k
T , rk+1

T vT is such that∫
T

(∇rk+1
T vT −G

k
TvT ) : ∇w = 0 ∀w ∈ Pk+1(T )d,

∫
T

(rk+1
T vT − vT ) = 0,

that is, the gradient of rk+1
T vT is the L2-orthogonal projection of Gk

TvT on ∇Pk+1(T )d, and rk+1
T vT

has the same mean value over T as the element-based unknown vT . We note for further use the
following characterisation of rk+1

T vT , obtained writing (12b) for τ = ∇w:∫
T

∇rk+1
T vT : ∇w =

∫
T

∇vT : ∇w +
∑
F∈FT

∫
F

(vF − vT )·∇wnTF . (16)

This velocity reconstruction will play a key role in the approximation of viscous terms, as detailed in
Section 4.1.

3.4.3 Divergence

For any integer ` ≥ 0, a discrete divergence reconstruction D`
T : Uk

T → P`(T ) is obtained setting, for

all vT ∈ U
k
T ,

D`
TvT := tr(G`

TvT ).
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This discrete divergence will be used with ` = k in the pressure-velocity coupling (see Section 4.2)
and with ` = 2k to incorporate Temam’s device for stability in the convection term (see Section 4.3).
An immediate consequence of (15) is that, for any v ∈ Hm(T )d with m as in that equation, it holds
that

‖D`
T I

k
Tv −∇·v‖L2(T ) . hm−1

T |v|Hm(T )d . (17)

For further use, we record the following characterisation of D`
T , obtained from (12b) with τ = qId:

For all vT ∈ U
k
T ,∫
T

D`
TvT q =

∫
T

(∇·vT )q +
∑
F∈FT

∫
F

(vF − vT )·nTF q ∀q ∈ P`(T ). (18)

Writing this formula for ` = 2k and ` = k and letting, in both cases, q span Pk(T ), it is inferred that,
for any vT ∈ U

k
T ,

πkT (D2k
T vT ) = Dk

TvT . (19)

Another consequence of (14) together with the linearity of the L2-orthogonal projector is the following
relation: For any v ∈ H1(T )d,

Dk
T I

k
Tv = πkT (∇·v). (20)

3.4.4 Directional derivative

For the discretisation of the convective term, we also need a reconstruction of directional derivatives
inspired by [23, Eq. (12)]. The main novelty is that here the advective velocity field is represented
by a vector of discrete velocity unknowns wT ∈ U

k
T rather than a smooth field on T ; see also [3]

for similar developments in the context of miscible displacements in porous media. Specifically, the
directional derivative reconstruction GkT (wT ; ·) : Uk

T → Pk(T )d is such that, for all vT ∈ U
k
T ,∫

T

GkT (wT ;vT )·z =

∫
T

(wT ·∇)vT ·z +
∑
F∈FT

∫
F

(wF ·nTF )(vF − vT )·z ∀z ∈ Pk(T )d. (21)

In the above expression, the role of the advective velocity inside the element and on its faces is played
by wT and wF , respectively. For all z ∈ Pk(T )d, writing (12b) for ` = 2k and τ = z ⊗ wT :=
(ziwT,j)1≤i,j≤d and comparing with (21), one can see that it holds∫

T

GkT (wT ;vT )·z =

∫
T

(wT ·G2k
T )vT ·z +

∑
F∈FT

∫
F

(wF −wT )·nTF (vF − vT )·z, (22)

where, recalling that (G2k
T vT )ij approximates the partial derivative with respect to the jth space

variable of the ith component of the function represented by vT , we have set (wT ·G2k
T )vT :=(∑d

j=1 wT,j(G
2k
T vT )ij

)
i=1,...,d

. This shows that GkT (wT ;vT ) differs from (wT ·G2k
T )vT in that wF re-

places wT in the boundary term. The approximation properties of the discrete directional derivative
relevant in the analysis are summarised in the following proposition.

Proposition 2 (Approximation properties of the discrete directional derivative). It holds: For all
T ∈ Th, all v ∈W 1,4(T ) ∩Hk+1(T )d, and all z ∈ Pk(T )d,∣∣∣∣∫

T

(
GkT (IkTv; IkTv)− (v·∇)v

)
·z
∣∣∣∣ . hk+1

T |v|Hk+1(T )d |v|W 1,4(T )d‖z‖L4(T )d . (23)

Proof. See Section A.2.

3.5 A discrete integration by parts formula

In this section we prove a global discrete integration by parts formula which plays the role of (2) at
the discrete level. It also establishes a link between the discrete directional derivative and divergence
reconstructions. As in the continuous setting, this formula plays a central role in proving a non-
dissipation property for the convective trilinear form (see point (i) in Lemma 8) and justifies the
specific formulation adopted for Temam’s device in (41).
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Proposition 3 (Discrete integration by parts formula). It holds, for all wh,vh, zh ∈ U
k
h,∑

T∈Th

∫
T

(
GkT (wT ;vT )·zT + vT ·GkT (wT ; zT ) +D2k

T wT (vT ·zT )
)

= −
∑
T∈Th

∑
F∈FT

∫
F

(wF ·nTF )(vF − vT )·(zF − zT ) +
∑
F∈Fb

h

∫
F

(wF ·nF )vF ·zF . (24)

Remark 4 (Comparison with (2)). Compared with its continuous counterpart (2), formula (24) con-
tains one additional term in the right-hand side where the differences between face and element
unknowns in vh and zh appear. This term reflects the non-conformity of the HHO space.

Proof of Proposition 3. Let an element T ∈ Th be fixed. Expanding first GkT (wT ;vT ) according to
its definition (21) with z = zT , then integrating by parts the first volumetric term, we obtain∫

T

GkT (wT ;vT )·zT =

∫
T

(wT ·∇)vT ·zT +
∑
F∈FT

∫
F

(wF ·nTF )(vF − vT )·zT

= −
∫
T

vT ·(wT ·∇)zT −
∫
T

(∇·wT )vT ·zT

+
∑
F∈FT

∫
F

[(wF ·nTF )(vF ·zT )− (wF ·nTF )(vT ·zT ) + (wT ·nTF )(vT ·zT )]

=: T1 + T2 + T3.
(25)

Using again (21) this time with vT = zT and z = vT , we obtain for the first term

T1 = −
∫
T

GkT (wT ; zT )·vT +
∑
F∈FT

∫
F

(wF ·nTF )(zF − zT )·vT . (26)

Invoking the characterisation (18) of the discrete divergence reconstruction with ` = 2k and q =
vT ·zT , we get for the second term

T2 = −
∫
T

D2k
T wT (vT ·zT ) +

∑
F∈FT

∫
F

(wF −wT )·nTF (vT ·zT ). (27)

Plugging (26)–(27) into (25) and rearranging, we obtain∫
T

(
GkT (wT ;vT )·zT + vT ·GkT (wT ; zT ) +D2k

T wT (vT ·zT )
)

=
∑
F∈FT

∫
F

(wF ·nTF )(zF ·vT − zT ·vT + zT ·vF ).

Summing the above equality over T ∈ Th and adding the quantity

−
∑
T∈Th

∑
F∈FT

∫
F

(wF ·nTF )(vF ·zF ) +
∑
F∈Fb

h

∫
F

(wF ·nF )(vF ·zF ) = 0, (28)

the conclusion follows after observing that zF ·vT −zT ·vT +zT ·vF −zF ·vF = −(vF −vT )·(zF −zT ).
Formula (28) is justified observing that, for any internal face F ∈ F i

h such that F ∈ FT1
∩ FT2

for
distinct mesh elements T1, T2 ∈ Th, it holds that (wF ·nT1F )(vF ·zF ) + (wF ·nT2F )(vF ·zF ) = 0 owing
to the single-valuedness of wF , vF , and zF .

4 The Hybrid High-Order method

In this section we discuss the discretisation of the viscous, pressure-velocity coupling, and convective
terms. We then formulate the discrete problem.
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4.1 Viscous term

To discretise the viscous term, we introduce the bilinear form ah : Uk
h ×U

k
h → R such that

ah(wh,vh) :=
∑
T∈Th

aT (wT ,vT )

+
∑
F∈Fb

h

∫
F

(
−∇rk+1

TF
wTF

nF ·vF +wF ·∇rk+1
TF
vTFnF + h−1

F wF ·vF
)
,

(29)

where the terms in the second line account for the weakly enforced boundary conditions à la Nitsche,
while the element contribution aT : Uk

T ×U
k
T → R is such that

aT (wT ,vT ) := (∇rk+1
T wT ,∇rk+1

T vT )T + sT (wT ,vT ). (30)

In the right-hand side of (30), the first term is the usual Galerkin contribution responsible for con-
sistency, while sT : Uk

T × U
k
T → R is the following stabilisation bilinear form that penalises the

difference between the interpolate of the velocity reconstruction and the discrete unknowns:

sT (wT ,vT ) :=
∑
F∈FT

1

hF

∫
F

(δkTFwT − δ
k
TwT )·(δkTFvT − δ

k
TvT ), (31)

where, for all vT ∈ U
k
T , the difference operators are such that, recalling the definition (8) of IkT ,

(δkTvT , (δ
k
TFvT )F∈FT ) := IkTr

k+1
T vT − vT =

(
πkTr

k+1
T vT − vT , (πkF (rk+1

T vT )|F − vF )F∈FT

)
.

The role of this stabilisation bilinear form is to ensure the following uniform local norm equivalence
(see, e.g., [28, Lemma 4], where the scalar case is considered): For all T ∈ Th and all vT ∈ U

k
T ,

aT (vT ,vT ) 'C−1
a
‖vT ‖21,T , (32)

with ‖·‖1,T defined by (10). It holds (see, e.g., [31, Proposition 3.1]): For all T ∈ Th and all
v ∈ Hk+2(T )d,

sT (IkTv, I
k
Tv)

1
2 . hk+1

T |v|Hk+2(T )d . (33)

The properties of the bilinear forms ah relevant for the analysis are summarised in the following
lemma.

Lemma 5 (Properties of ah). The bilinear form ah has the following properties:

(i) Stability and boundedness. It holds with ‖·‖1,h defined by (9): For all vh ∈ U
k
h,

a(vh,vh) 'C−1
a
‖vh‖21,h. (34)

(ii) Consistency. It holds: For all w ∈ H1
0 (Ω)d ∩Hk+2(Th)d such that ∆w ∈ L2(Ω)d,

sup
vh∈Uk

h,‖vh‖1,h=1

∣∣∣∣∫
Ω

∆w·vh + ah(Ikhw,vh)

∣∣∣∣ . hk+1|w|Hk+2(Th)d . (35)

Proof. See Section A.3.

Remark 6 (Variations for the Nitsche terms). Several variations are possible for the terms responsible
of the weak enforcement of boundary conditions in (29). Specifically, a symmetric variation is obtained
replacing inside the sum over F ∈ Fb

h the term
∫
F
wF ·∇rk+1

TF
vTFnF by −

∫
F
wF ·∇rk+1

TF
vTFnF . This

term can also be removed altogether, leading to the so-called incomplete variation. One can also add
a penalty coefficient η > 0 in front of the penalty term, writing

∫
F
ηh−1

F wF ·vF . The lower threshold
for η leading to a stable method depends on whether the skew-symmetric, symmetric or incomplete
versions are considered. For the skew-symmetric version, in particular, stability is obtained provided
η > 0, and the expression (29) corresponds to η = 1. The penalty parameter is present in our
implementation, and values larger than 1 have sometimes been required in numerical experiments;
see the comments in Section 5.1.
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4.2 Pressure-velocity coupling

The pressure-velocity coupling hinges on the bilinear form bh on Uk
h × Pk(Th) such that

bh(vh, qh) := −
∑
T∈Th

∫
T

Dk
TvT qT +

∑
F∈Fb

h

∫
F

(vF ·nF )qTF , (36)

where qT := qh|T . The second term in the right-hand side of (36) accounts for the weak enforcement
of boundary conditions. The relevant properties of bh are summarised in the following lemma.

Lemma 7 (Properties of bh). The bilinear form bh has the following properties:

(i) Consistency/1. It holds, for all v ∈ H1
0 (Ω)d,

bh(Ikhv, qh) = b(v, qh) ∀qh ∈ Pk(Th). (37)

(ii) Stability. It holds: For all qh ∈ P kh := Pk(Th) ∩ L2
0(Ω),

‖qh‖L2(Ω) . sup
vh∈Uk

h,‖vh‖1,h=1

bh(vh, qh). (38)

(iii) Consistency/2. It holds: For all q ∈ H1(Ω) ∩Hk+1(Th),

sup
vh∈Uk

h,‖vh‖1,h=1

∣∣∣∣∫
Ω

∇q·vh − bh(vh, π
k
hq)

∣∣∣∣ . hk+1|q|Hk+1(Th). (39)

Proof. See Section A.4.

4.3 Convective term

Let wh ∈ U
k
h. To discretise the convective term, inspired by (4), we introduce the global trilinear

form th on Uk
h ×U

k
h ×U

k
h such that

th(wh,vh, zh) :=
∑
T∈Th

tT (wT ,vT , zT )− 1

2

∑
F∈Fb

h

∫
F

(wF ·nF )(vF ·zF ), (40)

where the second term in the right-hand side accounts for weakly enforced boundary conditions while,
for all T ∈ Th, the local trilinear form tT on Uk

T ×U
k
T ×U

k
T is such that

tT (wT ,vT , zT ) :=

∫
T

GkT (wT ;vT )·zT +
1

2

∫
T

D2k
T wT (vT ·zT )

+
1

2

∑
F∈FT

∫
F

(wF ·nTF )(vF − vT )·(zF − zT ). (41)

The second and third terms embody Temam’s device [54], and are crucial to obtain skew-symmetry
and non-dissipation properties for th detailed in the following lemma.

Lemma 8 (Properties of th). The trilinear form th has the following properties:

(i) Skew-symmetry and non-dissipation. For all wh,vh, zh ∈ U
k
h, it holds that

th(wh,vh, zh) =
1

2

∑
T∈Th

∫
T

(
GkT (wT ;vT )·zT − vT ·GkT (wT ; zT )

)
, (42)

so that, in particular, for all wh,vh ∈ U
k
h,

th(wh,vh,vh) = 0. (43)
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(ii) Boundedness. It holds: For all wh,vh, zh ∈ U
k
h,

|th(wh,vh, zh)| .Ct ‖wh‖1,h‖vh‖1,h‖zh‖1,h. (44)

(iii) Consistency. It holds: For all w ∈ H1
0 (Ω)d ∩W k+1,4(Th)d,

sup
zh∈Uk

h,‖zh‖1,h=1

∣∣∣∣∫
Ω

(
(w·∇)w·zh +

1

2
(∇·w)w·zh

)
− th(Ikhw, I

k
hw, zh)

∣∣∣∣
. hk+1‖w‖W 1,4(Ω)d |w|Wk+1,4(Th)d . (45)

Proof. See Section A.5.

Remark 9 (Reformulation of th). Expanding the discrete directional derivatives appearing in (42)
according to their definition (21), we arrive at the following reformulation of th, which shows that,
in the computer implementation, one does not need to actually compute GkT (· ; ·) nor D2k

T :

th(wh,vh, zh)

=
1

2

∑
T∈Th

[∫
T

(wT ·∇)vT ·zT −
∫
T

vT ·(wT ·∇)zT +
∑
F∈FT

∫
F

(wF ·nTF ) (vF ·zT − zF ·vT )

]
.

4.4 Convective stabilisation

When dealing with high-Reynolds flows, it is sometimes necessary to strengthen stability by penalising
the difference between face and element unknowns. Fix ρ : R→ [0,∞) a Lipschitz-continuous function
and, for T ∈ Th and a given wT ∈ U

k
T , define the local stabilisation bilinear form jT (wT ; ·, ·) :

Uk
T ×U

k
T → R by

jT (wT ;vT , zT ) :=
∑
F∈FT

∫
F

ν

hF
ρ(PeTF (wF ))(vF − vT )·(zF − zT ). (46)

Here, the local (oriented) Péclet number PeTF : Pk(F )d → R is such that, for all w ∈ Pk(F )d,

PeTF (w) := hF
w·nTF
ν

.

On boundary faces F ∈ Fb
h , we simply write PeF (w) instead of PeTFF (w). As already pointed out in

[6, 17, 23], using the generic function ρ in the definition of the convective stabilisation terms enables
a unified treatment of several classical discretisations (in the notations of [6], A(s) = ρ(s) + 1

2s and
B(s) = −ρ(s) + 1

2s; in the notations of [23], ρ = 1
2 |A|). Specifically, the HHO version of classical

convective stabilisations is obtained with the following choices of ρ:

• Centered scheme: ρ = 0.

• Upwind scheme: ρ(s) = 1
2 |s|. In this case, the definition of jT (wT ; ·, ·) simplifies to

jT (wT ;vT ,vT ) :=
∑
F∈FT

∫
F

|wF ·nTF |
2

(uF − uT )·(zF − zT ).

• Locally upwinded θ-scheme: ρ(s) = 1
2 (1− θ(s))|s|, where θ ∈ C1

c (−1, 1), 0 ≤ θ ≤ 1 and θ ≡ 1 on
[− 1

2 ,
1
2 ]. This choice in (46) corresponds to the centered scheme if |PeTF (wF )| ≤ 1

2 (dominating
diffusion) and to the upwind scheme if |PeTF (wF )| ≥ 1 (dominating advection).

• Scharfetter–Gummel scheme: ρ(s) = s
2 coth( s2 )− 1.
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The advantage of the locally upwinded θ-scheme and the Scharfetter–Gummel scheme over the upwind
scheme is that they behave as the centered scheme, and thus introduce less numerical diffusion, when
PeTF (wF ) is close to zero (dominating viscosity). See, e.g., the discussion in [32, Section 4.1] for the
Scharfetter–Gummel scheme.

For wh ∈ U
k
h, the global stabilisation bilinear form jh(wh; ·, ·) : Uk

h × U
k
h → R is obtained by

assembling the local contributions and by adding a penalisation at the boundary to account for weakly
enforced boundary conditions:

jh(wh;vh, zh) :=
∑
T∈Th

jT (wT ;vT , zT ) +
∑
F∈Fb

h

∫
F

ν

hF
ρ(PeF (wF ))vF ·zF . (47)

Lemma 10 (Properties of jh). The stabilisation term jh has the following properties:

(i) Continuity. It holds, for all vh,wh, zh, z
′
h ∈ U

k
h,

|jh(vh; zh, z
′
h)− jh(wh; zh, z

′
h)| .Cj h1− d4 ‖vh −wh‖1,h‖zh‖1,h‖z′h‖1,h. (48)

(ii) Consistency. It holds: For all w ∈W 1,4(Ω)d ∩W k+1,4(Th)d and all zh ∈ U
k
h,

sup
zh∈Uk

h,‖zh‖1,h=1

|jh(Ikhw; Ikhw, zh)| . hk+1‖w‖W 1,4(Ω)d |w|Wk+1,4(Th)d . (49)

Proof. See Section A.6.

4.5 Discrete problem

Recall that we have set P kh := Pk(Th) ∩ L2
0(Ω) (see Lemma 7). The HHO discretisation with weakly

enforced boundary conditions of problem (1) reads: Find (uh, ph) ∈ Uk
h × P kh such that

νah(uh,vh) + th(uh,uh,vh) + jh(uh;uh,vh) + bh(vh, ph) =

∫
Ω

f ·vh ∀vh ∈ U
k
h (50a)

−bh(uh, qh) = 0 ∀qh ∈ P kh . (50b)

As usual in HHO methods, boundary conditions can also be strongly enforced seeking the velocity
approximation in the following subspace of Uk

h:

Uk
h,0 :=

{
vh = ((vT )T∈Th , (vF )F∈Fh) ∈ Uk

h : vF = 0 ∀F ∈ Fb
h

}
. (51)

The HHO discretisation with strongly enforced boundary conditions of problem (1) then reads: Find
(uh, ph) ∈ Uk

h,0 × P kh such that

νah(uh,vh) + th(uh,uh,vh) + jh(uh;uh,vh) + bh(vh, ph) =

∫
Ω

f ·vh ∀vh ∈ U
k
h,0 (52a)

−bh(uh, qh) = 0 ∀qh ∈ Pk(Th). (52b)

Some remarks are of order.

Remark 11 (Simplifications). Since both the discrete velocity uh and the test function vh in (52a)
are in Uk

h,0, the terms involving sums over F ∈ Fb
h in the bilinear forms ah and bh (see, respectively,

(29) and (36)), in the trilinear form th (see (40)), and in the convective stabilisation term jh (see
(47)) vanish.

Remark 12 (Mass equation). For all vh ∈ U
k
h,0, we have that

bh(vh, 1) = −
∑
T∈Th

∫
T

Dk
TvT = −

∑
T∈Th

∑
F∈FT

∫
F

vF ·nTF = 0,

12



where we have used the definition (36) of bh and the strongly enforced boundary condition in the
first equality, the relation (18) after integrating by parts the first term in the right-hand side in the
second equality, and the single-valuedness of interface unknowns together with the strongly enforced
boundary condition to conclude. As a consequence, (52b) was written for any qh ∈ Pk(Th), and not
only qh ∈ P kh as in (50b). This is a key point to prove the local mass balance (66b) below, which
requires to take qh equal to the characteristic function of one element (which, of course, does not
have zero average on Ω).

Remark 13 (Incompressibility constraint). Equation (52b) is equivalent to Dk
TuT = 0 for all T ∈ Th,

and expresses the fact that the HHO velocity field solution to (52) is incompressible. Notice, however,
that the fact that Dk

TuT = 0 for all T ∈ Th does not imply, in general, that D2k
T uT = 0, which justifies

the introduction of the second term in the expression (41) of the local convective trilinear form.

4.6 Convergence analysis

We investigate here the convergence of the method. We focus on the version (50) with weakly enforced
boundary conditions. The proofs carry out unchanged to the version (52) with strongly enforced
boundary conditions after accounting for the fact that face unknowns on the boundary vanish for
vectors of discrete unknowns in Uk

h,0. We estimate the error defined as the difference between the
solution to the HHO scheme and the interpolant of the exact solution, denoted for short by

(ûh, p̂h) := (Ikhu, π
k
hp) ∈ U

k
h,0 × P kh . (53)

As usual for the Navier–Stokes equations, the error estimate is obtained under a smallness assumption
on the data. To specify this smallness assumption, we denote by CP a Poincaré constant in H1

0 (Ω)d

and, using e.g. [22, Proposition 7.1], we take CI such that, for all w ∈ H1
0 (Ω)d,

‖Ikhw‖1,h ≤ CI‖w‖H1
0 (Ω)d . (54)

Theorem 14 (Discrete error estimate for small data). Assume that the forcing term f satisfies, for
some α ∈ (0, 1),

‖f‖L2(Ω)d ≤ α
ν2Ca(

Ct + Cjh1− d4
)
CICP

, (55)

where Ca, Ct and Cj are defined in (34), (44) and (48), respectively. Let (u, p) ∈ H1
0 (Ω)d × L2

0(Ω)

be a solution to the Navier–Stokes equations (1) and (u, ph) ∈ Uk
h × P kh be a solution to the HHO

scheme (50) with weakly enforced boundary conditions. Assume that u ∈ W k+1,4(Th)d ∩Hk+2(Th)d

and that p ∈ H1(Ω) ∩ Hk+1(Th), and let (ûh, p̂h) be defined by (53). Then, it holds with hidden
constant independent of h, ν and α,

‖uh − ûh‖1,h + (ν + 1)−1‖ph − p̂h‖L2(Ω)

. (1− α)−1ν−1hk+1
(
ν|u|Hk+2(Th)d + ‖u‖W 1,4(Ω)d |u|Wk+1,4(Th)d + |p|Hk+1(Th)

)
. (56)

Remark 15 (Rates of convergence and convergence without regularity assumption). As in [30, Corol-
lary 16], one can deduce from (56) the estimate

‖∇hr
k+1
h uh −∇u‖L2(Ω)d×d + (ν + 1)−1‖ph − p‖L2(Ω)

. (1− α)−1ν−1hk+1
(
ν|u|Hk+2(Th)d + ‖u‖W 1,4(Ω)d |u|Wk+1,4(Th)d + |p|Hk+1(Th)

)
,

where ∇h denotes the broken gradient on Th and rk+1
h uh is defined by patching the local velocity

reconstructions: (rk+1
h uh)|T := rk+1

T uT for all T ∈ Th. Also following the ideas in [30], we could prove
the convergence of the solution to the HHO scheme towards the solution to (1) without requiring any
smallness assumption on f or any regularity property on the solution other than (u, p) ∈ H1

0 (Ω)d ×
L2

0(Ω) (see [30, Theorem 14]).
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Proof of Theorem 14. (i) Estimate on the velocity. Set

(eh, εh) := (uh − ûh, ph − p̂h). (57)

Defining the consistency error Eh : Uk
h → R such that

Eh(vh) :=

∫
Ω

f ·vh − νah(ûh,vh)− th(ûh, ûh,vh)− jh(ûh; ûh,vh)− bh(vh, p̂h),

we have, substituting
∫

Ω
f ·vh in (50a),

νah(eh,vh) + th(uh,uh,vh)− th(ûh, ûh,vh)

+ jh(uh;uh,vh)− jh(ûh; ûh,vh) + bh(vh, εh) = Eh(vh). (58)

Make vh = eh. The skew-symmetry property (43) of th together with linearity in its second argument
yield 0 = th(uh, eh, eh) = th(uh,uh, eh)− th(uh, ûh, eh) and thus, by the boundedness (44),

|th(uh,uh, eh)− th(ûh, ûh, eh)| = |th(eh, ûh, eh)| ≤ Ct‖eh‖21,h‖ûh‖1,h.

Moreover, by the continuity property (48) of jh and the positivity of jh(uh; eh, eh),

jh(uh;uh, eh)− jh(ûh; ûh, eh) = jh(uh; eh, eh) + jh(uh; ûh, eh)− jh(ûh; ûh, eh)

≥ − Cjh1− d4 ‖uh − ûh‖1,h‖ûh‖1,h‖eh‖1,h. (59)

Finally, by (50b), (37) and (1b), we have

bh(eh, εh) = bh(uh, εh)− bh(ûh, εh) = bh(uh, εh)− b(u, εh) = 0.

Hence, coming back to (58) with vh = eh and using the stability (34) of ah,

Eh(eh) ≥
[
νCa − Ct‖ûh‖1,h − Cjh1− d4 ‖ûh‖1,h

]
‖eh‖21,h

≥
[
νCa −

(
Ct + Cjh

1− d4
)
CIν

−1CP ‖f‖L2(Ω)d

]
‖eh‖21,h

≥ (1− α)νCa‖eh‖21,h, (60)

where we have used the definition (54) of CI , the basic estimate ‖u‖H1
0 (Ω)d ≤ ν−1CP ‖f‖L2(Ω)d

(obtained by using v = u in the weak formulation (1)), and (55).
To estimate Eh(eh) from above, we recall that f = −ν∆u + (u·∇)u + ∇p, so that, for any

vh ∈ U
k
h,

Eh(vh) = − ν
(∫

Ω

∆u·vh + ah(ûh,vh)

)
+

(∫
Ω

(u·∇)u·vh − th(ûh, ûh,vh)

)
− jh(ûh; ûh,vh) +

(∫
Ω

∇p·vh − bh(vh, p̂h)

)
.

Using the consistency estimates (35), (45) (together with ∇·u = 0), (49) and (39), all the elementary
components of Eh(vh) can be estimated and we find

|Eh(vh)| . hk+1
(
ν|u|Hk+2(Th)d + ‖u‖W 1,4(Ω)d |u|Wk+1,4(Th)d + |p|Hk+1(Th)

)
‖vh‖1,h. (61)

Applied to vh = eh and combined with (60), this proves the estimate on the velocity error in (56).

(ii) Estimate on the pressure. To estimate the error on the pressure, we start from the stability
property (38) of bh and we use the error equation (58) to write

‖εh‖L2(Ω) . sup
vh∈Uk

h, ‖vh‖1,h=1

bh(vh, εh)

= sup
vh∈Uk

h, ‖vh‖1,h=1

(
Eh(vh)− νah(eh,vh)− th(uh,uh,vh) + th(ûh, ûh,vh) (62)

− jh(uh;uh,vh) + jh(ûh; ûh,vh)
)
. (63)
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By trilinearity of th,

th(uh,uh,vh)− th(ûh, ûh,vh) = th(eh,uh,vh) + th(ûh, eh,vh). (64)

By bilinearity of jh(uh; ·, ·),

jh(ûh; ûh,vh)− jh(uh;uh,vh) = jh(ûh; ûh,vh)− jh(uh; ûh,vh)− jh(uh; eh,vh). (65)

Hence, the estimate (61) on Eh(vh) and the boundedness properties (34) of ah (together with a
Cauchy–Schwarz inequality) and (44) of th, along with the continuity estimate (48) on jh (with
(vh,wh, zh, z

′
h) = (ûh,uh, ûh,vh) and (vh,wh, zh, z

′
h) = (uh,0, eh,vh)) yield

‖εh‖L2(Ω) . hk+1
(
ν|u|Hk+2(Th)d + ‖u‖W 1,4(Ω)d |u|Wk+1,4(Th)d + |p|Hk+1(Th)

)
+ ν‖eh‖1,h + (1 + h1− d4 )‖eh‖1,h (‖uh‖1,h + ‖ûh‖1,h) .

The proof of the estimate on ‖ph − p̂h‖L2(Ω) is completed by plugging into the expression above the
estimate on ‖eh‖1,h already established in (56), by using the definition (54) of CI , and by writing
h ≤ diam(Ω) and ‖uh‖1,h . ν−1‖f‖L2(Ω)d (obtained using vh = uh in (50a) and invoking (34), (43),
jh(uh;uh,uh) ≥ 0, and (11) with q = 2).

4.7 Links with other methods

As noticed in [28, Section 2.5] for pure diffusion equations, the lowest order HHO method (that is,
the discretisation of the diffusive bilinear form presented in Section 4.1 with k=0) is a particular case
of the Hybrid Finite Volume method, which is itself a specific instance of the Hybrid Mixed Mimetic
(HMM) method [35]. This comparison was extended in [23, Section 5.4] to advection–diffusion–
reaction equations, where it was shown that, with a convective term discretised using the directional
derivative (21) (with a known velocity field instead of wT ) and a stabilisation term as in Section 4.4,
the HHO method for k=0 corresponds to the HMM discretisation of advection–diffusion–reaction
equations presented in [6].

An initial version of the HMM method, in its Mixed Finite Volume form, was applied to the
Navier–Stokes equations in [33], with upwinding of the convective term, albeit using a stabilisation
of the diffusion that did not exactly reproduce linear solutions (contrary to sT defined by (31) for
k=0). This scheme was modified in [32] to use the standard HMM stabilisation that includes (31)
(with k=0) as a specific case, and to include all the various discretisations of the convective term as
in [6] or Section 4.4. The HHO method we present here can therefore be considered as a higher-order
extension of the HMM scheme for Navier–Stokes as in [32, 33]

As shown in [24, Section 4], the HHO method for diffusion equations is very close to the non-
conforming Virtual Element Method (VEM) [4] and the high-order mixed Mimetic Finite Difference
method [46]. The nonconforming VEM has been proposed and analysed for the Stokes equations in
[15], with strongly enforced boundary conditions. The HHO methods of Section 4.5 differs from the
one presented in this reference, among others, in the choice of the degree for element-based unknowns
(k instead of k− 1), which is crucial for the optimal convergence of the convective term appearing in
the complete Navier–Stokes system. Another relevant difference is the possibility to weakly enforce
boundary conditions.

5 Numerical tests

This section contains an extensive numerical validation of the proposed HHO methods. All the steady-
state computations presented hereafter are performed by means of the pseudo-transient-continuation
algorithm analyzed by [44] employing the Selective Evolution Relaxation (SER) strategy [48] for
evolving the pseudo-time step according to the Newton’s equations residual. Convergence to steady-
state is achieved when the Euclidean norm of the momentum equation residual drops below 10−12. At
each pseudo-time step, the linearised equations are exactly solved by means of the direct solver Pardiso
[52], distributed as part of the Intel Math Kernel Library (Intel MKL). Accordingly, the Euclidean
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norm of the continuity equation residual is comparable to the machine epsilon at all pseudo-time
steps. The code implementation makes extensive use of the linear algebra Eigen open-source library
[42].

5.1 Kovasznay flow

We start by assessing the convergence properties of the method using the analytical solution of
[45]. Specifically, in dimension d = 2 we solve on the square domain Ω := (−0.5, 1.5) × (0, 2) the
Dirichlet problem corresponding to the exact solution (u, p) such that, introducing the Reynolds

number Re := ν−1 and letting λ := Re
2 −

(
Re2

4 + 4π2
) 1

2

, the velocity components are given by

u1(x) := 1− exp(λx1) cos(2πx2), u2(x) :=
λ

2π
exp(λx1) sin(2πx2),

while the pressure is given by

p(x) := −1

2
exp(2λx1) +

λ

2
(exp(4λ)− 1) .

We take here ν = 0.025, corresponding to Re = 40.
We consider computations with polynomial degrees k ∈ {0, . . . , 5} over a sequence of uniformly

h-refined Cartesian grids having 2i (i = 2, 3, . . . , 7) elements in each direction. We report in Tables
1 and 2, respectively, the results for the methods (52) with upwind stabilisation and (50) without
convective stabilisation. While any other combination is possible, this setup is preferred here since
we noticed that adding the convective stabilisation term with weakly enforced boundary conditions
can require in some cases to introduce a penalty parameter larger than 1 in the last term of (29);
see Remark 6 on this point. We have observed that this can also be avoided by simply removing
convective stabilisation on the boundary from (47).

The following quantities are monitored (see (57) for the definition of the errors): the energy norm

of the error on the velocity ‖eh‖ν,h := (νah(eh, eh))
1
2 , the L2-error on the velocity ‖eh‖L2(Ω)d , the

L2-error on the pressure ‖εh‖L2(Ω), and the assembly and solution times (respectively denoted by τass

and τsol) running a serial version of the code on a 2017 quad-core CPU laptop. The assembly time
takes into account: (i) the element-by-element computation of bilinear and trilinear forms; (ii) the
element-by-element static condensation; (iii) the assembly of the statically condensed matrix blocks
into the global matrix; (iv) the introduction of a Lagrange multiplier to control the mean value of
pressure over Ω; (v) in case of strong boundary conditions, the elimination of boundary face unknowns
from the global matrix. We remark that the assembly of the trilinear form requires to revert static
condensation in order to compute the velocity solution over mesh elements. This back solve post-
processing can be performed element-by-element, but its computational expense is comparable to that
of matrix assembly: indeed, all bilinear and trilinear forms need to be recomputed. To avoid incurring
this cost, in our implementation the back solve is performed element-by-element during the matrix
assembly, meaning that the bilinear and trilinear forms are computed once and twice, respectively.
The solution time refers to the wall-clock-cpu time required by the direct solver to perform the LU
factorization of the global system matrix and compute the solution increment to update the globally
coupled unknowns.

Denoting by ei and hi, respectively, the error in a given norm and the meshsize corresponding
to a refinement iteration i, the estimated order of convergence (EOC) is obtained according to the
following formula:

EOC =
log ei − log ei+1

log hi − log hi+1
.

Besides discretization errors, EOCs and computation times, in Tables 1 and 2 we also report the size
of the statically condensed global system matrix (Ndof) and its number of non-zero entries (Nnz).

Numerical results confirm the theoretical h-convergence rates estimates; the EOC for the pressure
error in L2 norm is around (for strongly enforced boundary conditions) or exceeds (for weakly imposed
boundary conditions) hk+1, and we approach an EOC of hk+1 and hk+2 for the velocity error in the
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Table 1: Convergence results for the Kovasznay problem at Re = 40 with strongly enforced boundary
conditions and convective term stabilisation.

Ndof Nnz ‖eh‖ν,h EOC ‖eh‖L2(Ω)d EOC ‖εh‖L2(Ω) EOC τass τsol

k=0

65 736 9.37e-01 – 1.40e-01 – 6.84e-01 – 1.31e-02 8.52e-03
289 3808 1.13e+00 -0.27 5.50e-01 -1.98 1.96e-01 1.80 5.92e-02 4.90e-02
1217 17056 9.14e-01 0.31 2.26e-01 1.28 1.02e-01 0.94 1.02e-01 1.06e-01
4993 71968 6.26e-01 0.55 7.89e-02 1.52 3.52e-02 1.54 3.10e-01 4.46e-01
20225 295456 3.87e-01 0.70 2.47e-02 1.68 9.78e-03 1.85 1.02e+00 2.17e+00
81409 1197088 2.47e-01 0.65 8.06e-03 1.61 3.09e-03 1.66 3.73e+00 1.49e+01

k=1

113 2464 7.31e-01 – 5.37e-01 – 2.49e-01 – 2.51e-02 1.72e-02
513 13056 3.83e-01 0.93 1.54e-01 1.80 4.29e-02 2.54 4.77e-02 4.72e-02
2177 59008 1.02e-01 1.90 2.13e-02 2.85 3.98e-03 3.43 1.29e-01 1.79e-01
8961 249984 2.93e-02 1.80 2.97e-03 2.84 6.54e-04 2.61 5.13e-01 1.01e+00
36353 1028224 8.23e-03 1.83 3.99e-04 2.90 1.28e-04 2.35 2.05e+00 5.28e+00
146433 4169856 2.26e-03 1.86 5.21e-05 2.94 2.65e-05 2.27 7.25e+00 2.97e+01

k=2

161 5216 3.50e-01 – 2.09e-01 – 6.42e-02 – 3.44e-02 2.26e-02
737 27872 3.76e-02 3.22 1.34e-02 3.96 2.07e-03 4.95 6.95e-02 6.88e-02
3137 126368 6.96e-03 2.43 1.31e-03 3.36 1.48e-04 3.80 2.66e-01 3.60e-01
12929 536096 1.06e-03 2.72 9.48e-05 3.79 1.77e-05 3.07 1.11e+00 2.02e+00
52481 2206496 1.55e-04 2.77 6.36e-06 3.90 2.27e-06 2.96 4.16e+00 1.13e+01
211457 8951072 2.21e-05 2.81 4.13e-07 3.95 2.72e-07 3.06 1.51e+01 6.02e+01

k=3

209 8992 7.93e-02 – 4.41e-02 – 7.58e-03 – 4.59e-02 3.00e-02
961 48256 6.23e-03 3.67 1.98e-03 4.48 2.97e-04 4.67 1.20e-01 1.13e-01
4097 219136 4.16e-04 3.90 6.43e-05 4.95 1.32e-05 4.49 5.05e-01 6.10e-01
16897 930304 3.09e-05 3.75 2.20e-06 4.87 8.19e-07 4.01 1.83e+00 3.27e+00
68609 3830272 2.28e-06 3.76 7.40e-08 4.89 5.12e-08 4.00 7.04e+00 1.79e+01
276481 15540736 1.63e-07 3.81 2.42e-09 4.93 3.14e-09 4.03 2.81e+01 1.09e+02

k=4

257 13792 1.42e-02 – 7.89e-03 – 1.83e-03 – 7.29e-02 4.23e-02
1185 74208 4.24e-04 5.07 1.14e-04 6.11 2.05e-05 6.48 2.29e-01 1.87e-01
5057 337312 1.81e-05 4.55 2.57e-06 5.48 6.39e-07 5.00 9.31e-01 9.60e-01
20865 1432608 6.90e-07 4.71 4.55e-08 5.82 2.28e-08 4.81 3.64e+00 5.71e+00
84737 5899552 2.59e-08 4.74 7.59e-10 5.91 7.64e-10 4.90 1.43e+01 3.34e+01
341505 23938848 9.53e-10 4.76 1.23e-11 5.95 2.42e-11 4.98 5.75e+01 2.05e+02

k=5

305 19616 2.28e-03 – 1.05e-03 – 1.70e-04 – 1.28e-01 5.63e-02
1409 105728 4.01e-05 5.83 1.05e-05 6.65 2.05e-06 6.37 3.95e-01 2.19e-01
6017 480896 7.21e-07 5.80 8.98e-08 6.87 3.21e-08 6.00 1.60e+00 1.32e+00
24833 2043008 1.37e-08 5.72 7.89e-10 6.83 5.43e-10 5.88 6.45e+00 8.29e+00
100865 8414336 2.56e-10 5.74 6.72e-12 6.88 9.14e-12 5.89 2.54e+01 5.01e+01
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Table 2: Convergence results for the Kovasznay problem at Re = 40 with weakly enforced boundary
conditions and no convective term stabilisation.

Ndof Nnz ‖eh‖ν,h EOC ‖eh‖L2(Ω)d EOC ‖εh‖L2(Ω) EOC τass τsol

k=0

97 1216 1.07e+00 – 3.93e-01 – 6.80e-01 – 2.68e-02 2.31e-02
353 4800 1.70e+00 -0.67 9.58e-01 -1.28 2.79e-01 1.28 3.41e-02 3.71e-02
1345 19072 1.44e+00 0.24 3.89e-01 1.30 1.32e-01 1.09 6.68e-02 8.04e-02
5249 76032 8.77e-01 0.72 1.18e-01 1.72 4.93e-02 1.42 2.15e-01 3.52e-01
20737 303616 4.78e-01 0.88 3.23e-02 1.87 1.49e-02 1.72 8.07e-01 1.95e+00
82433 1213440 2.46e-01 0.96 8.32e-03 1.96 4.08e-03 1.87 3.19e+00 1.47e+01

k=1

177 4256 1.02e+00 – 7.27e-01 – 2.69e-01 – 1.44e-02 1.60e-02
641 16768 4.20e-01 1.28 1.66e-01 2.13 4.96e-02 2.44 3.59e-02 4.25e-02
2433 66560 1.40e-01 1.58 2.66e-02 2.64 8.60e-03 2.53 1.09e-01 1.70e-01
9473 265216 4.06e-02 1.79 3.55e-03 2.91 1.29e-03 2.74 4.62e-01 1.10e+00
37377 1058816 1.03e-02 1.97 4.37e-04 3.02 1.79e-04 2.85 1.91e+00 5.64e+00
148481 4231168 2.61e-03 1.99 5.46e-05 3.00 2.96e-05 2.60 7.07e+00 3.32e+01

k=2

257 9152 5.50e-01 – 3.16e-01 – 1.20e-01 – 2.23e-02 2.33e-02
929 36032 7.58e-02 2.86 2.46e-02 3.68 6.03e-03 4.31 6.11e-02 7.47e-02
3521 142976 1.23e-02 2.62 1.84e-03 3.74 3.69e-04 4.03 2.41e-01 3.90e-01
13697 569600 1.70e-03 2.86 1.12e-04 4.03 3.63e-05 3.35 1.02e+00 2.21e+00
54017 2273792 2.21e-04 2.95 6.87e-06 4.03 3.84e-06 3.24 3.62e+00 1.17e+01
214529 9085952 2.80e-05 2.98 4.28e-07 4.00 3.72e-07 3.37 1.40e+01 6.76e+01

k=3

337 15904 1.10e-01 – 6.02e-02 – 2.90e-02 – 3.85e-02 3.26e-02
1217 62592 9.17e-03 3.58 2.30e-03 4.71 7.22e-04 5.33 1.05e-01 1.23e-01
4609 248320 6.93e-04 3.73 7.74e-05 4.89 2.38e-05 4.92 4.65e-01 6.74e-01
17921 989184 4.81e-05 3.85 2.44e-06 4.99 1.18e-06 4.34 1.82e+00 3.73e+00
70657 3948544 3.13e-06 3.94 7.88e-08 4.95 5.79e-08 4.35 6.79e+00 2.01e+01
280577 15777792 1.99e-07 3.97 2.51e-09 4.97 2.68e-09 4.43 2.68e+01 1.20e+02

k=4

417 24512 2.46e-02 – 7.32e-03 – 5.12e-03 – 6.26e-02 4.68e-02
1505 96448 9.27e-04 4.73 2.17e-04 5.08 7.04e-05 6.19 1.93e-01 1.89e-01
5697 382592 3.61e-05 4.68 3.62e-06 5.91 1.11e-06 5.98 8.13e-01 1.02e+00
22145 1523968 1.24e-06 4.87 5.36e-08 6.08 3.07e-08 5.18 3.13e+00 6.02e+00
87297 6083072 4.01e-08 4.95 8.21e-10 6.03 8.08e-10 5.25 1.19e+01 3.37e+01
346625 24306688 1.27e-09 4.98 1.28e-11 6.00 2.03e-11 5.31 4.68e+01 2.02e+02

k=5

497 34976 6.48e-03 – 1.76e-03 – 1.02e-03 – 1.23e-01 7.22e-02
1793 137600 7.07e-05 6.52 1.34e-05 7.04 4.58e-06 7.81 4.06e-01 2.95e-01
6785 545792 1.28e-06 5.79 1.10e-07 6.94 4.40e-08 6.70 1.51e+00 1.56e+00
26369 2173952 2.20e-08 5.87 8.84e-10 6.95 5.86e-10 6.23 5.67e+00 8.48e+00
103937 8677376 3.56e-10 5.95 7.20e-12 6.94 7.42e-12 6.30 2.28e+01 5.14e+01
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energy and the L2 norm, respectively. Focusing on the velocity errors, we remark that the convergence
rates provided by method (52) with strongly enforced boundary conditions are slightly sub-optimal,
while method (50) with weakly enforced boundary conditions is very close to providing optimal rates
of convergence. We numerically verified that this occurrence is to be ascribed to convective term
stabilization, active in the former while switched off in the latter configuration. Note that the EOC
of k=0 degree discretizations is severely impacted, probably due to the higher relative significance
of the upwind stabilization with respect to the centered contribution in the discretisation of the
convective term. Indeed, the highest jumps between element and faces unknowns are observed for
under-resolved low degree computations.

5.2 Two- and three-dimensional lid-driven cavity flow

We next use the HHO method (52) to solve the lid-driven cavity flow, one of the most extensively
studied problems in fluid mechanics. The computational domain is either the unit square Ω = (0, 1)2

or the unit cube Ω = (0, 1)3, depending on the flow space dimensions. Homogeneous (wall) boundary
conditions are enforced at all but the top horizontal wall (at x2 = 1), where we enforce a unit
tangential velocity (that is, u = (1, 0) if d = 2, u = (1, 0, 0) if d = 3). We note that this boundary
condition is incompatible with the formulation (1), even modified to account for non-homogeneous
boundary conditions, since the solution to the lid driven cavity does not belong to H1(Ω)d; it is
however, as mentioned, a very classical and well-understood test that informs on the quality of the
numerical scheme. Due to the crucial importance of suitably enforcing the velocity discontinuity at
the top corners of the cavity we rely on strong imposition of boundary conditions.

In Figures 3, 4, 5, and 6 we report the horizontal component u1 of the velocity along the vertical
centerline x = 1

2 and the vertical component u2 of the velocity along the horizontal centerline x2 = 1
2

for the two dimensional flow at Reynolds numbers Re := 1
ν respectively equal to 1,000, 5,000, 10,000,

and 20,000. The reference computation is carried out on a 128× 128 Cartesian mesh with k=1. For
the sake of comparison, we also include very high-order computations with k=7 on progressively finer
Cartesian grids: 16×16 for Re = 1,000, 32×32 for Re = 5,000, 64×64 for Re = 10,000, and 128×128
for Re = 20,000. The high-order solution corresponding to Re = 1,000 and Re = 20,000 are displayed
in Figure 1. When available, also references solutions from the literature [37, 38] are plotted for the
sake of comparison.

We remark that the solid gray and black lines outlining the behavior of low-order (k=1) and high-
order (k=7) velocity approximations, respectively, are perfectly superimposed at low Reynolds num-
bers, while significant differences are visible starting from Re = 10,000. In particular, at Re = 20,000,
k=1 computations are in better agreement with reference solutions by Erturk et al [37]. Nevertheless,
since high-polynomial degrees over coarse meshes provide accurate results at low Reynolds numbers,
we are led to think that k=1 HHO computations are over-dissipative at high Reynolds. Indeed, strong
velocity gradients observed close to cavity walls and multiple counter-rotating vortices developing at
the bottom corners are known to be very demanding, both from the stability and the accuracy view-
points. Note that the thin jet originating at the top-right corner is contained in exactly one mesh
element, both on the 16 × 16 grid for Re = 1,000 and on the 128 × 128 grid for Re = 20,000, see
Figure 1.

The three-dimensional lid-driven cavity flow is computed at Re = 1,000, see Figure 2. In Figure
7 we report k=1, 2, 4 HHO computations over 323, 163, 83 hexahedral element grids of the unit cube,
respectively (we double both the mesh step size h and the polynomial degree k in order to perform
high-order accurate computations at reasonable computational costs). Comparing the velocity at
horizontal and vertical centerlines (passing through the centroid of the unit cube c = (0.5, 0.5, 0.5))
with reference solution from the literature [2], we demonstrate the ability to accurately reproduce
the flow behaviour with coarse meshes and relatively high polynomial degrees (k=4). As opposite,
the mismatch region observed in a neighborhood of the negative peak of the u1 velocity component
distribution suggests that both k=1 and k=2 HHO computations are over-dissipative. For the sake
of comparison, in Figure 8, we report higher-order accurate k=4 and k=8 HHO computations over
163 and 83 hexahedral grids of the unit cube, respectively. These latter velocity solutions are in
very good agreement with both the reference solutions of [2] and the k=4 HHO computation over
the 83 hexahedral grid. The three-dimensional lid-driven cavity computations were run on a dual 18
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Figure 7 HHO discretizations specs Figure 8 HHO discretizations specs

degree grid Ndof Nnz Nedof degree grid Ndof Nnz Nedof

k=1 323 890k 86M 524k (k=2) (323) (1747k) (343M) (1310k)
k=2 163 211k 39M 164k k=4 163 522k 244M 573k
k=4 83 61k 27M 72k k=8 83 182k 239M 338k

Table 3: Three-dimensional lid-driven cavity flow. For each HHO discretization of Figure 7 and 8,
we report the size of the statically condensed global system matrix (Ndof), its number of non-zero
entries (Nnz) and the number of elemental degrees of freedom (Nedof = (d + 1) dim(Pk(Th))). The
k = 2, 323 grid HHO discretization is included for the sake of comparison.

cores Xeon CPU cluster node exploiting a shared-memory, thread-based implementation, both matrix
assembly and LU factorization are performed in parallel exploiting 36 concurrent compute units.

In Table 3 it is possible to evaluate the computational expense of three-dimensional lid-driven
cavity flow computations in terms of global system matrix properties and degrees of freedom count.
It is interesting to remark that doubling the mesh step size together with the polynomial degree is
beneficial, not only from the accuracy viewpoint, see Figure 7, but also from the computational costs
viewpoint. Indeed, the global matrix size (equal to the number of unknowns after static condensation),
the number of non-zero entries of the global statically condensed system matrix, and the number of
element unknowns (note that only pressure averages survive after static condensation) decreases on
coarser meshes with higher polynomial degrees. Note that the same h-coarsening plus p-refinement
strategy employing discontinuous Galerkin (dG) instead of HHO would have led to a significant
increase of the number of Jacobian matrix non-zeroes entries, in particular a k = 8 dG discretization
would have topped at 1.5 billion non-zeroes. Indeed, when considering a d-dimensional flow problem,
the leading block size of the global sparse matrix grows as the size of polynomial spaces in d−1 and
d variables for HHO and dG methods, respectively. This crucial difference suggests that significant
efficiency gains might be obtained in the context of implicit time discretizations employing high-order
HHO discretizations.

Figure 1: Two-dimensional lid-driven cavity flow, velocity magnitude contours (10 equispaced values
in the range [0, 1]) for k=7 computations at Re = 1,000 (left : 16x16 grid) and Re = 20,000 (right :
128x128 grid).
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Figure 2: Three-dimensional lid-driven cavity flow at Re = 1,000 computed by means of a k=8,
83 hexahedral elements grid HHO discretization. Left, velocity magnitude contours (10 equispaced
values in the range [0, 1]) over the vertical mid-plane whose top edge is aligned with the velocity
vector. Right : Streamlines color-coded by velocity magnitude.

6 Flux formulation

We show here that the discrete problem (52) with strongly enforced boundary conditions admits a
reformulation in terms of conservative numerical fluxes.

Proposition 16 (Flux formulation). Denote by (uh, ph) ∈ Uk
h,0 × P kh the unique solution to (52)

and, for all T ∈ Th and all F ∈ FT , define the numerical normal traces of the viscous and convective
momentum fluxes as follows:

Φvisc
TF (uT ) := ν

(
−∇rk+1

T uTnTF +Rk
TFuT

)
,

Φconv
TF (uT ) := πkF

[
uF ·nTF

2
(uF + uT )− ν

hF
ρ(PeTF (uF ))(uF − uT )

]
,

where, letting Dk
∂T :=

{
α∂T := (αF )F∈FT : vF ∈ Pk(F )d ∀F ∈ FT

}
, the boundary residual oper-

ator Rk
∂T := (Rk

TF )F∈FT : Uk
T →Dk

∂T is such that, for all vT ∈ U
k
T ,

−
∑
T∈Th

(Rk
TFvT ,αF )F = sT (vT , (0,α∂T )).

Then, for all T ∈ Th, it holds: For any (vT , qT ) ∈ Pk(T )d × Pk(T ),∫
T

ν∇rk+1
T uT : ∇vT −

∫
T

uT ·(uT ·∇)vT −
1

2

∫
T

D2k
T uT (uT ·vT )−

∫
T

pT (∇·vT )

+
∑
F∈FT

∫
F

(
Φvisc
TF (uT ) + Φconv

TF (uT ) + pTnTF
)
·vT =

∫
T

f ·vT , (66a)∫
T

uT ·∇qT −
∑
F∈FT

∫
F

(uF ·nTF )qT = 0. (66b)

Moreover, the numerical normal trace of the global momentum and mass fluxes are conservative, i.e.,
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Figure 3: 2D Lid-driven cavity flow, horizontal component u1 of the velocity along the vertical
centerline x1 = 1

2 and the vertical component u2 of the velocity along the horizontal centerline
x2 = 1

2 for Re = 1,000
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Figure 4: 2D Lid-driven cavity flow, horizontal component u1 of the velocity along the vertical
centerline x1 = 1

2 and the vertical component u2 of the velocity along the horizontal centerline
x2 = 1

2 for Re = 5,000
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Figure 5: 2D Lid-driven cavity flow, horizontal component u1 of the velocity along the vertical
centerline x1 = 1

2 and the vertical component u2 of the velocity along the horizontal centerline
x2 = 1

2 for Re = 10,000
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Figure 6: 2D Lid-driven cavity flow, horizontal component u1 of the velocity along the vertical
centerline x1 = 1

2 and the vertical component u2 of the velocity along the horizontal centerline
x2 = 1

2 for Re = 20,000
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Figure 7: 3D Lid-driven cavity flow, horizontal component u1 of the velocity along the vertical
centerline x1, x3 = 1

2 and the vertical component u2 of the velocity along the horizontal centerline
x2, x3 = 1

2 for Re = 1,000

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

u1

x
2

Albensoeder et al.

k=4, 163, strong bc

k=8, 83, strong bc

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

u
2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

u1

x
2

Albensoeder et al.

k=4, 163, strong bc

k=8, 83, strong bc

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

u
2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

u1

x
2

Albensoeder et al.

k=4, 163, strong bc

k=8, 83, strong bc

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

u
2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

u1

x
2

Albensoeder et al.

k=4, 163, strong bc

k=8, 83, strong bc

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

u
2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

u1

x
2

Albensoeder et al.

k=4, 163, strong bc

k=8, 83, strong bc

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

u
2

Figure 8: 3D Lid-driven cavity flow, horizontal component u1 of the velocity along the vertical
centerline x1, x3 = 1

2 and the vertical component u2 of the velocity along the horizontal centerline
x2, x3 = 1

2 for Re = 1,000
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for any interface F ∈ F i
h such that F ∈ FT1

∩ FT2
for distinct mesh elements T1, T2 ∈ Th,(

Φvisc
T1F (uT1

) + Φconv
T1F (uT1

) + pT1
nT1F

)
+
(
Φvisc
T2F (uT2

) + Φconv
T2F (uT2

) + pT2
nT2F

)
= 0, (67a)

uF ·nT1F + uF ·nT2F = 0. (67b)

Proof. The following equivalent expression for the viscous bilinear form ah defined by (29) descends
from [31, Lemma 3.3], where the scalar case is considered: For all vh ∈ U

k
h,0,

ah(uh,vh) =
∑
T∈Th

[∫
T

∇rk+1
T uT : ∇rk+1

T vT −
∑
F∈FT

∫
F

Φvisc
TF (uT )·(vF − vT )

]
. (68)

Using the global discrete integration by parts formula (24) and accounting for the strongly enforced
boundary condition, for any vh ∈ U

k
h,0 the convective trilinear form defined by (40) evaluated at

(uh,uh,vh) can be rewritten as follows:

th(uh,uh,vh) =

−
∑
T∈Th

[∫
T

uT ·GkT (uT ;vT ) +
1

2

∫
T

D2k
T uT (uT ·vT ) +

1

2

∑
F∈FT

∫
F

(uF ·nTF )(uF − uT )·(vF − vT )

]
.

Hence, expanding GkT (uT ;vT ) according to its definition (21) with wT = uT and z = uT for all
T ∈ Th in the previous expression, adding jh(uh;uh,vh), and rearranging the terms we obtain

th(uh,uh,vh) + jh(uh;uh,vh) =

−
∑
T∈Th

[∫
T

uT ·(uT ·∇)vT +
1

2

∫
T

D2k
T uT (uT ·vT ) +

∑
F∈FT

∫
F

Φconv
TF (uT )·(vF − vT )

]
, (69)

where we have further observed that (vF − vT |F ) ∈ Pk(F )d to insert πkF into the expression of the
convective flux. Finally, writing the definition (36) of bh for qh = ph and expanding, for all T ∈ Th,
Dk
TvT according to its definition (18) with ` = k and q = pT , we obtain

bh(uh, ph) = −
∑
T∈Th

[∫
T

pT∇·vT +
∑
F∈FT

∫
F

pTnTF ·(vF − vT )

]
. (70)

Plugging (68), (69), and (70) into the discrete momentum equation (52a), we obtain, for all vh ∈ U
k
h,0,

∑
T∈Th

[∫
T

ν∇rk+1
T uT : ∇vT −

∫
T

uT ·(uT ·∇)vT −
1

2

∫
T

D2k
T uT (uT ·vT )−

∫
T

pT∇·vT

+
∑
F∈FT

∫
F

(
Φvisc
TF (uT ) + Φconv

TF (uT ) + pTnTF
)
·(vT − vF )

]
=
∑
T∈Th

∫
T

f ·vT .

Selecting vh such that vT spans Pk(T )d for a selected mesh element T ∈ Th while vT ′ = 0 for all
T ′ ∈ Th \ {T} and vF = 0 for all F ∈ Fh, we obtain (66a). On the other hand, selecting vh such that
vT = 0 for all T ∈ Th, vF spans Pk(F )d for a selected interface F ∈ F i

h such that F ⊂ ∂T1 ∩ ∂T2 for
distinct mesh elements T1, T2 ∈ Th, and vF ′ = 0 for all F ′ ∈ Fh \ {F}, we deduce (67a).

The discrete local mass balance (66b) is a straightforward consequence of (52b) expanding Dk
T

according to its definition (18). As a matter of fact, accounting for Remark 12, we can take as a
test function qh such that, for a selected mesh element T ∈ Th, qT spans Pk(T ) while qT ′ = 0 for
all T ′ ∈ Th \ {T}. Finally, the continuity of the mass fluxes expressed by (67b) is an immediate
consequence of the single-valuedness of face unknowns.
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Remark 17 (Finite volume local mass and momentum balances). Let an element T ∈ Th be fixed. We
start by observing that, taking in (66a) vT constant in T , the terms in the first line of this expression
vanish. As a matter of fact, the first, second, and fourth terms involve derivatives of vT , while,
recalling (19), we can write for the third term − 1

2

∫
T
D2k
T uT (uT ·vT ) = − 1

2

∫
T
Dk
TuT (uT ·vT ) = 0,

where we have used (50b) to infer Dk
TuT = 0 and conclude. Hence, letting now vT be successively

equal to the vectors of the canonical basis of Rd, we have the following finite volume-like local
momentum balance: ∑

F∈FT

∫
F

(
Φvisc
TF (uT ) + Φconv

TF (uT ) + pTnTF
)

=

∫
T

f . (71a)

Similarly, taking in (66b) qT = 1, we have the following finite volume-like local mass balance:∑
F∈FT

∫
F

(uF ·nTF ) = 0. (71b)

The relations (71) are relevant from the engineering point of view, as they guarantee that both
momentum and mass are preserved at the local level. From the mathematical point of view, they can
be used, e.g., to derive a posteriori error estimators by flux equilibration.

A Proofs of intermediate results

This section collects the proofs of the intermediate results required in the analysis.

A.1 Discrete Sobolev embeddings

Proof of Proposition 1. Let vh ∈ U
k
h. It follows from [26, Theorem 2.1] (see also [27, Theorem 5.3])

that

‖vh‖Lq(Ω)d .

∑
T∈Th

‖∇vT ‖2L2(T )d×d +
∑
F∈F i

h

h−1
F ‖[vh]F ‖2L2(F )d +

∑
F∈Fb

h

h−1
F ‖vTF ‖

2
L2(F )d

 1
2

, (72)

where, for all F ∈ F i
h such that F ∈ FT1 ∩ FT2 for distinct mesh elements T1, T2 ∈ Th, we have

introduced the jump operator such that [vh]F := vh|T1
− vh|T2

. For all F ∈ F i
h, inserting ±vF and

using a triangle inequality, it is readily inferred that ‖[vh]F ‖L2(F )d ≤ ‖vT1
− vF ‖L2(F )d + ‖vT2

−
vF ‖L2(F )d . Similarly, for all F ∈ Fb

h we can write ‖vTF ‖L2(F )d ≤ ‖vTF − vF ‖L2(F )d + ‖vF ‖L2(F )d .
Plugging the previous inequalities into (72), we obtain

‖vh‖Lq(Ω)d .

∑
T∈Th

‖∇vT ‖2L2(T )d×d +
∑
F∈Fh

∑
T∈TF

h−1
F ‖vF − vT ‖

2
L2(F )d +

∑
F∈Fb

h

h−1
F ‖vF ‖

2
L2(F )d

 1
2

.

Using the relation
∑
F∈Fh

∑
T∈TF • =

∑
T∈Th

∑
F∈FT • and recalling the definitions (9) of ‖·‖1,h and

(10) of ‖·‖1,T yields (11).

A.2 Approximation properties of the discrete directional derivative

Proof of Proposition 2. Set, for the sake of brevity v̂T := IkTv. Writing (22) for wT = vT = v̂T and
summing and subtracting

∫
T

(v̂T ·∇)v·z, we infer that it holds∫
T

(
GkT (v̂T ; v̂T )− (v·∇)v

)
·z =

∫
T

[(v̂T ·G2k
T )v̂T − (v̂T ·∇)v]·z +

∫
T

[(v − v̂T )·∇]v·z

+
∑
F∈FT

∫
F

(v̂F − v̂T )·nTF (v̂F − v̂T )·z =: T1 + T2 + T3.
(73)
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For the first term, using the orthogonality property (13) with τ = (z ⊗ π0
Tv), we can use a Hölder

inequality with exponents (4, 2, 4) to get

|T1| =
∣∣∣∣∫
T

(G2k
T v̂T −∇v) : z ⊗ (v̂T − π0

Tv)

∣∣∣∣ ≤ ‖v − π0
Tv‖L4(T )d‖G2k

T v̂T −∇v‖L2(T )d×d‖z‖L4(T )d ,

where we have additionally used the linearity, idempotency, and L4-boundedness of πkT (see [22,
Lemma 3.2]) to write ‖v̂T − π0

Tv‖L4(T )d = ‖πkT (v − π0
Tv)‖L4(T )d . ‖v − π0

Tv‖L4(T )d . Using the ap-
proximation properties (6a) of the L2-orthogonal projector with l = 0, p = 4, s = 1, and m = 0 for
the first factor and the approximation properties (15) of the gradient reconstruction with ` = 2k for
the second factor, we get

|T1| . hk+1
T |v|Hk+1(T )d |v|W 1,4(T )d‖z‖L4(T )d . (74)

For the second term, a Hölder inequality with exponents (2, 4, 4) gives

|T2| . ‖v − v̂T ‖L2(T )d |v|W 1,4(T )d‖z‖L4(T )d . hk+1
T |v|Hk+1(T )d |v|W 1,4(T )d‖z‖L4(T )d , (75)

where we have used the optimal approximation properties (6a) of the L2-orthogonal projector with
l = k, p = 2, s = k + 1, and m = 0 to conclude.

For the third term, we will need the following discrete trace inequality, valid for all α ∈ [1,∞], all
T ∈ Th, and all F ∈ FT :

‖v‖Lα(F ) . h
− 1
α

T ‖v‖Lα(T ) ∀v ∈ Pl(T ), (76)

with hidden constant additionally depending on α and l (but not on v or T ). After observing that,
owing to the linearity, idempotency, and boundedness of πkF , it holds, for α ∈ {2, 4},

‖v̂F − v̂T ‖Lα(F )d = ‖πkF (v − πkTv)‖Lα(F )d . ‖v − πkTv‖Lα(F )d ,

we can write

|T3| .
∑
F∈FT

‖v − πkTv‖L2(F )d‖v − πkTv‖L4(F )d‖z‖L4(F )d

. hk+1
T |v|Hk+1(T )d |v|W 1,4(T )d‖z‖L4(T )d , (77)

where we have used the approximation properties (6b) of the L2-orthogonal projector with l = k and,
respectively, α = 2, m = 0, and s = k+ 1 and α = 4, m = 0, and s = 1 to bound the first two factors
inside the summation, and the discrete trace inequality (76) with α = 4 to bound the third one.

Plugging (74), (75), and (77) into (73) yields the conclusion.

A.3 Viscous term

Proof of Lemma 5. (i) Stability and boundedness. Let vh ∈ U
k
h. Summing (32) over T ∈ Th and

using the resulting equivalence in combination with (29), we can write

ah(vh,vh) =
∑
T∈Th

aT (vT ,vT ) +
∑
F∈Fb

h

h−1
F ‖vF ‖

2
L2(F )d 'C−1

a

∑
T∈Th

‖vT ‖21,T +
∑
F∈Fb

h

h−1
F ‖vF ‖

2
L2(F )d .

(ii) Consistency. Let, for the sake of brevity, ŵh := Ikhw and set, for all T ∈ Th, w̌T := rk+1
T IkTw.

It follows from [28, Lemma 3] (see also [21, Theorems 1.1 and 1.2]) that it holds: For all T ∈ Th,

‖∇(w̌T −w)‖L2(T )d×d + h
1
2

T ‖∇(w̌T −w)‖L2(∂T )d×d . hk+1
T |w|Hk+2(T )d . (78)

Integrating by parts element by element and using the fact that vF is single-valued for F ∈ F i
h to

insert it into the second term, we can write∫
Ω

∆w·vh = −
∑
T∈Th

(∫
T

∇w : ∇vT +
∑
F∈FT

∫
F

∇wnTF ·(vF − vT )

)
+
∑
F∈Fb

h

∫
F

∇wnF ·vF . (79)
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On the other hand, plugging the definition (30) of aT into (29), and expanding, for all T ∈ Th, rk+1
T vT

according to (16) with w = w̌T , we can write

ah(ŵh,vh) =
∑
T∈Th

(∫
T

∇w̌T : ∇vT +
∑
F∈FT

∫
F

∇w̌TnTF ·(vF − vT )

)
−
∑
F∈Fb

h

∫
F

∇w̌TFnF ·vF

+
∑
T∈Th

sT (ŵT ,vT ), (80)

where, to cancel the remaining terms inside the sum over F ∈ Fb
h , we have used the fact that

ŵF = 0 for all F ∈ Fb
h owing to the assumed regularity w ∈ H1

0 (Ω)d. Summing (79) and (80), and
using Cauchy–Schwarz inequalities for the first and last terms, the Hölder inequality with exponents
(2,∞, 2) together with ‖nTF ‖L∞(F )d ≤ 1 for the second term, and the definition (10) of ‖·‖1,T and
hF ≤ hT , it is inferred that∣∣∣∣∫

Ω

∆w·vh + ah(ŵh,vh)

∣∣∣∣ . ∑
T∈Th

(
‖∇(w̌T −w)‖L2(T )d×d + h

1
2

T ‖∇(w̌T −w)‖L2(∂T )d×d

)
‖vT ‖1,T

+
∑
F∈Fb

h

h
1
2

TF
‖∇(w̌TF −w)‖L2(F )d×d h

− 1
2

F ‖vF ‖L2(F )d

+
∑
T∈Th

sT (ŵT , ŵT )
1
2 sT (vT ,vT )

1
2 .

Using the approximation properties of (78) of ŵT to estimate the terms in the first two lines and the

consistency (33) of the viscous stabilisation bilinear form sT together with the fact that sT (vT ,vT )
1
2 .

‖vT ‖1,T owing to the local seminorm equivalence (32) to estimate the term in the third line, we arrive
at∣∣∣∣∫

Ω

∆w·vh + ah(ŵh,vh)

∣∣∣∣ . ∑
T∈Th

hk+1
T |w|Hk+2(T )d‖vT ‖1,T +

∑
F∈Fb

h

hk+1
TF
|w|Hk+2(TF )d h

− 1
2

F ‖vF ‖L2(F )d

. hk+1|w|Hk+2(Th)d‖vh‖1,h,

where the conclusion follows from Cauchy–Schwarz inequalities on the sums over T ∈ Th and F ∈ Fb
h .

Passing to the supremum over the set
{
vh ∈ U

k
h : ‖vh‖1,h = 1

}
yields (35).

A.4 Pressure-velocity coupling

Proof of Lemma 7. (i) Consistency/1. Using the definition (36) of the bilinear form bh, the commut-
ing property (20) of the discrete divergence together with the fact that boundary unknowns in Ikhv
vanish since v ∈ H1

0 (Ω)d, we obtain, for all qh ∈ Pk(Th), letting qT := qh|T for all T ∈ Th,

bh(Ikhv, qh) = −
∑
T∈Th

∫
T

πkT (∇·v)qT = −
∑
T∈Th

∫
T

(∇·v)qT = b(v, qh).

(ii) Stability. We proceed as in [13, Lemma 17]. From the surjectivity of the continuous divergence
operator from H1

0 (Ω)d to L2
0(Ω) (see, e.g., [40, Section 2.2]), we infer the existence of vqh ∈ H1

0 (Ω)d

such that −∇·vqh = qh and ‖vqh‖H1(Ω)d . ‖qh‖, with hidden constant depending only on Ω. Using

the above fact, we get ‖qh‖2 = −
∫

Ω
(∇·vqh)qh = bh(Ikhvqh , qh), where we have used (37) with

v = vqh . Hence, denoting by $ the supremum in the right-hand side of (38) and using the boundedness

property (54) of the global interpolator, we can write ‖qh‖2 ≤ $‖Ikhvqh‖1,h . $‖vqh‖H1(Ω)d . $‖qh‖.
Simplifying yields (38).

(iii) Consistency/2. Integrating by parts element by element and using the regularity q ∈ H1(Ω)
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together with the fact that vF is single-valued for all F ∈ F i
h to insert it into the second term, we

can write∫
Ω

∇q·vh = −
∑
T∈Th

(∫
T

q(∇·vT ) +
∑
F∈FT

∫
F

q(vF − vT )·nTF

)
+
∑
F∈Fb

h

∫
F

q(vF ·nF ). (81)

On the other hand, recalling the definition (36) of bh and expanding, for all T ∈ Th, Dk
TvT according

to (18) with ` = k and q = πkT q|T , we have that

bh(vh, π
k
hq) = −

∑
T∈Th

(∫
T

q(∇·vT ) +
∑
F∈FT

∫
F

πkT q|T (vF − vT )·nTF

)

+
∑
F∈Fb

h

∫
F

πkTF q|TF (vF ·nF ),

(82)

where we have used the definition (5) of πkT together with the fact that ∇·vT ∈ Pk−1(T ) ⊂ Pk(T ) to
remove the projector from the first term inside the summation over T ∈ Th. Subtracting (82) from
(81), taking absolute values, and using Hölder inequalities with exponents (2, 2,∞) together with
‖nTF ‖L∞(F )d ≤ 1 and hF ≤ hT , we get∣∣∣∣∫

Ω

∇q·vh − bh(vh, π
k
hq)

∣∣∣∣ ≤ ∑
T∈Th

∑
F∈FT

h
1
2

T ‖q − π
k
T q|T ‖L2(F ) h

− 1
2

F ‖vF − vT ‖L2(F )d

+
∑
F∈Fb

h

h
1
2

TF
‖q − πkTF q|TF ‖L2(F ) h

− 1
2

F ‖vF ‖L2(F )d

.
∑
T∈Th

hk+1
T |q|Hk+1(T )‖vT ‖1,T +

∑
F∈Fb

h

hk+1
TF
|q|Hk+1(TF ) h

− 1
2

F ‖vF ‖L2(F )d ,

where we have concluded using the optimal approximation properties (6b) of the L2-orthogonal
projector with l = k, p = 2, s = k + 1, m = 0. Using Cauchy–Schwarz inequalities on the sums over
T ∈ Th and F ∈ Fb

h and recalling the definition (9) of ‖·‖1,h gives∣∣∣∣∫
Ω

∇q·vh − bh(vh, π
k
hq)

∣∣∣∣ . hk+1|q|Hk+1(Th)‖vh‖1,h.

Passing to the supremum over the set
{
vh ∈ U

k
h : ‖vh‖1,h = 1

}
yields (39).

A.5 Convective term

Proof of Lemma 8. (i) Skew-symmetry and non-dissipation. To prove (42), plug the definition (41)
of tT into (40) and use the discrete integration by parts formula (24) to write

∑
T∈Th

(
1

2

∫
T

D2k
T wT (vT ·zT ) +

1

2

∑
F∈FT

∫
F

(wF ·nTF )(vF − vT )·(zF − zT )

)

= −1

2

∑
T∈Th

∫
T

(
GkT (wT ;vT )·zT + vT ·GkT (wT ; zT )

)
+

1

2

∑
F∈Fb

h

∫
F

(wF ·nF )vF ·zF .

The non-dissipation property (43) immediately follows letting zh = vh in (42).

(ii) Boundedness. Accounting for (42), it suffices to prove that it holds, for all wh,vh, zh ∈ U
k
h,

T :=

∣∣∣∣∣ ∑
T∈Th

∫
T

GkT (wT ;vT )·zT

∣∣∣∣∣ . ‖wh‖1,h‖vh‖1,h‖zh‖1,h, (83)
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then apply this bound twice exchanging the roles of vh and zh. Recalling (22), we can write

T ≤

∣∣∣∣∣ ∑
T∈Th

∫
T

(wT ·G2k
T )vT ·zT

∣∣∣∣∣+

∣∣∣∣∣ ∑
T∈Th

∑
F∈FT

∫
F

(wF −wT )·nTF (vF − vT )·zT

∣∣∣∣∣ =: T1 + T2. (84)

To estimate the first term, we preliminarily observe that ‖G2k
T vT ‖L2(T )d×d . ‖vT ‖1,T , as can be

easily verified letting τ = G2k
T vT in (12b) written for ` = 2k, then applying Cauchy–Schwarz and

discrete trace inequalities (see (76)) to bound the right-hand side. Then, Hölder inequalities with
exponents (4, 2, 4), first on the integral over T then on the sum over T ∈ Th, yield

T1 ≤
∑
T∈Th

‖wT ‖L4(T )d‖G2k
T vT ‖L2(T )d×d‖zT ‖L4(T )d

≤
∑
T∈Th

‖wT ‖L4(T )d‖vT ‖1,T ‖zT ‖L4(T )d

≤ ‖wh‖L4(Ω)d‖vh‖1,h‖zh‖L4(Ω)d . ‖wh‖1,h‖vh‖1,h‖zh‖1,h,

(85)

where we have used the discrete Sobolev embedding (11) with q = 4 to conclude. For the second
term, we will need the following reverse Lebesgue embeddings, proved in [22, Lemma 5.1]: For all
(α, β) ∈ [1,∞], all T ∈ Th, and all F ∈ FT ,

‖v‖Lα(F ) . |F |
1
α−

1
β ‖v‖Lβ(F ) ∀v ∈ Pl(F ). (86)

We have that

T2 ≤
∑
T∈Th

∑
F∈FT

‖wF −wT ‖L4(F )d‖vF − vT ‖L2(F )d‖zT ‖L4(F )d

. ‖zh‖L4(Ω)d

∑
T∈Th

∑
F∈FT

h
− 1

4

F ‖wF −wT ‖L4(F )d‖vF − vT ‖L2(F )d

. ‖zh‖L4(Ω)d

∑
T∈Th

∑
F∈FT

h
− 1

4

F |F |
− 1

4 ‖wF −wT ‖L2(F )d‖vF − vT ‖L2(F )d

. ‖zh‖L4(Ω)d

∑
T∈Th

∑
F∈FT

h
− 1

2

F ‖wF −wT ‖L2(F )d h
− 1

2

F ‖vF − vT ‖L2(F )d

. ‖zh‖1,h‖wh‖1,h‖vh‖1,h,

where we have used a Hölder inequality with exponents (4,∞, 2, 4) together with ‖nTF ‖L∞(F )d ≤ 1
in the first line, the discrete trace inequality (76) with α = 4 followed by ‖zT ‖L4(T )d ≤ ‖zh‖L4(Ω)d for
all T ∈ Th in the second line, the reverse Lebesgue embedding (86) with (α, β) = (4, 2) in the third

line, the bound h
− 1

4

F |F |−
1
4 . h

− 1
4−

d−1
4

F . h−1
F = h

− 1
2

F h
− 1

2

F (valid since d ≤ 3) in the fourth line, and
the discrete Sobolev embedding (11) with q = 4 followed by a discrete Cauchy–Schwarz inequality on
the sums over T ∈ Th and F ∈ FT and the definition (9) of ‖·‖1,h to conclude.

(iii) Consistency. Set, for the sake of brevity, ŵh := Ikhw. We decompose the argument of the
supremum into the sum of the following terms:

T1 :=
∑
T∈Th

∫
T

[
(w·∇)w − GkT (ŵT ; ŵT )

]
·zT ,

T2 :=
1

2

∑
T∈Th

∫
T

[
(∇·w)w − (D2k

T ŵT )ŵT

]
·zT

T3 :=
1

2

∑
T∈Th

∑
F∈FT

∫
F

(ŵF ·nTF )(ŵF − ŵT )·(zF − zT ),

T4 := −1

2

∑
F∈Fb

h

∫
F

(ŵF ·nF )(ŵF ·zF ).
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Using the approximation properties (23) of the discrete directional derivative followed by the discrete
Sobolev embedding (11) with q = 4, it is inferred for the first term:

|T1| . hk+1|w|Hk+1(Th)d |w|W 1,4(Ω)d‖zh‖L4(Ω)d . hk+1|w|Hk+1(Th)d |w|W 1,4(Ω)d‖zh‖1,h. (87)

Note that the assumption w ∈ H1
0 (Ω)d ∩ W k+1,4(Th)d ensures that w ∈ W 1,4(Ω)d since w|T ∈

W k+1,4(T ) ⊂ W 1,4(T ) for all T ∈ Th, and the traces of w at the interfaces F ∈ F i
h are continuous

(owing to w ∈ H1(Ω)d).
The second term is further decomposed inserting ±(∇·w)ŵT ·zT :

T2 =
1

2

∑
T∈Th

∫
T

(∇·w −D2k
T ŵT )ŵT ·zT +

1

2

∑
T∈Th

∫
T

(∇·w)(w − ŵT )·zT =: T2,1 + T2,2.

After observing that (∇·w − D2k
T ŵT ) is L2-orthogonal to functions in Pk(T ) as a consequence of

(13), and that π0
Tw·zT ∈ Pk(T ), we can write

|T2,1| =
1

2

∣∣∣∣∣ ∑
T∈Th

∫
T

(∇·w −D2k
T ŵT )(ŵT − π0

Tw)·zT

∣∣∣∣∣
.
∑
T∈Th

‖∇·w −D2k
T ŵT ‖L2(T )‖ŵT − π0

Tw‖L4(T )d‖zT ‖L4(T )d

. hk+1|w|Hk+1(Th)d |w|W 1,4(Ω)d‖zh‖1,h.

To pass from the second to the third line, we have used the approximation properties (17) of the
divergence reconstruction with ` = 2k to bound the first factor, the linearity, idempotency, and
L4-boundedness of πkT followed by the approximation properties (6a) of the L2-orthogonal projector
with l = 0, p = 4, m = 0, and s = 1 to estimate the second factor as follows:

‖ŵT − π0
Tw‖L4(T )d = ‖πkT (w − π0

Tw)‖L4(T )d . ‖w − π0
Tw‖L4(T )d . hT |w|W 1,4(T )d ,

the discrete Sobolev embedding (11) for q = 4 for the third factor, and a discrete Hölder inequality
on the sum over T ∈ Th with exponents (2, 4, 4) to conclude. On the other hand, Hölder inequalities
with exponents (4, 2, 4) followed by the approximation properties (6a) of the L2-orthogonal projector
with l = k, p = 2, m = 0, and s = k + 1 give for the second contribution

|T2,2| . hk+1|w|Hk+1(Th)d |w|W 1,4(Ω)d‖zh‖L4(Ω)d . hk+1|w|Hk+1(Th)d |w|W 1,4(Ω)d‖zh‖1,h,

where we have used the discrete Sobolev embedding (11) for q = 4 to conclude. Collecting the above
bounds, we arrive at

|T2| . hk+1|w|Hk+1(Th)d |w|W 1,4(Ω)d‖zh‖1,h. (88)

To estimate the third term, using a Hölder inequality with exponents (4,∞, 4, 2) we obtain

|T3| ≤
∑
T∈Th

∑
F∈FT

‖ŵF ‖L4(F )d‖ŵF − ŵT ‖L4(F )d‖zF − zT ‖L2(F )d . (89)

For the first factor inside the summations, we use the L4-boundedness of πkF followed by a local trace
inequality in L4 (see, e.g., [22, Eq. (A.10)]) and the fact that hT ≤ diam(Ω) . 1 to write

‖ŵF ‖L4(F )d . ‖w‖L4(F )d . h
− 1

4

T

(
‖w‖L4(T )d + hT ‖∇w‖L4(T )d×d

)
. h

− 1
4

T ‖w‖W 1,4(T )d .

For the second factor, using the linearity, idempotency, and L4-boundedness of πkF followed by the
optimal approximation properties of πkT we obtain

‖ŵF − ŵT ‖L4(F )d = ‖πkF (w − ŵT )‖L4(F )d . ‖w − ŵT ‖L4(F )d . h
k+ 3

4

T |w|Wk+1,4(T )d .
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Collecting the above estimates, we can go on writing

|T3| .
∑
T∈Th

∑
F∈FT

h
− 1

4

T ‖w‖W 1,4(T )d h
k+ 3

4

T |w|Wk+1,4(T )d ‖zF − zT ‖L2(F )d

. hk+1‖w‖W 1,4(Ω)d |w|Wk+1,4(Th)d

(∑
T∈Th

∑
F∈FT

h−1
F ‖zF − zT ‖

2
L2(F )d

) 1
2

. hk+1‖w‖W 1,4(Ω)d |w|Wk+1,4(Th)d‖zh‖1,h,

(90)

where we have used Hölder inequalities with exponents (4, 4, 2) on the sum over T ∈ Th and F ∈ FT
together with hF ≤ hT ≤ h to pass to the second line, and the definitions (9) of ‖·‖1,h and (10) of
‖·‖1,T to conclude.

Finally, after observing that w vanishes on ∂Ω owing to the assumed regularity, we have for the
fourth term

T4 = 0. (91)

Collecting the bounds (87), (88), (90), and (91), and observing that |w|Hk+1(Th)d . |w|Wk+1,4(Th)d ,
the conclusion follows.

A.6 Convective stabilisation

Proof of Lemma 10. (i) Continuity. Since ρ is Lipschitz-continuous,∣∣∣∣ νhF ρ(PeTF (vF ))− ν

hF
ρ(PeTF (wF ))|

∣∣∣∣ . ν

hF
|PeTF (vF )− PeTF (wF )| ≤ |vF −wF |.

Hence, setting eh := vh −wh,∣∣∣jh(vh; zh, z
′
h)− jh(wh; zh, z

′
h)
∣∣∣

.
∑
T∈TT

∑
F∈Fh

∫
F

|eF | |zF − zT | |z′F − z′T |+
∑
F∈Fb

h

∫
F

|eF | |zF | |z′F |

≤
∑
T∈TT

∑
F∈Fh

‖eF ‖L∞(F )d‖zF − zT ‖L2(F )d‖z′F − z′T ‖L2(F )d

+
∑
F∈Fb

h

‖eF ‖L∞(F )d‖zF ‖L2(F )d‖z′F ‖L2(F )d

.
∑
T∈TT

∑
F∈Fh

|F |− 1
2hF ‖eF ‖L2(F )d h

− 1
2

F ‖zF − zT ‖L2(F )d h
− 1

2

F ‖z
′
F − z′T ‖L2(F )d

+
∑
F∈Fb

h

|F |− 1
2hF ‖eF ‖L2(F )d h

− 1
2

F ‖zF ‖L2(F )d h
− 1

2

F ‖z
′
F ‖L2(F )d , (92)

where the second inequality follows from the Hölder inequality with exponents (∞, 2, 2), and the
conclusion is obtained using the reverse Lebesgue inequality (86) with (α, β) = (∞, 2). We then
write, for F ∈ FT ,

|F |− 1
2hF ‖eF ‖L2(F )d ≤ |F |−

1
2hF ‖eF − eT ‖L2(F )d + |F |− 1

2hF ‖eT ‖L2(F )d

≤ |F |− 1
2h

3
2

F ‖eh‖1,h + |F |− 1
2hFh

− 1
2

T |T |
1
4 ‖eT ‖L4(T )d

≤ h1− d4 ‖eh‖1,h,

where we have used the triangle inequality in the first line, followed by ‖eF −eT ‖L2(F )d ≤ h
1
2

F ‖eh‖1,h,

the discrete trace inequality (76) with α = 2, and Hölder’s inequality ‖eT ‖L2(T )d ≤ |T |
1
4 ‖eT ‖L4(T )d

in the second line. The conclusion follows from |F | ' hd−1
F , |T | ' hdT , hF ≤ hT , h

2− d2
T ≤

diam(Ω)1− d4 h1− d4 and, owing to the Sobolev embedding (11), ‖eT ‖L4(T )d ≤ ‖eT ‖L4(Ω)d . ‖eh‖1,h.
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The proof of (48) is complete by plugging this estimate on |F |− 1
2hF ‖eF ‖L2(F )d into (92), by using

Cauchy–Schwarz inequalities and by recalling the definition (9) of ‖·‖1,h.

(ii) Consistency. Let ŵh := Ikhw. Since ρ is Lipschitz-continuous and ρ(0) = 0 we have |ρ(s)| . |s|
for all s ∈ R. Hence, |PeTF (ŵF )| . hF

|ŵF |
ν . This firstly shows that the boundary penalisation in

jh(ŵh; ŵh, zh) vanishes (since ŵF = 0 for all F ∈ Fb
h , given that w = 0 on ∂Ω), and then, by

Hölder’s inequality with exponents (4, 4, 2),

|jh(ŵh; ŵh, zh)| .
∑
T∈Th

∑
F∈FT

∫
F

|ŵF ||ŵF − ŵT | |zF − zT |

.
∑
T∈Th

∑
F∈FT

‖ŵF ‖L4(F )d‖ŵF − ŵT ‖L4(F )d‖zF − zT ‖L2(F )d .

This right-hand side is the same as in (89), and the estimates performed on T3 in the proof of Lemma
8 (see (90)) therefore show that (49) holds.
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