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Abstract

This paper focuses on a dynamic multi-asset mean-variance portfolio selection problem under model
uncertainty. We develop a continuous time framework for taking into account ambiguity aversion about
both expected return rates and correlation matrix of the assets, and for studying the join effects on
portfolio diversification. The dynamic setting allows us to consider time varying ambiguity sets, which
include the cases where the drift and correlation are estimated on a rolling window of historical data
or when the investor takes into account learning on the ambiguity. In this context, we prove a general
separation principle for the associated robust control problem, which allows us to reduce the determination
of the optimal dynamic strategy to the parametric computation of the minimal risk premium function.
Our results provide a justification for under-diversification, as documented in empirical studies and in the
static models [16], [34]. Furthermore, we explicitly quantify the degree of under-diversification in terms
of correlation bounds and Sharpe ratios proximities, and emphasize the different features induced by drift
and correlation ambiguity. In particular, we show that an investor with a poor confidence in the expected
return estimation does not hold any risky asset, and on the other hand, trades only one risky asset when the
level of ambiguity on correlation matrix is large. We also provide a complete picture of the diversification
for the optimal robust portfolio in the three-asset case.
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1 Introduction

There are many studies on under-diversification of portfolio in the Finance and Economics literature, where
investors hold only a small part of risky assets among a large number of available risky assets. In the extreme
case the anti-diversification effect means that investors hold only a single stock (or not even any risky asset)
and exclude many others. Empirical studies reported in numerous papers, see [15], [7], [37], [6], [20], have
shown the evidence of portfolio under-diversification in practice. For example, in [15], [7], it is observed
that there exists a concentration on (bias towards) domestic assets compared to foreign assets in investors’
international equity portfolios. These results are in contrast with the well-diversified portfolio suggested
by the classical mean-variance portfolio theory initiated in a single period model in [35], later in [31] for a
multi-period model, and in [32] for a continuous-time model. A possible explanation to under-diversification
is provided in the Finance and Economics literature by model uncertainty, often also called ambiguity or
Knightian uncertainty.

In classical portfolio theory, the model and parameters are assumed to be perfectly known. However,
in reality, due to statistical estimation issues, there is always uncertainty (ambiguity) about the model or
parameters. In this case, a robust approach, see e.g. [1], can be used to compute the optimal portfolio, i.e.,
the investor makes portfolio decisions under the worst case that corresponds to the least favorable scenario
implied by a set of ambiguous parameters or by a set of distributions on the price process, which is usually
refereed in operations research literature to distributionally robust optimization.

Abundant research has been conducted to tackle different types of model uncertainty. Robustness to
uncertainty over a set of distributions on market factors in portfolio optimization has been analyzed in, e.g.,
[13], [38, 39], [8], [18], [48], [21], [28], primarily in single-period formulations, except [17] in a multi-period
setting. Primary market factor is the price process, and in this case, relevant sets of uncertain distributions
correspond to ambiguity on the drift (i.e. the expected rate of return), the volatilities and the correlations
when there are multiple assets to be traded. Indeed, drift estimation is known to be notoriously difficult,
and moreover, while the marginal volatilities can be usually well-estimated from quadratic variation of price
process, the estimation of correlation between assets may be extremely inaccurate, due to the asynchronous
data and lead-lag effect, especially when the number of assets is large, see [26], [30]. Related works on
robust portfolio optimization include [43], [29] for uncertainty solely about drift, [9], [36] for ambiguity about
volatility (in a probabilistic setup) with a family of nondominated probability measures, [33], [2] for combined
uncertainty about both drift and volatility , [40] for joint ambiguity about drift, volatility and jumps. In this
existing literature, the common types of drift uncertainty sets are represented by polyhedral set or ellipsoidal
set in [2], and unified by general ellipsoidal set in [16]. This general ellipsoidal representation for the drift
ambiguity indicates in particular that drift estimation is affected by correlation estimation. Compared to
drift ambiguity and volatility ambiguity, there are rather few results dealing with correlation ambiguity, let
us mention however [14], [27], [23], [25], and [34].

Our purpose is to explore the joint effects of ambiguity about drift and correlation on portfolio selection
and diversification with mean-variance (MV) criterion in continuous time. Notice that in the above cited
papers, portfolio selection problems are mainly based on expected utility criterion and the effect on portfolio
diversification under continuous-time framework is not really studied. Table 1 summarizes some papers on
the model uncertainty and its impact on the portfolio diversification, which are related to the study of our
paper. The list of related papers is not exhaustive. We distinguish between usual covariance ambiguity and
correlation ambiguity in Table 1: Covariance ambiguity refers to the case when the covariance matrix lies
between two given bounds in the space of positive definite symmetric matrix, see e.g. [33], [36], [40], [49], or
lies in a proper cone, see e.g. [48], while correlation ambiguity means that ambiguity is directly formulated
on the correlations between the different assets. It turns out that, in contrast with covariance ambiguity,
correlation ambiguity is a relevant indicator for generating under-diversification, as shown in a static model
in [23], [27] and [34]. As pointed out in Table 1, the existing literature about under-diversification usually
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Table 1: Some literature on the impact of model uncertainty on portfolio diversification

Ambiguity
Objective

static MV static utility dynamic MV dynamic utility

factors [19] (d, N) [17](d, N)

drift
[16](d, Y)
[3](d, Y)

[12] (1, Y) [46](d, Y)

covariance (cov) [25](d, N) [36](d, N)

drift + cov
[2](d, N)
[33](d, N)

drift + cov + jumps [40] (d, N)

correlation(corr) [34](d, Y)
[23](2, Y)
[27](d, Y)

[25](2, N) [14](2, N)

drift + corr This paper(d, Y)

In the above entries (., .) the first element 1, 2 or d refers to the number of risky assets con-
sidered in the paper [.], while the second element Y or N indicates whether the portfolio under-
diversification is studied or not.

focuses on static mean variance criteria or expected utility criteria and on one type of model uncertainty.
Our paper considers both robust mean-variance and utility framework in continuous time to investigate

the impact of combined drift and correlation ambiguity on portfolio diversification. Due to the nonlinear
dependence on the wealth expectation, the mean-variance criterion is a non standard control problem. To
circumvent this issue, the authors in [29] reformulate the mean-variance problem under drift uncertainty
into portfolio Sharpe ratio of the terminal wealth. Robust dynamic mean-variance problem under covariance
matrix uncertainty, in particular, correlation ambiguity, has been considered in [25] by a McKean-Vlasov
dynamic programming approach, but the authors neither tackle the drift uncertainty nor study the portfolio
diversification in detail, and mainly focus on the two-asset case d = 2. One key assumption in [25] is that
one can aggregate a family of processes, a condition, which does not hold true anymore in the case of drift
uncertainty. An additional feature of our framework, compared to one-period models, is the consideration of
learning on the ambiguity about the drift and correlation of risky assets: for instance, the investor typically
gets more and more information about history of asset prices over time, and thus estimation errors about
model parameters are reduced. Moreover, compared to models focusing only on one type of parameter
ambiguity, our framework provides a unified setting for the joint effects of drift and correlation ambiguity on
portfolio diversification. In particular, we are able to consider correlation structure of the assets in the drift
uncertainty modelling.

Regarding portfolio diversification, the authors in [3], [16], [46] considered ambiguity about the assets’
returns. Their frameworks include uncertainty about the joint distribution of returns for all assets and also
for different levels of uncertainty of the marginal distribution of returns for any subsets of these assets. They
showed that the different levels of uncertainty on different asset subclasses could result in significant under-
diversification. They also applied their theoretical results to real data and found consistent results with the
empirical studies in [7], [15] among others, showing that international equity portfolios are strongly biased
towards domestic stocks, and in [24] and [44], where a similar lack of diversification is revealed on domestic
portfolios. The model in [3], [16], [46] offers a partial explanation for the observed under-diversification
and bias towards familiar securities. More recently, the authors in [34] considered the uncertainty about
the correlation of the assets. With a static mean-variance investment, they found that under-diversification
of robust optimal portfolio depends on the level of correlation ambiguity. They also provided results with
market data and showed, using their uncertain (ambiguous) correlation model, that the investor only holds
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less than 20 (17 stocks on average) among 100 stocks randomly selected from about 500 stocks in S&P500.
In the two-asset case, they also found that the degree of diversification depends on the comparison between
the ratio of assets’ Sharpe ratios and the correlation ambiguity parameters. A further explanation for under-
diversification is that investors can reduce the uncertainty on the model or the parameters through learning.
In [47], the authors built a framework to solve jointly for investment and information choices, with general
preferences and information cost functions. They showed that, for some special preferences and information
acquisition technologies, investors tend to learn more about the assets with which they are more familiar
(typically, the domestic assets rather than the foreign ones), and become even more familiar with those assets
after learning. As a consequence of this learning procedure, the investors select those assets they have learnt
at the expense of others for which they have less information. Their results are consistent with the empirical
studies on portfolios of international investors.

We emphasize that the consideration of joint ambiguity on the drift and correlation is relevant regarding
portfolio diversification for several reasons:

• As the portfolio allocation is determined by both the drift and the correlation of the assets, it is consistent
that under-diversification should be governed by the ambiguity levels on both these parameters: actually,
the ambiguity level on the drift mainly determines absolute position of each asset (invest or not in a asset
if the drift ambiguity is small or not), while the ambiguity level on the correlation mainly determines
relative position of the assets (not diversify if the correlation is very ambiguous and diversify if not,
directional trading if the correlation is small comparing to Sharpe ratio proximity and spread trading
if large).

• In [46], the authors consider both global ambiguity for the returns of all risky assets and different levels
of ambiguity for any subset of these risky assets. In the case of equal ambiguity for all risky assets,
ambiguity about the return would not bias the portfolio towards a particular asset, thus not explaining
under-diversification. Instead, in the case of different levels of ambiguity for subsets of these risky assets,
the ambiguity difference would bias the portfolio towards assets with smaller ambiguity, thus explaining
under-diversification. In our setting, even in the case of equal ambiguity for the returns of all risky
assets, we can still explain under-diversification through the ambiguity for the correlations of all assets.
Moreover, in the case of different levels of ambiguity for the returns for subsets of these risky assets, we
can explain under-diversification through the combination of the ambiguity difference for the returns
and the ambiguity for correlations. In particular, we still obtain the optimal strategy in an explicit
form, which allows us to understand the different effects of correlation ambiguity and expected return
ambiguity.

• In [3], the familiarity and unfamiliarity of assets are modelled by different levels of ambiguity on expected
rates of return in single period setting. The main feature of their model is that it allows investors to
distinguish their ambiguity about one asset class relative to others. Moreover, similarly as in [46], the
different levels of ambiguity can explain bias to familiar assets and under-diversification. The authors
showed that the correlation coefficient has an important effect on the portfolio weights, notably, an
increase in correlation from 50% to 70% roughly doubles the holding of the familiar asset. Since
correlation coefficients are very difficult to estimate with a good accuracy, it is important to take into
account correlation ambiguity when building the optimal portfolio which is less sensitive to estimation
inaccuracy. This is our main motivation to consider ambiguity on both expected return rates and
correlation and study the effects of ambiguity on portfolio strategy, in particular, under-diversification.

• Correlation ambiguity and expected return ambiguity have different features. For example, technically,
in a continuous-time setting, a set of absolute continuous probability measures can be used to model
the expected return ambiguity. In contrast, a set of mutually singular probability measures is needed
for correlation ambiguity. This explains why in the existing literature, such as [25] and [36], only one
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type of uncertainty is considered. Economically, if the expected return ambiguity level is large, no risky
asset is held (see e.g. [3]). In contrast, if correlation ambiguity is large, one and only one asset is held
(see e.g. [34]). However, by considering only correlation ambiguity as in [34], one could not explain
nonparticipation in which the investor does not make any risky investment at all.

To sum up, the contributions of our paper are fourfold:
(1) First, we develop a robust model that takes into account uncertainty on both drift and correlation

of multiple risky assets for d ≥ 2, in a dynamic, continuous time mean-variance portfolio setting. The
dynamic setting allows us to consider time varying ambiguity sets, which include the cases where the drift
and correlation are estimated on a rolling window of historical data or when the investor takes into account
learning on the ambiguity.

(2) Secondly, we state a separation principle for the associated robust control problem formulated as a
mean-field type differential game, which allows us to reduce the original min-max problem to the parametric
computation of minimal risk premium. We derive the separation principle in a general setting with time
varying ambiguity sets and for general preference criteria, including expected utility. In particular, the
separation principle also holds true in single period and multi-period models. We can then generalize results
in static models as in [3] and [16] by incorporating correlation ambiguity, and study the implications of
both expected return and correlation ambiguity, notably with empirical analysis on real data. The main
methodology for the separation principle is based on a weak version of the martingale optimality principle.
This extends the classical martingale optimality principle that can not be directly applied in the presence of
drift uncertainty, see detailed comments in Remark 3.5.

(3) Furthermore, we illustrate our results in rectangular and ellipsoidal uncertainty set and quantify
explicitly the diversification effects on the optimal robust portfolio in terms of the ambiguity level. As in
[46] and [16], the uncertainty set is flexible enough to allow for joint uncertainty for all assets or different
levels of uncertainty for different subsets of the assets. Both drift uncertainty and correlation uncertainty
can lead to under-diversification. In particular, we find that the robust investor does not trade in assets
with large expected return ambiguity and trades only one risky asset in presence of high level of ambiguity
about correlation. We also obtain closed-form expressions for the robust optimal portfolio, and we provide
notably a complete picture of the diversification for the optimal robust portfolio in the case with three risky
assets, which is new to the best of our knowledge. In the paper [34] dealing with a rectangular ambiguity
set in a static model, the authors proposed an implicit condition for not investing in one asset, i.e., under-
diversification, in terms of correlation ambiguity. We provide in our dynamic setting an explicit condition
in terms of ambiguity set for under-diversification, and obtain the optimal strategies in explicit form. For
our future studies, we may introduce the information acquisition procedure as in [47] or the multi-agent with
heterogeneous beliefs setting as in [27] in our framework.

(4) Finally, our results suggest that the diversification effect is mainly determined by the relation between
correlations of risky assets and Sharpe ratio "proximities" (the ratio of the Sharpe ratios). To the best of our
knowledge, it is the first time that such an explicit relation is pointed out in a general setting. For simplicity,
let us illustrate the idea and explain why classical portfolio theory does not lead to under-diversification in the
two-asset case. Indeed, the Sharpe ratio proximity provides a standard to measure if the correlation is large
or small. When the correlation is a constant, the investor chooses her portfolio allocation according to the
relationship between the correlation and the Sharpe ratio proximity of the two assets. When the correlation is
larger than the Sharpe ratio proximity, the optimal strategy is to make a spread trading. When the correlation
is smaller than the Sharpe ratio proximity, the optimal strategy is to make a directional trading. Then the
only case the investor invests in one asset is when the correlation is equal to the Sharpe ratio proximity.
However, in practice, it is almost impossible to have this equality with parameters estimated from market
data. However, in the case when correlation uncertainty set is an interval, the investor invests in one asset if
the Sharpe ratio proximity lies in the correlation uncertainty interval, which is more likely to occur when the
uncertainty interval is large due to lack of market data.

5



The rest of paper is organized as follows. Section 2 presents the formulation of the model uncertainty
setting and the robust mean-variance problem. In Section 3, we derive the separation principle and explicit
robust solution. Section 4 provides several examples arising from the separation principle, and the implications
for the optimal robust portfolio strategy and the portfolio diversification. Section 5 illustrates through two
numerical examples the effects of drift and correlation estimation error, thus ambiguity level, on portfolio
Sharpe ratio. Finally, Appendix collects proofs of several mathematical results including the separation
principle for general expected utility critera.

2 Problem formulation

2.1 Model uncertainty setting

We consider a financial market with one risk-free asset, assumed to be constant equal to one, and d risky
assets on a finite investment horizon [0, T ]. Model uncertainty is formulated by using a probabilistic setup as
in [40]. We define the canonical state space by Ω = {ω = (ω(t))t∈[0,T ] ∈ C([0, T ],Rd) : ω(0) = 0} representing
the continuous paths driving the risky assets. We equip Ω with the uniform norm and the corresponding Borel
σ-field F . We denote by B = (Bt)t∈[0,T ] the canonical process, i.e., Bt(ω) = ω(t), and by F = (Ft)0≤t≤T the
canonical filtration, i.e. the natural (raw) filtration generated by B.

We assume that the investor knows the marginal volatilities σi > 0 of each asset i = 1, . . . , d, typically
through a quadratic variation estimation of the assets, and we denote by S the known constant 1 diagonal
matrix with i-th diagonal term equal to σi, i = 1, . . . , d. However, there is uncertainty about the drift
(expected rate of return) and the correlations of the multi-assets, which are parameters notoriously difficult
to estimate in practice.

The ambiguity about drift and correlation matrix is parametrized by a family Θ = {Θ(t) : t ∈ [0, T ]} of
nonempty sets with

Θ(t) ⊂ Rd × Cd>+, t ∈ [0, T ],

where Cd>+ is the subset of all elements ρ = (ρij)1≤i 6=j≤d ∈ [−1, 1]d(d−1) with ρij = ρji s.t. the symmetric
matrix C(ρ) with diagonal terms 1 and off-diagonal terms ρij

C(ρ) =


1 ρ12 . . . ρ1d

ρ12 1 . . . .
...

...
. . .

...
ρ1d . . . . 1


lies in Sd>+, the set of positive definite symmetric matrices in Rd×d. Notice that Cd>+ is an open convex set of
[−1, 1]d(d−1). The first component set of Θ(t) represents the prior values taken by the (possibly random) drift
of the assets at time t, while the matrices C(ρ), when ρ runs in the second component set of Θ(t), represent
the prior correlation matrices of the multi-assets at time t. The introduction of a family of prior sets Θ(t),
0 ≤ t ≤ T , allows us to take into account learning on the ambiguity about the mean return and correlations:
typically, we may consider that this family is decreasing in time as we get more and more information about
history of asset prices over time, which reduces the estimation error on the parameters of the model. The
prior covariance matrices of the assets are given by

Σ(ρ) := SC(ρ)S =


σ2

1 σ1σ2ρ12 . . . σ1σdρ1d

σ1σ2ρ12 σ2
2 . . . .

...
...

. . .
...

σ1σdρ1d . . . . σ2
d

 ,

1we could consider deterministic marginal volatilities, but this does not impact our results, and for simplicity of presentation,
we take them constant
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and we denote by σ(ρ) = Σ
1
2 (ρ) =

(
Σ(ρ)

) 1
2 the square-root matrix, called volatility matrix.

An element θ = (θ(t))t∈[0,T ] ∈ Θ = {Θ(t) : t ∈ [0, T ]} can be viewed as a function on [0, T ] s.t. θ(t) ∈
Θ(t) for all t ∈ [0, T ], and we write θ = (b,ρ) to distinguish the first and second component of this function,
with b = (b(t))t∈[0,T ] and ρ = (ρ(t))t∈[0,T ].

Let us now introduce the family of prior (squared) risk premium R(θ) = {R(θ(t)) : t ∈ [0, T ]}, for θ =
(θ(t))t∈[0,T ] ∈ Θ, by

R(θ) = bᵀΣ(ρ)−1b = ‖σ(ρ)−1b‖2
2
, for θ = (b, ρ) ∈ Θ(t), t ∈ [0, T ], (2.1)

where Σ(ρ)−1 =
(
Σ(ρ)

)−1. Hereafter, ᵀ denotes the transpose of matrix and ‖·‖2 denotes the Euclidean norm
in Rd.

Remark 2.1 There exist different conditions for characterizing the positive definiteness of the correlation
matrix C(ρ). For example, Sylvester’s criterion states that C(ρ) is positive definite if and only if all the
leading principal minors are positive, e.g., in dimension d = 2, ρ ∈ (−1, 1); in dimension d = 3, ρij ∈ (−1, 1)
1 ≤ i < j ≤ 3 and ρ2

12 + ρ2
13 + ρ2

23 − 1 − 2ρ12ρ13ρ23 < 0. Alternatively, one can characterize the positive
definiteness of C(ρ) using angular coordinates as in [42]. ♦

The ambiguity sets Θ = {Θ(t) : t ∈ [0, T ]} for the drift and correlation are assumed to satisfy

(HΘ) Θ(t) is a bounded convex set of Rd × Cd>+, t ∈ [0, T ].

A relevant class for practical applications of ambiguity sets Θ satisfying (HΘ) is the following: Let
{J1, . . . , Jl, . . . , Jp}, 1 ≤ p ≤ d, be a partition of {1, . . . , d}, and denote by |Jl| the cardinality of Jl, l = 1,
. . ., p. We consider ambiguity set Θ(t) in the form

Θ(t) = {(b, ρ) ∈ Rd × Γ(t) : ‖σJl(ρ)−1(bJl − b̂Jl(t))‖2 ≤ δl(t), l = 1, . . . , p}, (2.2)

for some convex set Γ(t) of Cd>+, where ΣJl(ρ) is the |Jl| × |Jl| variance-covariance matrix of assets in subclass
Jl and its square root σJl(ρ) = (ΣJl(ρ))

1
2 . Here b̂Jl(t) is a known vector, representing an estimate of mean

return vector bJl of assets in Jl at time t, and δl(t) ≥ 0 represents a level of ambiguity around b̂Jl(t) due to
estimation error as well as her level of uncertainty aversion, and typically decreasing in t, as we learn more
information about the drift over time.

Remark 2.2 In the particular case when the number of subclasses is equal to the number of risky assets, i.e.,
p = d, Θ(t) is a rectangular set in the form

∏d
i=1[b̂i(t)−σiδi(t), b̂i(t)+σiδi(t)] × Γ(t), interpreted as a product

set of confidence intervals with size determined by the level δi(t) for each asset i = 1, . . . , d. Instead of setting
confidence intervals for the assets individually, one can do it jointly for all assets by considering the case when
p = 1, which corresponds to an ellipsoidal set in the form {(b, ρ) ∈ Rd×Γ(t) : ‖σ(ρ)−1(b− b̂(t))‖2 ≤ δ(t)}. An
extension of the two above sub-cases, allowing for separate estimation and confidence intervals for different
subclasses of assets (due e.g. to different available histories across the assets) is to consider ambiguity sets
as in (2.2). This is an extension of expected rate of return uncertainty considered in [1], [16] for a single
period model by allowing an additional ambiguity on correlation and learning on estimation error through
the deterministic level δl(t).

When Γ(t) = Cd>+, this means that the investor has at time t a full ambiguity about correlation on the
d-risky assets. In the opposite case, when Γ(t) is a singleton, this means that the investor knows (or is fully
confident about) the value of the correlation at time t. Similarly, the case δl(t) = 0 means that the mean
return vector bJl for assets in the subclass Jl is known or the investor is fully confident about her estimate at
time t. ♦
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Remark 2.3 An interesting extension of our model uncertainty setting would be to consider ambiguity sets
that may evolve randomly in time, as proposed in [4]: for example, the threshold δ may depend on the current
and past asset prices, which corresponds to an adaptive estimation error from the information flow of the
observed asset prices. ♦

We denote by VΘ the set of F-progressively measurable processes θ. = (θt)t = (bt, ρt)t = (b., ρ.) valued in
Θ, in the sense that θt ∈ Θ(t), 0 ≤ t ≤ T , and introduce the set of prior probability measures PΘ:

PΘ = {Pθ. : θ. ∈ VΘ},

where Pθ. is the probability measure on (Ω,F) s.t. B is a semimartingale on (Ω,F ,Pθ.) with absolutely
continuous characteristics (w.r.t. the Lebesgue measure dt) (b.,Σ(ρ.)). The prior probabilities Pθ. are in
general non-equivalent, and actually mutually singular, and we say that a property holds PΘ-quasi surely
(PΘ-q.s. in short) if it holds Pθ.-a.s. for all θ. ∈ VΘ.

The price process S = (S1, . . . , Sd) of the d risky assets valued in (0,∞)d is given by the dynamics

dSt = diag(St)dBt, 0 ≤ t ≤ T, PΘ − q.s.
= diag(St)

(
btdt+ σ(ρt)dW

θ
t ), Pθ. − a.s., for θ. = (b., ρ.) ∈ VΘ,

where W θ is a d-dimensional Brownian motion under Pθ. . Here diag(St) is the diagonal matrix with i-th
element equal to Sit . Notice that in this uncertainty modeling, we allow the unknown drift and correlation to
be a priori random process, valued in Θ.

2.2 Robust mean-variance problem

An admissible portfolio strategy α = (αt)0≤t≤T representing the amount invested in the d risky assets, is a
Rd-valued F-progressively measurable process, satisfying the integrability condition

sup
Pθ.∈PΘ

Eθ.
[ ∫ T

0
|αᵀ
tbt|dt +

∫ T

0
αᵀ
tΣ(ρt)αtdt] < ∞, (2.3)

and denoted by α ∈ A. Hereafter, Eθ. denotes the expectation under Pθ. . This integrability condition (2.3)
ensures that diag(S)−1α is S-integrable under any P ∈ PΘ. For a portfolio strategy α ∈ A, and an initial
capital x0 ∈ R, the dynamics of the self-financed wealth process is driven by

dXα
t = αᵀ

tdiag(St)
−1dSt = αᵀ

tdBt, 0 ≤ t ≤ T, Xα
0 = x0, PΘ − q.s.

= αᵀ
t

(
btdt+ σ(ρt)dW

θ
t

)
, 0 ≤ t ≤ T, Xα

0 = x0 ∈ R, Pθ. − a.s. (2.4)

for all θ. = (b., ρ.) ∈ VΘ.
Given a risk aversion parameter λ > 0, the worst-case mean-variance functional under ambiguous drift

and correlation is

Jwc(α) = inf
Pθ.∈PΘ

(
Eθ. [Xα

T ]− λVarθ.(X
α
T )
)
< ∞, α ∈ A,

where Varθ.(.) denotes the variance under Pθ. , and the robust mean-variance portfolio selection is formulated
as {

V0 := sup
α∈A

Jwc(α) = sup
α∈A

inf
θ.∈VΘ

J(α, θ.)

J(α, θ.) := Eθ. [Xα
T ]− λVarθ.(X

α
T ), α ∈ A, θ. ∈ VΘ.

(2.5)

Notice that problem (2.5) is a non standard stochastic differential game due to the presence of the variance
term in the criterion, which prevents the use of classical control method by dynamic programming or maximum
principle. We complete this section by recalling the solution to the mean-variance problem when there is no
ambiguity on the model parameters, and which will serve later as benchmark for comparison when studying
the uncertainty case.
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Remark 2.4 (Case of no uncertainty model) When Θ(t) = {θo(t) = (bo(t), ρo(t))} is a singleton for any
t ∈ [0, T ], we are reduced to the Black-Scholes model with deterministic drift bo(t), deterministic covariance
matrix Σo(t) := Σ(ρo(t)), volatility σo(t) := σ(ρo(t)), and deterministic risk premium Ro(t) := R(θo(t)). In
this case, it is known, see e.g. [32], that the optimal mean-variance strategy is given by

α∗t =
[
x0 +

e
∫ T
0 Ro(t)dt

2λ
−X∗t

]
(Σo(t))−1bo(t) =: Λo(X∗t )(Σo(t))−1bo(t), 0 ≤ t ≤ T,

where X∗ is the wealth process associated to α∗, while the optimal performance value is

V0 = x0 +
1

4λ

[
e
∫ T
0 Ro(t)dt − 1

]
.

The vector (Σo(t))−1bo(t), which depends only on the model parameters of the risky assets, determines the
allocation in the risky assets. The above expression of α∗ shows that, once we know the exact values of
the rate of return and covariance matrix, one diversifies her portfolio among all the assets according to the
components of the vector (Σo(t))−1bo(t), and this is weighted by the scalar term Λo(X∗t ), which depends on
the risk aversion of the investor via the parameter λ, on the current wealth but also on the initial capital x0

(which is sometimes refereed to as the pre-committment of the mean-variance criterion). Notice that Λo(X∗t )
is positive. Indeed, observe that

dΛo(X∗t ) = −dX∗t = −(α∗t )
ᵀ(bo(t)dt+ σo(t)dW o

t )

= −Λo(X∗t )(Ro(t)dt+
(
(σo(t))−1bo(t)

)ᵀ
dW o

t ), 0 ≤ t ≤ T,

with Λo(X∗0 ) = 1
2λe

∫ T
0 Ro(t)dt > 0, which shows clearly that Λo(X∗t ) > 0, 0 ≤ t ≤ T , and decreases with λ.

Let us discuss in particular the allocation in the two-asset case. Notice that the vector (Σo(t))−1bo(t) of
allocation is then given by

(Σo(t))−1bo(t) =
1

1− |ρo(t)|2

(
βo1(t)−ρo(t)βo2(t)

σ1
βo2(t)−ρo(t)βo1(t)

σ2

)
=:

(
κo1(t)
κo2(t)

)
,

where βoi (t) = boi (t)/σi is the Sharpe ratio of the i-th asset, i = 1, 2, at time t. To fix the idea, assume that
βo1(t) > βo2(t) > 0. We then see that κo1(t) > 0, while κo2(t) ≥ 0 if and only if β

o
2(t)
βo1(t) ≥ ρo(t). The interpretation

is the following: the ratio βo2(t)
βo1(t) ∈ (0, 1) measures the “proximity" in terms of Sharpe ratio between the two

assets, and has to be compared with the correlation ρo(t) between these assets in order to determine whether
it is optimal to invest according to a directional trading, i.e., κo1(t)κo2(t) > 0 (thus here long in both assets)
or according to a spread trading, i.e., κo1(t)κo2(t) < 0 (long in the first asset and short in the second one)
or according to under-diversification, i.e., κo1(t)κo2(t) = 0 (only long in the first asset). Notice that under-
diversification only occurs when ρo(t) =

βo2(t)
βo1(t) , a condition “rarely" satisfied in practice. For example, when

both assets have close Sharpe ratios, and their correlation is not too high, then one optimally invests in both
assets with a directional trading. In contrast, when one asset has a much larger Sharpe ratio than the other
one, or when the correlation between the assets is high, then one optimally invests in both assets with a
spread trading. ♦

In the sequel, we study the quantitative impact of the drift and correlation uncertainty on the optimal
robust mean-variance strategy, in particular regarding the portfolio diversification.

3 Separation principle and robust solution

The main result of this section is to state a separation principle for solving the robust dynamic mean-variance
problem.
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Theorem 3.1 (Separation Principle) Let us consider a parametric set Θ for model uncertainty as in
(HΘ). Suppose that there exists a pair θ∗ = (θ∗(t))t = (b∗,ρ∗) = (b∗(t), ρ∗(t))t ∈ Θ solution to arg min

θ∈Θ
R(θ),

i.e., θ∗(t) ∈ arg min
θ∈Θ(t)

R(θ), for all t ∈ [0, T ]. Then the robust mean-variance problem (2.5) admits an optimal

portfolio strategy given by

α∗t = Λ∗(X∗t )Σ(ρ∗(t))−1b∗(t), 0 ≤ t ≤ T, PΘ − q.s., (3.6)

where X∗ is the state process associated to α∗t , and Λ∗(X∗t ) > 0 with

Λ∗(x) := x0 +
e
∫ T
0 R(θ∗(s))ds

2λ
− x, x ∈ R. (3.7)

Moreover, the corresponding initial value function is

V0 = x0 +
1

4λ

[
e
∫ T
0 R(θ∗(s))ds − 1

]
.

Interpretation. Theorem 3.1 means that the robust mean-variance problem (2.5) can be solved in two steps
according to a separation principle: (i) First, at each time t ∈ [0, T ], we search for the infimum of the risk
premium function θ ∈ Θ(t) 7→ R(θ) as defined in (2.1), which depends only on the inputs of the uncertainty
model. Existence and explicit determination of an element θ∗ = (b∗,ρ∗) ∈ Θ attaining this infimum will be
discussed and illustrated all along the paper through several examples. (ii) The solution to (2.5) is then given
by the solution to the mean-variance problem in the Black-Scholes model with deterministic drift b∗(t) and
correlation ρ∗(t), see Remark 2.4, and the worst-case scenario of the robust dynamic mean-variance problem
is simply given by the family of deterministic parameters θ∗ = (b∗,ρ∗). Some interesting features show up,
especially regarding portfolio diversification, as detailed in the next section. ♦

Remark 3.1 The existence of an element θ∗ solution to arg min
θ∈Θ

R(θ) is guaranteed under (2.2) whenever

the ambiguity sets Γ(t), t ∈ [0, T ], on correlation are compact as the risk premium function R is continuous.
Since we also want to consider the case of full ambiguity on correlation, i.e., when Γ(t) = Cd>+, which is an
open set, we do not impose such compactness condition. ♦

Remark 3.2 (Relation with static model) Actually, the worst-case scenario of static robust mean-variance
problem is also determined by the minimal risk premium. By analogue with model uncertainty described as
in Section 2.1, we characterize ambiguity about the rate of return b and correlation ρ as a bounded convex
set, i.e. θ = (b, ρ) ∈ Θ, and formulate the single-period robust mean-variance problem under ambiguity as

sup
α∈Rd

inf
θ∈Θ

(
αᵀb− λαᵀΣ(ρ)α

)
=: sup

α
inf
θ
Jstatic(α, θ).

where α is the portfolio held in d risky assets. Assume that there exists θ∗ = (b∗, ρ∗) ∈ arg min
θ∈Θ

R(θ), we then

obtain from Lemma A.1 in Appendix that (α∗, θ∗) with α∗ := 1
2λΣ(ρ∗)−1b∗ is a saddle point of J(α, θ), and

sup
α∈Rd

inf
θ∈Θ

Jstatic(α, θ) = inf
θ∈Θ

sup
α∈Rd

Jstatic(α, θ) = Jstatic(α
∗, θ∗) =

1

4λ
R(θ∗).

Therefore, the key point in all single period, multi-period and continuous-time models is the computation of
infimum of risk premium, which will be discussed in the next section. ♦

The rest of this section is devoted to the proof of Theorem 3.1, and the methodology is based on the
following weak version of the martingale optimality principle. The usual martingale optimality principle is
applied in [22] for utility maximization, in [36] for robust utility maximization under the uncertain volatility
model, and in [49] for robust portfolio-consumption strategies with uncertainty on both drift and volatility. A
comparison of the usual martingale optimality principle and our weak version is given in Remark 3.3 below.
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Lemma 3.1 (Weak optimality principle) Let {V α,θ.
t , t ∈ [0, T ], α ∈ A, θ. ∈ VΘ} be a family of real-valued

processes in the form

V α,θ.
t : = vt(X

α
t ,Eθ. [Xα

t ]),

for some measurable functions vt on R× R, t ∈ [0, T ], such that :

(i) vT (x, x̄) = x− λ(x− x̄)2, for all x, x̄ ∈ R,

(ii) the function t ∈ [0, T ] 7→ Eθ∗. [V
α,θ∗.
t ] is nonincreasing for all α ∈ A and some θ∗. ∈ VΘ,

(iii) Eθ. [V
α∗,θ.
T − V α∗,θ.

0 ] ≥ 0, for some α∗ ∈ A and all θ. ∈ VΘ.

Then, α∗ is an optimal portfolio strategy for the robust mean-variance problem (2.5) with a worst-case scenario
θ∗. , and

V0 = Jwc(α
∗) = sup

α∈A
inf

θ.∈VΘ
J(α, θ.) = inf

θ.∈VΘ
sup
α∈A

J(α, θ.) = v0(x0, x0) (3.8)

= J(α∗, θ∗. ).

Proof. First, observe that V α,θ.
0 = v0(x0, x0) is a constant that does not depend on α, θ., and from condition

(i) that Eθ. [V
α,θ.
T ] = J(α, θ.) for all α ∈ A, θ. ∈ VΘ. Then, from condition (ii), we see that

v0(x0, x0) = Eθ∗. [V
α,θ∗.

0 ] ≥ Eθ∗. [V
α,θ∗.
T ] = J(α, θ∗. ),

for all α ∈ A, and thus: v0(x0, x0) ≥ sup
α∈A

J(α, θ∗. ) ≥ inf
θ.∈VΘ

sup
α∈A

J(α, θ.). Similarly, from condition (iii), we have:

v0(x0, x0) ≤ J(α∗, θ.) for all θ. ∈ VΘ, and thus: v0(x0, x0) ≤ inf
θ.∈VΘ

J(α∗, θ.) = Jwc(α
∗) ≤ sup

α∈A
inf

θ.∈VΘ
J(α, θ.).

Recalling that we always have sup
α∈A

inf
θ.∈VΘ

J(α, θ.) ≤ inf
θ.∈VΘ

sup
α∈A

J(α, θ.), we obtained the required equality in

(3.8). Then, finally, from (ii) with α∗ and (iii) with θ∗. , we obtain that v0(x0, x0) = J(α∗, θ∗. ). 2

Remark 3.3 The usual martingale optimality principle for stochastic differential games as in robust portfolio
selection problem, and with classical expected utility criterion for some nondecreasing and concave utility
function U on R, e.g., U(x) = −e−ηx, η > 0:

sup
α∈A

inf
θ.∈VΘ

Eθ. [U(Xα
T )],

would consist of finding a family of processes V α,θ.
t in the form vt(X

α
t ) for some measurable functions vt on R

s.t. (i) vT (x) = U(x), (ii’) the process (V
α,θ∗.
t )t is a supermartingale under Pθ∗. for all α and some θ∗. , and (iii’)

the process (V α∗,θ.
t )t is a submartingale under Pθ. for some α∗ and all θ.. Due to the nonlinear dependence on

the law of the state wealth process via the variance term in the mean-variance criterion, making the problem
a priori time inconsistent, we have to adopt a weaker version of the optimality principle. First, the functions
vt depend not only on the state process Xα

t but also on its mean Eθ. [Xα
t ]. Second, we replace condition (ii’)

by the weaker condition (ii) on the mean in Lemma 3.1. Third, condition (iii’) is substituted by the weaker
condition (iii), which is even weaker than (iii”) t 7→ Eθ. [V

α∗,θ.
t ] is nondecreasing for some α∗ and all θ.. This

asymmetry of condition between (ii) and (iii) is explained in more detail in Remark 3.5. ♦

We shall also use the following property on the infimum of the prior risk premium function.
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Lemma 3.2 Given Θ as in (HΘ), and assuming that there exists θ∗ = (b∗,ρ∗) ∈ arg min
θ∈Θ

R(θ), let us define

the function Ht on Θ(t), t ∈ [0, T ], by

Ht(θ) := bᵀΣ(ρ∗(t))−1Σ(ρ)Σ(ρ∗(t))−1b∗(t), for θ = (b, ρ) ∈ Θ(t). (3.9)

Then, we have for all (b, ρ) ∈ Θ(t):

R(θ∗(t))− 2Ht(b, ρ
∗(t)) +Ht(b

∗(t), ρ) ≤ 0. (3.10)

Proof. See Section B.1 in Appendix.

In the following, we provide details of the proof for Theorem 3.1 using Lemma 3.1 and Lemma 3.2.
Proof of Theorem 3.1. We aim to construct a family of processes {V α,θ.

t , t ∈ [0, T ], α ∈ A, θ. ∈ VΘ} as
in Lemma 3.1, and given the linear-quadratic structure of our optimization problem, we look for measurable
functions vt in the form:

vt(x, x̄) = Kt(x− x̄)2 + Ytx+ χt, t ∈ [0, T ], (x, x̄) ∈ R2, (3.11)

for some deterministic processes (Kt, Yt, χt)t to be determined. Condition (i) in Lemma 3.1 fixes the terminal
condition

KT = −λ, YT = 1, χT = 0. (3.12)

We now consider θ∗ ∈ Θ as in Theorem 3.1, hence defining in particular a deterministic process θ∗ =
(θ∗(t))t ∈ VΘ, and α∗ given by (3.6). Let us first check that α∗ ∈ A. The corresponding wealth process X∗

satisfies under any Pθ. , θ. = (b., ρ.) ∈ VΘ, a linear stochastic differential equation with bounded random coeffi-
cients (notice that b. and σ(ρ.) are bounded processes), and thus by standard estimates: Eθ.

[
sup0≤t≤T |X∗t |2]

≤ C(1 + |x0|2) for some constant C independent of θ. ∈ VΘ. It follows immediately that α∗ satisfies the
integrability condition in (2.3), i.e., α∗ ∈ A.

The main issue now is to show that such a pair (α∗, θ∗. ) satisfies conditions (ii)-(iii) of Lemma 3.1.

• Step 1: condition (ii) of Lemma 3.1.
For any α ∈ A, with associated wealth process X := Xα, let us compute the derivative of the deterministic
function t 7→ Eθ∗ [V

α,θ∗

t ] = Eθ∗ [vt(Xt,Eθ∗ [Xt])] with vt as in (3.11). From the dynamics of X = Xα
t in (2.4)

under Pθ∗ and by applying Itô’s formula, we obtain

dEθ∗ [Xt]

dt
= Eθ∗ [α

ᵀ
tb
∗(t)]

dVarθ∗(Xt)

dt
= 2Covθ∗(Xt, α

ᵀ
tb
∗(t)) + Eθ∗ [α

ᵀ
tΣ(ρ∗(t))αt].

From the quadratic form of vt in (3.11), with (K,Y, χ) differentiable in time, we then have

dEθ∗ [V
α,θ∗

t ]

dt
=

dEθ∗ [vt(Xt,Eθ∗ [Xt])]

dt

= K̇tVarθ∗(Xt) +Kt
dVarθ∗(Xt)

dt
+ ẎtEθ∗ [Xt] + Yt

dEθ∗ [Xt]

dt
+ χ̇t

= K̇tVarθ∗(Xt) + ẎtEθ∗ [Xt] + χ̇t + Eθ∗ [Gt(α)] (3.13)

where

Gt(α) := αᵀ
tQtαt + αᵀ

t

[
2Ut(Xt − Eθ∗ [Xt]) +Ot

]
,
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with the deterministic coefficients

Qt = KtΣ(ρ∗(t)), Ut = Ktb
∗(t), Ot = Ytb

∗(t).

By square completion, we rewrite Gt(α) as

Gt(α) =
(
αt − ât(Xt,Eθ∗ [Xt])

)ᵀ
Qt
(
αt − ât(Xt,Eθ∗ [Xt])

)
− ζt,

where for t ∈ [0, T ], x, x̄ ∈ R2,

ât(x, x̄) := −Q−1
t Ut(x− x̄)− 1

2
Q−1
t Ot

and

ζt := U ᵀ
tQ
−1
t UtVarθ∗(Xt) +

1

4
Oᵀ
tQ
−1
t Ot = KtR(θ∗(t))Varθ∗(Xt) +

Y 2
t

4Kt
R(θ∗(t)).

The expression in (3.13) is then rewritten as

dEθ∗ [V
α,θ∗

t ]

dt
= (K̇t −KtR(θ∗(t)))Varθ∗(Xt) + ẎtEθ∗ [Xt] + χ̇t −

Y 2
t

4Kt
R(θ∗(t)) (3.14)

+ KtEθ∗
[(
αt − ât(Xt,Eθ∗ [Xt])

)ᵀ
Σ(ρ∗(t))

(
αt − ât(Xt,Eθ∗ [Xt])

)]
.

Therefore, whenever 
K̇t −KtR(θ∗(t)) = 0,

Ẏt = 0,

χ̇t − Y 2
t

4Kt
R(θ∗(t)) = 0,

(3.15)

holds for all t ∈ [0, T ], which yields, together with the terminal condition (3.12), the explicit forms:

Kt = −λe
∫ T
t R(θ∗(s))ds < 0, Yt = 1, χt =

1

4λ

[
e
∫ T
t R(θ∗(s))ds − 1

]
, (3.16)

we have

dEθ∗ [V
α,θ∗

t ]

dt
= KtEθ∗

[(
αt − ât(Xt,Eθ∗ [Xt])

)ᵀ
Σ(ρ∗)

(
αt − ât(Xt,Eθ∗ [Xt])

)]
,

which is nonpositive for all α ∈ A, i.e., the process V α,θ∗

t satisfies the condition (ii) of Lemma 3.1. Moreover,
notice that in this case,

V α,θ∗

0 = v0(x0, x0) = x0 +
1

4λ

[
e
∫ T
0 R(θ∗(t))dt − 1

]
, (3.17)

and

ât(x, x̄) = −Σ(ρ∗(t))−1b∗(t)
(
x− x̄− 1

2λ
e
∫ T
t R(θ∗(s))ds

)
. (3.18)

Notice that in this step, we have not yet used the property that θ∗ attains the infimum of the prior risk
premium function. This will be used in the next step.

• Step 2: Condition (iii) of Lemma 3.1.
Let us now prove that V α∗,θ.

0 ≤ Eθ. [V
α∗,θ.
T ], for all θ. ∈ VΘ. A sufficient condition is the nondecreasing

monotonicity of the function t 7→ Eθ. [V
α∗,θ.
t ], by proving that dEθ. [V

α∗,θ.
t ]
dt is nonnegative, for all θ. ∈ VΘ.
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However, while this nondecreasing property is valid when there is no uncertainty on the drift, this does not
hold true in the general uncertainty case as shown in Remark 3.5. We then proceed by computing directly the
difference: Eθ. [V

α∗,θ.
T ] − V α∗,θ.

0 . Notice from (3.6), (2.4), that the dynamics of Λ∗(X∗), with Λ∗(x) defined in
(3.7), under Pθ. , θ. ∈ VΘ, is given by

dΛ∗(X∗t ) = −Λ∗(X∗t )(b∗(t))ᵀΣ(ρ∗(t))−1
[
btdt+ σ(ρt)dW

θ
t

]
,

with Λ∗(x0) = e
∫T
0 R(θ∗(t))dt

2λ . By setting N∗t := 2λ

e
∫T
0 R(θ∗(t))dt

Λ∗(X∗t ), we deduce that

N∗t = exp
(
−
∫ t

0

(
bᵀsΣ(ρ∗(t))−1b∗(t) +

1

2
(b∗(t))ᵀΣ(ρ∗(t))−1Σ(ρ)Σ(ρ∗(t))−1b∗(t)

)
ds

−
∫ t

0
(b∗(t))ᵀΣ(ρ∗(t))−1σ(ρs)dW

θ
s

)
, 0 ≤ t ≤ T, Pθ. − a.s.

X∗t = x0 +
e
∫ T
0 R(θ∗(t))dt

2λ
(1−N∗t ), 0 ≤ t ≤ T, PΘ − q.s.,

and thus  Eθ. [X∗t ] = x0 + e
∫T
0 R(θ∗(t))dt

2λ (1− Eθ. [N∗t ]),

Varθ.(X
∗
t ) = e2

∫T
0 R(θ∗(t))dt

4λ2
Varθ.(N

∗
t ).

(3.19)

By using the quadratic form (3.11) of vt, together with the terminal condition (3.12), (3.17), and (3.19), we
then obtain for all θ. ∈ VΘ:

Eθ. [V
α∗,θ.
T ]− V α∗,θ.

0 = Eθ.
[
vT (X∗T ,Eθ. [X∗T ])

]
− v0(x0, x0)

= −λVarθ.(X
∗
T ) + Eθ. [X∗T ]− x0 −

1

4λ
(e

∫ T
0 R(θ∗(t))dt − 1)

= −e
2
∫ T
0 R(θ∗(t))dt

4λ
Varθ.(N

∗
T ) +

e
∫ T
0 R(θ∗(t))dt

2λ
(1− Eθ. [N∗T ])− 1

4λ
(e

∫ T
0 R(θ∗(t))dt − 1)

=
e
∫ T
0 R(θ∗(t))dt

4λ

(
1− e

∫ T
0 R(θ∗(t))dtEθ. [|N∗T |2]

)
+

1

4λ

(
e
∫ T
0 R(θ∗(t))dtEθ. [N∗T ]− 1

)2

≥ e
∫ T
0 R(θ∗(t))dt

4λ

(
1− e

∫ T
0 R(θ∗(t))TEθ. [|N∗T |2]

)
=:

e
∫ T
0 R(θ∗(t))T

4λ
∆∗T (θ.). (3.20)

Noting that N∗ is rewritten in terms of H introduced in Lemma 3.2 as

N∗t = exp
(
−
∫ t

0

(
Hs(bs, ρ

∗(s)) +
1

2
Hs(b

∗(s), ρs)
)
ds−

∫ t

0
(b∗(s))ᵀΣ(ρ∗(s))−1σ(ρs)dW

θ
s

)
,

for t ∈ [0, T ], Pθ. − a.s., and observing that |(b∗(s))ᵀΣ(ρ∗(s))−1σ(ρs)|2 = Hs(b
∗(s), ρs), we see that

|N∗t |2 = exp
(
−
∫ t

0

(
2Hs(bs, ρ

∗(s))−H(b∗(s), ρs)
)
ds
)
M∗t ,

where

M∗t := exp
(
− 2

∫ t

0
|(b∗(s))ᵀΣ(ρ∗(s))−1σ(ρs)|2ds− 2

∫ t

0
(b∗(s))ᵀΣ(ρ∗(s))−1σ(ρs)dW

θ
s

)
,
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is an exponential Doléans-Dade local martingale under any Pθ. , θ ∈ VΘ. Actually, the Novikov criterion is
satisfied. Indeed,

Eθ.
[

exp
(1

2

∫ T

0
|2(b∗(t))ᵀΣ(ρ∗(t))−1σ(ρt)|2dt

)]
= Eθ.

[
exp

(
2

∫ T

0
Ht(b

∗(t), ρt)dt
)]

= Eθ.
[

exp
(

2

∫ T

0
κ(b∗(t), ρ∗(t))ᵀΣ(ρt)κ(b∗(t), ρ∗(t))dt

)]
= Eθ.

[
exp

(
2

∫ T

0

d∑
i=1

κi(b∗(t), ρ∗(t))2 + 2
∑

1≤i<j≤d
ρij,tκ

i(b∗(t), ρ∗(t))κj(b∗(t), ρ∗(t))dt
)]

≤ Eθ.
[

exp
(∫ T

0

d∑
i=1

κi(b∗(t), ρ∗(t))2 + 2
∑

1≤i<j≤d
|κi(b∗(t), ρ∗(t))|κj(b∗(t), ρ∗(t))|

)]

= Eθ.
[

exp
(

2

∫ T

0
(
d∑
i=1

|κi(b∗(t), ρ∗(t))|)2dt
)]

< ∞.

where the first inequality comes from the fact that the process ρij,t, 1 ≤ i < j ≤ d, is valued in (−1, 1).
Therefore, (M∗t )0≤t≤T is a martingale under any Pθ. , θ. ∈ VΘ. Consequently, we have

∆∗T (θ.) = 1− Eθ.
[

exp
(∫ t

0

(
R(θ∗(s))− 2Hs(bs, ρ

∗(s)) +Hs(b
∗(s), ρs)

)
ds
)
M∗T

]
≥ 1− Eθ. [M∗T ] = 1−M∗0 = 0,

where we used (3.10) in the above inequality. From (3.20), this proves condition (iii) of Lemma (3.1), and
finally concludes the proof of Theorem 3.1. 2

Remark 3.4 The optimal strategy α∗ given in (3.6) can be expressed in feedback form as

α∗t = ât(X
∗
t ,Eθ∗ [X

∗
t ]), 0 ≤ t ≤ T, PΘ − q.s. (3.21)

where ât is defined in (3.18). Indeed, denoting by α̂ ∈ A the process defined by α̂t = ât(X̂t,Eθ∗ [X̂t]),
0 ≤ t ≤ T, PΘ − q.s., where X̂ is the wealth process associated to α̂, we see from (2.4) that X̂ satisfies the
dynamics under Pθ∗ :

dX̂t = −
[
X̂t − Eθ∗ [X̂t]−

1

2λ
e
∫ T
t R(θ∗(s))ds

]
(b∗(t))ᵀΣ(ρ∗(t))−1

[
b∗(t)dt+ σ(ρ∗(t))dW θ∗

t ].

By taking expectation under Pθ∗ , we get: dEθ∗ [X̂t] = 1
2λe

∫ T
t R(θ∗(s))dsR(θ∗)dt, and thus

Eθ∗ [X̂t] = x0 +
e
∫ T
0 R(θ∗(t))dt

2λ

[
1− e−

∫ t
0 R(θ∗(s))ds

]
,

α̂t = Λ∗(X̂t)Σ(ρ∗(t))−1b∗(t), 0 ≤ t ≤ T, PΘ − q.s.

This implies that X̂ and X∗ satisfy the same linear SDE under Pθ. , for any θ. ∈ VΘ, and so X̂t = X∗t ,
0 ≤ t ≤ T , PΘ-q.s. This proves that α∗ = α̂, equal to (3.21). ♦
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Remark 3.5 By similar derivation as in (3.14), and using (3.15), (3.21), we have that for all θ. = (θt)t =
(bt, ρt)t ∈ VΘ, t ∈ [0, T ],

dEθ. [V
α∗,θ.
t ]

dt
= Kt

(
R(θ∗(t))−R(θt)

)
Varθ.(X

∗
t ) +

1

4Kt

(
R(θ∗(t))−R(θt)

)
(3.22)

+ KtEθ.
[(
ât(X

∗
t ,Eθ∗ [X

∗
t ])− ât(X∗t ,Eθ. [X∗t ])

)ᵀ
Σ(ρt)(

ât(X
∗
t ,Eθ∗ [X

∗
t ])− ât(X∗t ,Eθ. [X∗t ])

)]
≥ KtEθ.

[(
ât(X

∗
t ,Eθ∗ [X

∗
t ])− ât(X∗t ,Eθ. [X∗t ])

)ᵀ
Σ(ρt)(

ât(X
∗
t ,Eθ∗ [X

∗
t ])− ât(X∗t ,Eθ. [X∗t ])

)]
(3.23)

by definition of θ∗ ∈ arg minθ∈ΘR(θ), and as Kt < 0. In the case when there is no uncertainty on the drift,
i.e., for any θ. = (b., ρ.) ∈ VΘ, b. is a deterministic function equal to bo(t), t ∈ [0, T ], the dynamics of X∗

under any Pθ. , θ ∈ VΘ, is given by

dX∗t =
[
x0 +

e
∫ T
0 R(θ∗(t))dt

2λ
−X∗t

]
(bo(t))ᵀΣ(ρ∗(t))−1

[
bo(t)dt+ σ(ρt)dW

θ
t

]
,

from which, we deduce by taking expectation under Pθ. :

Eθ. [X∗t ] = x0 +
e
∫ T
0 R(θ∗(t))dt

2λ

[
1− e−

∫ t
0 R(θ∗(s))ds

]
.

This means that the expectation under Pθ. of the optimal wealth process X∗ does not depend on θ. ∈ VΘ,
and the r.h.s. of (3.23) is then equal to zero. Therefore, the function t 7→ Eθ. [V

α∗,θ.
t ] is nondecreasing for all

θ. ∈ VΘ, which implies in particular condition (iii) of Lemma 3.1.
However, in the case of drift uncertainty, we cannot conclude as above, and actually this nondecreasing

property does not always hold true. Indeed, consider for example the case where there is only drift uncertainty
in a single asset model d = 1, with Θ(t) = Θ = {θ ∈ [b, b̄]}, 0 ≤ b < b̄, and known variance Σo normalized to
one. Notice that R(θ) = θ2, and θ∗ = arg minθ∈ΘR(θ) = b. For any constant process equal to θ ∈ Θ, we can
compute explicitly from (3.19) the expectation and variance of X∗ under Pθ:

Eθ[X∗t ] =
1

2λ
eR(θ∗)T

[
1− e−θθ∗t

]
,

Varθ(X
∗
t ) =

1

4λ2
e2R(θ∗)T

[
e(R(θ∗)−2θθ∗)t − e−2θθ∗t

]
.

Plugging into (3.22), and using also the expression of K, â in (3.16), (3.18), we have for all θ ∈ Θ, t ∈ [0, T ],
after some straightforward rearrangement:

dEθ[V α∗,θ
t ]

dt
=

1

2λ
eR(θ∗)T

[
ce−2ct − e−R(θ∗)t(1− e−ct)

(R(θ∗)

2
−
(R(θ∗)

2
+ c
)
e−ct

)]
=: f(t, c),

where we set c = (θ−θ∗)θ∗ ≥ 0. Now, we easily see that for all t ∈ [0, T ], f(t, c) converges to −R(θ∗)
4λ eR(θ∗)(T−t)

< 0, as c goes to infinity. Then, by continuity of f with respect to c, we deduce that for θ large enough (hence

for c large enough), dEθ[V α
∗,θ

t ]
dt is negative, which means that the function t 7→ Eθ[V α∗,θ

t ] is not nondecreasing
for all θ ∈ Θ. Actually, we have proved in Theorem 3.1 the weaker condition (iii) of Lemma 3.1, that is, V α∗,θ

0

≤ Eθ[V α∗,θ
T ], for all θ. ∈ VΘ. ♦
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Remark 3.6 Assume that there is only correlation ambiguity, hence the known drift is a deterministic
function denoted by bo(t), and ρ̂(t) is a point estimation of correlation lying in Γ(t). Then the robust
portfolio strategy α∗t in (3.6) is less risky than standard mean-variance portfolio strategy denoted by αMV,∗

t

(to distinguish with robust portfolio strategy) in Remark 2.4 in the sense that, for each t ∈ [0, T ]

Varθ̂(α
∗
t ) := Eθ̂[(α

∗
t )

ᵀΣ(ρ̂(t))α∗t ] ≤ Eθ̂[(α
MV,∗
t )ᵀΣ(ρ̂(t))αMV,∗

t ] =: Varθ̂(α
MV,∗
t ), (3.24)

where Eθ̂ is expectation under probability measure Pθ̂ with θ̂ := (bo(t), ρ̂(t)). Indeed, from the expression of
α∗t and αMV,∗

t , we then have

Varθ̂(α
∗
t ) =

1

4λ2
(bo(t))ᵀΣ(ρ∗(t))−1Σ(ρ̂(t))Σ(ρ∗(t))−1bo(t)e

∫ T
t R(bo(s),ρ∗(s))ds

e−
∫ t
0

(
R(bo(s),ρ∗(s))ds−(bo(s))ᵀΣ(ρ∗(s))−1Σ(ρ̂(s))−1Σ(ρ∗(s))−1bo(s)

)
ds,

Varθ̂(α
MV,∗
t ) =

1

4λ2
R(bo(t), ρ̂(t))e

∫ T
t R(bo(s),ρ̂(s))ds.

From Lemma 3.2 with bo(t) = b∗(t), together with ρ∗(t) ∈ arg min
ρ∈Γ(t)

R(bo(t), ρ), we obtain for t ∈ [0, T ]

(bo(t))ᵀΣ(ρ∗(t))−1Σ(ρ̂(t))Σ(ρ∗(t))−1bo(t) ≤ R(bo(t), ρ∗(t)) ≤ R(bo(t), ρ̂(t)),

which implies (3.24). This point was observed in [34] under a single period setting, and extended here in a
continuous-time setting. However, notice that this result does not always hold in the case of both drift and
correlation ambiguity. ♦

Remark 3.7 We complete this section by highlighting the key mathematical result in this paper about the
separation principle and (weak) martingale optimality principle for solving robust portfolio selection problem.
A related methodology has been used in [25], however only in the case of ambiguity set for the covariance
matrix: it is pointed out in their Remark 4.3 that the employed method relying on a verification theorem
for McKean-Vlasov control problem (which itself is derived from an associated optimality principle in the
Wasserstein space of probability measures) cannot tackle the ambiguity about mean return rate. In the paper
[14], which considers a special setting with two-asset model and uncertain correlation, a similar separation
principle is obtained, but not explicitly written in terms of a prior risk premium function, and it is not clear how
their conditions (see Theorem 2.2 in [14]) can be expressed in a multi-asset case. An important contribution
of our paper is to state this separation principle in a more general framework including uncertainty both on
the mean return rates and on the correlations of multi-assets, and with ambiguity sets that may decrease
over time, taking into account, for example, learning about the true parameter to reduce the estimation error.
On the other hand, such a result holds not only for mean-variance problems, but for other popular classes of
performance measures like utility criteria, and also in discrete-time setting. This is detailed and discussed in
Appendix A, where we used martingale optimality principle as explained in Remark 3.3. ♦

4 Applications and examples

We provide in this section several examples for the determination of the minimal risk premium arising from
the separation principle in Theorem 3.1, and the implications for the optimal robust portfolio strategy and the
portfolio diversification. In this section, we shall focus in this section on ambiguity sets Θ = {Θ(t), t ∈ [0, T ]}
as in (2.2), i.e., in the ellipsoidal form

Θ(t) = {(b, ρ) ∈ Rd × Γ(t) : ‖σJl(ρ)−1(bJl − b̂Jl(t))‖2 ≤ δl(t), l = 1, . . . , p}. (4.25)
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4.1 Minimal risk premium and worst-case scenario

For fixed t ∈ [0, T ], we compute the infimum of the prior risk premium function θ ∈ Θ(t) 7→ R(θ) as defined in
(2.1), and (when it exists) the element θ∗(t) ∈ Θ(t) which achieves this minimum, i.e., the worst-case scenario
for uncertain parameters.

Given Θ(t) as in (4.25), we denote by β̂i(t) := b̂i(t)
σi

the instantaneous Sharpe ratio of the i-th asset
associated with estimated mean return b̂i(t), and marginal volatility σi > 0, i = 1, . . . , d. In what follows,
we assume that max

1≤j≤d
|β̂j(t)| 6= 0 (otherwise β̂j(t) = 0 for each 1 ≤ j ≤ d, i.e., b̂(t) = 0, meaning that the

optimal portfolio strategy is to never trade, i.e., α∗t = 0). We define the Sharpe ratio "proximity" between
i-th asset and j-th asset, 1 ≤ i 6= j ≤ d, by

%̂ij(t) = %̂ji(t) :=
β̂j(t)

β̂i(t)
1{|β̂i(t)|>|β̂j(t)|} +

β̂i(t)

β̂j(t)
1{|β̂i(t)|≤|β̂j(t)|} ∈ [−1, 1], (4.26)

with the convention that %̂ij(t) = %̂ji(t) = 0 when β̂i(t) = β̂j(t) = 0.

Lemma 4.1 Fix t ∈ [0, T ]. Let Θ(t) be an ellipsoidal set as in (4.25) with p = 1, and assume that there
exists ρ∗(t) ∈ arg min

ρ∈Γ(t)
R(b̂(t), ρ) = arg min

ρ∈Γ(t)

∥∥σ(ρ)−1b̂(t)
∥∥

2
. Then θ∗(t) = (b∗(t), ρ∗(t)) with

b∗(t) =
(

1− δ(t)

‖σ(ρ∗(t))−1b̂(t)‖2

)
1{‖σ(ρ∗(t))−1b̂(t)‖2>δ(t)}

b̂(t), (4.27)

and R(θ∗(t)) =
(
‖σ(ρ∗(t))−1b̂(t)‖2 − δ(t)

)2
1{‖σ(ρ∗(t))−1b̂(t)‖2>δ(t)}

. (4.28)

Proof. See proof in Section B.2 in Appendix. 2

Remark 4.1 The existence of ρ∗(t) is guaranteed when Γ(t) is a compact set of Cd>+ by continuity of the
function ρ 7→

∥∥σ(ρ)−1b̂(t)
∥∥

2
. We also show in Remark 4.2 its existence and give its explicit form when Γ(t)

= Cd>+, and under the condition that there exists a highest estimated Sharpe ratio. ♦

Let us consider the particular case when there is full ambiguity about the correlation, i.e., Γ(t) = Cd>+,
and introduce lower Sharpe ratio for each asset in each subclass Jl by |β̂i(t)| − δl(t), i ∈ Jl, 1 ≤ l ≤ p, i.e.,
the estimated Sharpe ratio (absolute value) of i-th asset minus its estimation error. Therefore, when there is
an asset with highest lower Sharpe ratio in each subclass (or equivalent, highest estimated Sharpe ratio since
the same subclass has the same estimation error), and when there is also an asset with highest lower Sharpe
ratio among all subclasses, one can compute explicitly the worst-case scenario (b∗(t), ρ∗(t)) ∈ Θ(t) for drift
and correlation.

Proposition 4.1 (Full ambiguity correlation) Fix t ∈ [0, T ]. Let Θ(t) as in (4.25) with Γ(t) = Cd>+,
and assume that for each subset Jl, l = 1, . . ., p, there exists ml = ml(t) ∈ Jl s.t. |β̂ml(t)| > max

j∈Jl,j 6=ml
|β̂j(t)|.

Assume further that there exists k = k(t) ∈ {1, . . . , p} s.t. |β̂mk(t)| − δk(t) > max
1≤l≤p,l 6=k

(|β̂ml(t)|−δl(t)). Then
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we have arg min
Θ(t)

R(b, ρ) 6= ∅, attained at b∗(t), ρ∗(t) = (ρ∗ij(t))1≤i 6=j≤d with

b∗(t) =


(1− δ1(t)

|β̂m1 (t)|
)1{|β̂m1 (t)|>δ1(t)}b̂J1(t)

...
(1− δp(t)

|β̂mp (t)|
)1{|β̂mp (t)|>δp(t)}b̂Jp(t)

 ,

and


ρ∗mlj(t) = %̂mlj(t), if j ∈ Jl, j 6= ml,

ρ∗ij(t) = %̂mli(t)ρ̂mlj(t), if i 6= j ∈ Jl, i, j 6= ml,

ρ∗mkj(t) = β∗j (t)/β∗mk(t), if j /∈ Jk,
ρ∗ij(t) = ρ∗mki(t)ρ

∗
mkj

(t), otherwise.

Moreover, we have

Σ(ρ∗(t))−1b∗(t) =

(
0, . . . , 0,

b̂mk (t)

σ2
mk

, 0, . . . , 0

)ᵀ

(1− δk(t)

|β̂mk(t)|
)1{|β̂mk (t)|>δk(t)},

R(b∗(t), ρ∗(t)) = (|β̂mk(t)| − δk(t))21{|β̂mk (t)|>δk(t)}.

Proof. See B.3 in Appendix. 2

Remark 4.2 Notice that in the particular case when p = 1, the conditions of Proposition 4.1 simply assume
that there exists m = m(t) ∈ {1, . . . , d} s.t. |β̂m(t)| > max

1≤j≤d,j 6=m
|β̂j(t)|. Then we have arg minΘ(t)R(b, ρ) 6=

∅ with

b∗(t) = b̂(t)(1− δ(t)

|β̂m(t)|
)1{|β̂m(t)|>δ(t)},

ρ∗mj(t) = %̂mj(t), ρ∗ij(t) = %̂mi(t)%̂mj(t), 1 ≤ i 6= j ≤ d, i, j 6= m,

and

Σ(ρ∗(t))−1b∗(t) = (0, . . . , 0,
b̂m(t)

σ2
m

, 0, . . . , 0)ᵀ(1− δ(t)

|β̂m(t)|
)1{|β̂m(t)|>δ(t)},

R(b∗(t), ρ∗(t)) = (|β̂m(t)| − δ(t))21{|β̂m(t)|>δ(t)}.

♦

We now consider a model for two risky assets, i.e., with d = 2, mixing partial ambiguity about correlation
and drift uncertainty. In this case, the following result provides the explicit expression of the worst-case
scenario achieving the minimal risk premium.

Proposition 4.2 (Ambiguous drift and correlation in the two-assets case) Fix t ∈ [0, T ]. Let Θ(t)
= {(b, ρ) ∈ R2 × [ρ(t), ρ̄(t)] : ‖σ(ρ)−1(b − b̂(t))‖2 ≤ δ(t)}, with −1 < ρ(t) ≤ ρ̄(t) < 1. Then θ∗(t) =
(b∗(t), ρ∗(t)) with

ρ∗(t) = %̂12(t)1{%̂12(t)∈[ρ(t),ρ̄(t)]} + ρ̄(t)1{ρ̄(t)<%̂12(t)} + ρ(t)1{ρ(t)>%̂12(t)},

b∗(t) =



b̂(t)(1− δ(t)

max(|β̂1(t)|,|β̂2(t)|)
)1{max(|β̂1(t)|,|β̂2(t)|)>δ(t)}, if %̂12(t) ∈ [ρ(t), ρ̄(t)],

b̂(t)(1− δ(t)

‖σ(ρ̄(t))−1b̂(t)‖2
)1{‖σ(ρ̄(t))−1b̂(t)‖2>δ(t)}, if ρ̄(t) < %̂12(t),

b̂(t)(1− δ(t)

‖σ(ρ(t))−1b̂(t)‖2
)1{‖σ(ρ(t))−1b̂(t)‖2>δ(t)}, if ρ(t) > %̂12(t).
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Proof. See B.4 in Appendix. 2

Remark 4.3 The computation of the worst-case correlation ρ∗(t) is explicitly determined according to the
relation between the Sharpe ratio proximity %̂12(t) and the two correlation bounds ρ(t) and ρ̄(t).

In the first case when the range of correlation ambiguity is large enough so that %̂12(t) ∈ [ρ(t), ρ̄(t)], or in
other words, the prior correlation can be either larger or smaller than the Sharpe ratio proximity, then the
worst-case correlation is attained at the point %̂12(t) inside the interval [ρ(t), ρ̄(t)].

In the second case when ρ̄(t) < %̂12(t), meaning that the prior correlation taking value in [ρ(t), ρ̄(t)] is
small compared to the Sharpe ratio proximity, then the worst-case correlation is attained at the prior highest
correlation ρ̄(t).

In the third case when ρ(t) > %̂12(t), meaning that the prior correlation taking value in [ρ(t), ρ̄(t)] is
large compared to the Sharpe ratio proximity, then the worst-case correlation is attained at the prior lowest
correlation ρ(t).

Notice that the worst-case correlation ρ∗(t) might change from one case to another case over time, see an
example in Section 5.2. ♦

Finally, we consider a model for three risky assets (d = 3) mixing partial ambiguity about correlation and
drift uncertainty, and assume that ambiguity set does not vary with time for simplicity, hence with Θ(t) in
the form Θ(t) = Θ = {(b, ρ) ∈ R3× Γ : ‖σ(ρ)−1(b− b̂)‖2 ≤ δ} with b̂ a known vector in R3 and Γ = [ρ

12
, ρ̄12]

× [ρ
13
, ρ̄13] × [ρ

23
, ρ̄23], a subset of C3

>+. Recall that Sharpe ratio of i-th asset is given by β̂i(t) = β̂i = b̂i
σi
, 1

≤ i ≤ 3. We assume w.l.o.g. that |β̂1| ≥ |β̂2| ≥ |β̂3|, β̂1 6= 0.
We recall the pairwise Sharpe ratio "proximities":

%̂12 =
β̂2

β̂1

∈ [−1, 1], %̂13 =
β̂3

β̂1

∈ [−1, 1], %̂23 =
β̂3

β̂2

∈ [−1, 1].

We also introduce the so-called variance risk ratio κ̂(ρ),

Σ(ρ)−1b̂ =: κ̂(ρ) = (κ̂1(ρ), κ̂2(ρ), κ̂3(ρ))ᵀ,

which represents (up to a scalar term) the vector of allocation in the assets when the drift is b̂ and the
correlation is ρ.

We denote by b̂−i the estimated mean return vector b̂ with the i-th component b̂i removed, and by Σ−i(ρ)

the covariance matrix Σ(ρ) with i-th row and i-th column removed, and σ−i(ρ) = (Σ−i(ρ))
1
2 . Notice that

Σ−1(ρ) depends only on ρ23. We will write Σ−1(ρ) as Σ−1(ρ23), similarly, Σ−2(ρ13), Σ−3(ρ12).
In this case, the following result provides the explicit expression of the worst-case scenario achieving the

minimal risk premium.

Proposition 4.3 (Ambiguous drift and correlation in the three-asset case) Let Θ = {(b, ρ) ∈ R3 ×
Γ : ‖σ(ρ)−1(b− b̂)‖2 ≤ δ} with Γ = [ρ

12
, ρ̄12] × [ρ

13
, ρ̄13] × [ρ

23
, ρ̄23] ⊂ C3

>+, and assume w.l.o.g. that |β̂1| ≥
|β̂2| ≥ |β̂3|, β̂1 6= 0. Then, we have the following possible exclusive cases:

1. (High-level correlation ambiguity for the second and third assets)

If %̂12 ∈ [ρ
12
, ρ̄12], %̂13 ∈ [ρ

13
, ρ̄13], then ρ∗ = (%̂12, %̂13, ρ

∗
23) for any ρ∗23 ∈ [ρ

23
, ρ̄23], and b∗ = b̂(1 −

δ
|β̂1|

)1{|β̂1|>δ}.

2. (High-level correlation ambiguity for the third asset)

(i) If ρ̄12 < %̂12, κ̂3(ρ̄12, ρ̄13, ρ̄23)κ̂3(ρ̄12, ρ13
, ρ

23
) ≤ 0, then ρ∗ = (ρ̄12, ρ

∗
13, ρ

∗
23) satisfying κ̂3(ρ̄12, ρ

∗
13, ρ

∗
23)

= 0, and b∗ = b̂(1− δ
‖σ−3(ρ̄12)−1b̂−3‖2

)1{‖σ−3(ρ̄12)−1b̂−3‖2>δ}.
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(ii) If ρ
12
> %̂12, κ̂3(ρ

12
, ρ

13
, ρ̄23)κ̂3(ρ

12
, ρ̄13, ρ23

) ≤ 0, then ρ∗ = (ρ
12
, ρ∗13, ρ

∗
23) satisfying κ̂3(ρ

12
, ρ∗13, ρ

∗
23)

= 0, and b∗ = b̂(1− δ
‖σ−3(ρ

12
)−1b̂−3‖2

)1{‖σ−3(ρ
12

)−1b̂−3‖2>δ}.

3. (High-level correlation ambiguity for the second asset)

(i) If ρ̄13 < %̂13, κ̂2(ρ̄12, ρ̄13, ρ̄23)κ̂2(ρ
12
, ρ̄13, ρ23

) ≤ 0, then ρ∗ = (ρ∗12, ρ̄13, ρ
∗
23) satisfying κ̂2(ρ∗12, ρ̄13, ρ

∗
23)

= 0, and b∗ = b̂(1− δ
‖σ−2(ρ̄13)−1b̂−2‖2

)1{‖σ−2(ρ̄13)−1b̂−2‖2>δ}.

(ii) If ρ
13
> %̂13, κ̂2(ρ

12
, ρ

13
, ρ̄23)κ̂2(ρ̄12, ρ13

, ρ
23

) ≤ 0, then ρ∗ = (ρ∗12, ρ13
, ρ∗23) satisfying κ̂2(ρ∗12, ρ13

, ρ∗23)

= 0, and b∗ = b̂(1− δ
‖σ−2(ρ

13
)−1b̂−2‖2

)1{‖σ−2(ρ
13

)−1b̂−2‖2>δ}.

4. (High-level correlation ambiguity for the first asset)

(i) If ρ̄23 < %̂23, κ̂1(ρ̄12, ρ̄13, ρ̄23)κ̂1(ρ
12
, ρ

13
, ρ̄23) ≤ 0, then ρ∗ = (ρ∗12, ρ

∗
13, ρ̄23) satisfying κ̂1(ρ∗12, ρ

∗
13, ρ̄23)

= 0, and b∗ = b̂(1− δ
‖σ−1(ρ̄23)−1b̂−1‖2

)1{‖σ−1(ρ̄23)−1b̂−1‖2>δ}.

(ii) If ρ
23
> %̂23, κ̂1(ρ

12
, ρ̄13, ρ23

)κ̂1(ρ̄12, ρ13
, ρ

23
) ≤ 0, then ρ∗ = (ρ∗12, ρ

∗
13, ρ23

) satisfying κ̂1(ρ∗12, ρ
∗
13, ρ23

)

= 0, and b∗ = b̂(1− δ
‖σ−1(ρ

23
)−1b̂−1‖2

)1{‖σ−1(ρ
23

)−1b̂−1‖2>δ}.

5. (Small ambiguity about correlation)

(i) If κ̂1κ̂2(ρ̄12, ρ̄13, ρ̄23) > 0, κ̂1κ̂3(ρ̄12, ρ̄13, ρ̄23) > 0, then ρ∗ = (ρ̄12, ρ̄13, ρ̄23), and b∗ =
b̂(1− δ

‖σ(ρ̄12,ρ̄13,ρ̄23)−1b̂‖2
)1{‖σ(ρ̄12,ρ̄13,ρ̄23)−1b̂‖2>δ}.

(ii) If κ̂1κ̂2(ρ
12
, ρ

13
, ρ̄23) < 0, κ̂1κ̂3(ρ

12
, ρ

13
, ρ̄23) < 0, then ρ∗ = (ρ

12
, ρ

13
, ρ̄23), and b∗ =

b̂(1− δ
‖σ(ρ

12
,ρ

13
,ρ̄23)−1b̂‖2

)1{‖σ(ρ
12
,ρ

13
,ρ̄23)−1b̂‖2>δ}.

(iii) If κ̂1κ̂2(ρ̄12, ρ13
, ρ

23
) > 0, κ̂1κ̂3(ρ̄12, ρ13

, ρ
23

) < 0, then ρ∗ = (ρ̄12, ρ13
, ρ

23
), and b∗ =

b̂(1− δ
‖σ(ρ̄12,ρ13,ρ23)−1b̂‖2

)1{‖σ(ρ̄12,ρ13,ρ23)−1b̂‖2>δ}.

(iv) If κ̂1κ̂2(ρ
12
, ρ̄13, ρ23

) < 0, κ̂1κ̂3(ρ
12
, ρ̄13, ρ23

) > 0, then ρ∗ = (ρ
12
, ρ̄13, ρ23

), and b∗ =

b̂(1− δ
‖σ(ρ

12
,ρ̄13,ρ23)−1b̂‖2

)1{‖σ(ρ
12
,ρ̄13,ρ23)−1b̂‖2>δ}.

Proof. See B.5 in Appendix. 2

Remark 4.4 The different cases in the above Proposition depend on the Sharpe ratio proximities and on
the correlation intervals bounds, more precisely, on the value of variance risk ratio at intervals bounds, and
can be roughly divided into five cases with subcases with the following interpretation:

In case 1 where the range of correlation ambiguity for the second and third assets is large enough, in the
sense that the intervals [ρ

12
, ρ̄12] and [ρ

13
, ρ̄13] contain respectively %̂12 and %̂13, then the worst-case correlation

is attained at the Sharpe ratio proximity value ρ∗ = (%̂12, %̂13, ρ
∗
23).

Let us now discuss case 2, and more specifically (i). This corresponds to the situation where the corre-
lation between assets 1 and 2 is small compared to the Sharpe ratio proximity of the two assets, while the
correlation ambiguity for the third asset is high, which is quantified by the fact that the function (ρ13, ρ23)
7→ κ̂(ρ̄12, ρ13, ρ23) evaluated at the prior lower bounds (ρ

13
, ρ

23
) and the prior upper bounds (ρ̄13, ρ̄23) have

opposite signs. In this case, the worst-case correlation is achieved at the prior highest correlation ρ̄12 for ρ12,
and at the point (ρ∗13, ρ

∗
23) cancelling the term κ̂(ρ̄12, ρ

∗
13, ρ

∗
23). Similar interpretations hold for cases 3 and 4.

Let us finally discuss case 5, which involves explicitly the signs of κ̂1κ̂2 and κ̂1κ̂3 at the prior correlation
bounds. Assuming that these functions κ̂1κ̂2 and κ̂1κ̂3 do not vanish at some point ρ ∈ [ρ

12
, ρ̄12] × [ρ

13
, ρ̄13]

× [ρ
23
, ρ̄23], then by continuity, and provided that the range of these correlation bounds are small enough, we

see that one should fall into one of the 4 subcases 5.(i), (ii), (iii), (iv), and for which the worst-case correlation
is obtained on the prior upper or lower correlation bounds. ♦
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Remark 4.5 It is straightforward to extend Proposition 4.3 to time varying ambiguity sets. Similar as in
the two-asset model, the worst-case scenario might change from one case to another case in Proposition 4.3
over time. ♦

4.2 Optimal robust strategy and portfolio diversification

We first provide the general explicit expression of the robust optimal strategy in the case of ellipsoidal
ambiguity set. This follows directly from Theorem 3.1 and Lemma 4.1.

Proposition 4.4 Let Θ(t) be an ellipsoidal set as in (4.25) with p = 1, and assume that there exists ρ∗(t) ∈
arg min

ρ∈Γ(t)

∥∥σ(ρ)−1b̂(t)
∥∥

2
. Then, an optimal portfolio strategy for (2.5) is given by, for t ∈ [0, T ],

α∗t =
[
x0 +

1

2λ
e
∫ T
0 (‖σ(ρ∗(s))−1b̂(s)‖2−δ(s))21{‖σ(ρ∗(s))−1 b̂(s)‖2>δ(s)}

ds −X∗t
]

(
1− δ(t)

‖σ(ρ∗(t))−1b̂(t)‖2

)
1{‖σ(ρ∗(t))−1b̂(t)‖2>δ(t)}Σ(ρ∗(t))−1b̂(t). (4.29)

Remark 4.6 (Financial interpretation: no risky investment) We have seen in the previous section
that ρ∗(t) exists when Γ(t) is compact (in particular when it is a singleton, i.e., there is no ambiguity
on correlation) or when Γ(t) = Cd>+, i.e., there is full ambiguity on correlation. From (4.29), we observe
notably that whenever δ(t) ≥ ‖σ(ρ∗(t))−1b̂(t)‖2, α∗t = 0. In other words, when, at time t, the investor is
poorly confident about her estimation on the expected rate of return b̂(t), or when the level of uncertainty
aversion about the expected rate of return is high, then she does not make risky investment at all. ♦

4.2.1 Full ambiguity correlation and anti-diversification

In this paragraph, we consider the case of full ambiguity on correlation, i.e., Γ(t) = Cd>+, and investigate the
impact on optimal robust portfolio strategy.

Theorem 4.1 (Full ambiguity correlation) Let Θ(t) be an ellipsoidal set as in (4.25), with Γ(t) = Cd>+

for all t ∈ [0, T ], and assume that for each 1 ≤ l ≤ p, there exists a function ml(t) ∈ Jl s.t. |β̂ml(t)(t)| >
max

j∈Jl,j 6=ml(t)
|β̂j(t)|. Assume further that there exists a function k(t) ∈ {1, . . . , p} s.t. |β̂mk(t)(t)(t)| − δk(t)(t) >

max
1≤l≤p,l 6=k(t)

(|β̂ml(t)| − δl(t)). Then an optimal portfolio strategy for the robust mean-variance problem (2.5) is

explicitly given by, for t ∈ [0, T ],

α∗t =
[
x0 +

1

2λ
e

∫ T
0 (|β̂mk(s)(s)(s)|−δk(s)(s))

21{|β̂mk(s)(s)
(s)|>δk(s)(s)}

ds

−X∗t
]

(
1−

δk(t)(t)

|β̂mk(t)(t)(t)|

)
1{|β̂mk(t)(t)(t)|>δk(t)(t)}

(0, . . . , 0,
b̂mk(t)(t)(t)

σ2
mk(t)(t)

, 0, . . . , 0)ᵀ.

Proof. From the formula (3.6) of the optimal portfolio strategy in Theorem 3.1, we only have to compute
the vector Σ(ρ∗(t))−1b∗(t), and R(b∗(s), ρ∗(s)), which are given in Section B.3 and Proposition 4.1. 2

Remark 4.7 (Financial interpretation: anti-diversification) Observe that both estimated Sharpe ra-
tio and drift ambiguity level play an important role in the portfolio choice of an investor. If this investor is
poorly confident on the drift estimate, i.e., whenever all δl(t), 1 ≤ l ≤ p are large enough, then she does not
make risky investments at all, i.e., α∗t = 0. When the estimated Sharpe ratio of an asset is large enough to
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offset the effect of its own drift ambiguity but not others, she would only invest in this asset, namely the one
with the highest lower Sharpe ratio, which might change from one subclass to another subclass with time.

This anti-diversification result under full ambiguity about correlation has been also observed in [34] for
a single-period mean-variance problem without drift uncertainty, and is extended here in a continuous-time
framework. Moreover, under this general setting, the single risky asset that the investor trades may change
over time because of the time varying ambiguity set.

Compared to Remark 4.6, we can see that expected return rates ambiguity and correlation ambiguity have
different effects on portfolio selection. When expected return rates ambiguity is large, no risky investment is
made, while when correlation ambiguity is large, one and only one risky asset is traded.

♦

4.2.2 Partial diversification

• Two-asset model: d = 2

We provide a complete picture of the optimal robust portfolio strategy in a two-asset model with ambiguous
drift and correlation.

Theorem 4.2 (Ambiguous drift and correlation in the two-assets case) Let Θ(t)
= {(b, ρ) ∈ R2 × [ρ(t), ρ̄(t)] : ‖σ(ρ)−1(b − b̂(t))‖2 ≤ δ(t)}, with −1 < ρ(t) ≤ ρ̄(t) < 1, t ∈ [0, T ], and assume
at each time t ∈ [0, T ], max(|β̂1(t)|, |β̂2(t)|) 6= 0. Then, an optimal portfolio strategy is given by

α∗t =



[
x0 + 1

2λe
∫ T
0 R(θ∗(s))ds −X∗t

]
(1− δ(t)

max(|β̂1(t)|,|β̂2(t)|)
)

1{max(|β̂1(t)|,|β̂2(t)|)>δ(t)}

 b̂1(t)
|σ1|2 1{|β̂1(t))|>|β̂2(t)|}
b̂2(t)
|σ2|2 1{|β̂2(t)|>|β̂1(t)|}

 , if %̂12(t) ∈ [ρ(t), ρ̄(t)]

[
x0 + 1

2λe
∫ T
0 R(θ∗(s))ds −X∗t

](
1− δ(t)

‖σ(ρ̄(t))−1b̂(t)‖2

)
1{‖σ(ρ̄(t))−1b̂(t)‖2>δ(t)}Σ(ρ̄(t))−1b̂(t), if ρ̄(t) < %12(t)

[
x0 + 1

2λe
∫ T
0 R(θ∗(s))ds −X∗t

](
1− δ(t)

‖σ(ρ(t))−1b̂(t)‖2

)
1{‖σ(ρ(t))−1b̂(t)‖2>δ(t)}Σ(ρ(t))−1b̂(t), if ρ(t) > %12(t)

where for each s ∈ [0, T ]

R(θ∗(s)) (4.30)
= (max(|β̂1(s)|, |β̂2(s)|)− δ(s))21{max(|β̂1(s)|,|β̂2(s)|)>δ(s)}1{%̂12(s)∈[ρ(s),ρ̄(s)]}

+ (‖σ(ρ̄(s))−1b̂(s)‖2 − δ(s))21{‖σ(ρ̄(s))−1b̂(s)‖2>δ(s)}1{ρ̄(s)<%̂12(s)}

+ (‖σ(ρ(s))−1b̂(s))‖2 − δ(s))21{‖σ(ρ(s))−1b̂(s)‖2>δ(s)}1{ρ(s)>%12(s)}.

Proof. In light of formula (4.29) of the optimal portfolio strategy in Proposition 4.4, we only need to
compute

∫ T
0 (‖σ(ρ∗(s))−1b̂(s)‖2 − δ(s))21{‖σ(ρ∗(s))−1b̂(s)‖2>δ(s)}ds and vector κ̂t(ρ∗(t)) = Σ(ρ∗(t))−1b̂(t). We

notice that the vector κ̂t(ρ∗(t)) = Σ(ρ∗(t))−1b̂(t) is explicitly given for fixed t ∈ [0, T ] in the proof of
Proposition 4.2 (see B.4 in Appendix) when computing ρ∗(t). In order to compute

∫ T
0 (‖σ(ρ∗(s))−1b̂(s)‖2 −

δ(s))21{‖σ(ρ∗(s))−1b̂(s)‖2>δ(s)}ds, we need to know (‖σ(ρ∗(s))−1b̂(s)‖2 − δ(s))2 at each time s ∈ [0, T ]. From
Proposition 4.2, we notice that at each time s ∈ [0, T ], there are three possible cases in (4.30). This leads to
the result of Theorem 4.2. 2
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Remark 4.8 When there is only ambiguity on correlations and correlation ambiguity set does not vary with
time, we retrieve the results obtained in [25] for the correlation ambiguity between two assets (see their
Theorem 4.2). Our Theorem includes in addition the case when there is uncertainty on the expected rate
of return and the ambiguity sets vary over time. Also, with time varying ambiguity sets, we see that the
investor may switch between well-diversification and under-diversification over time, moreover, when under-
diversification occurs, she may only invest in the first asset or the second asset; when well-diversification
occurs, she may switch between directional trading and spread trading. This feature reflects dynamic changes
in real markets. ♦

Remark 4.9 (Financial interpretation) At a given time t ∈ [0, T ], we have three possible cases depending
on the relation between the bounds of correlations, more precisely, the value of variance risk ratio on the
bounds of correlations, and Sharpe ratios.

Notice that R(b̂(t), ρ) is convex, the first order derivative ∂R(b̂(t),ρ)
∂ρ = −σ1σ2κ̂

1
t (ρ)κ̂2

t (ρ) is increasing, hence
ρ ∈ [ρ(t), ρ̄(t)] 7→ κ̂1

t (ρ)κ̂2
t (ρ) decreasing. From (B.70), we have lim

ρ→1
κ̂1
t (ρ)κ̂2

t (ρ) < 0, lim
ρ→−1

κ̂1
t (ρ)κ̂2

t (ρ) > 0 and

κ̂1
t (%̂12(t))κ̂2

t (%̂12(t)) = 0.
In the first case when the range of correlation ambiguity is large enough so that %̂12(t) ∈ [ρ(t), ρ̄(t)],

or in other words, the correlation can be either larger or smaller than the Sharpe ratio proximity, it is
optimal to invest only in one asset, namely the one with the highest estimated Sharpe ratio. More precisely,
κ̂1
t (ρ̄(t))κ̂2

t (ρ̄(t)) ≤ 0 and κ̂1
t (ρ(t)κ̂2

t (ρ(t)) ≥ 0. This means that at time t ∈ [0, T ], directional trading is not
optimal for upper bound of correlation ρ̄(t) and spread trading is not optimal for lower bound of correlation
ρ(t). In this case, it is optimal to invest only in one asset.

In the second case when ρ̄(t) < %̂12(t), meaning that the correlation taking value in [ρ(t), ρ̄(t)] is small
compared to the Sharpe ratio proximity, then it is optimal to invest in both assets with a directional trading,
that is, buying or selling simultaneously. And the worst-case correlation refers to the highest prior correlation
ρ̄(t) (recall Remark 4.3) where the diversification effect is minimal. This case corresponds to κ̂1

t (ρ̄(t))κ̂2
t (ρ̄(t))

> 0. Together with the monotonicity of κ̂1
t (ρ)κ̂2

t (ρ) , we have κ̂1
t (ρ)κ̂2

t (ρ) > 0 for any ρ ∈ [ρ(t), ρ̄(t)], meaning
that it’s optimal to take directional trading, and the worst-scenario correlation is upper bound of correlation
under which the diversification effect is minimal.

In the third case when ρ(t) > %̂12(t), meaning that the correlation taking value in [ρ(t), ρ̄(t)] is large
compared to the Sharpe ratio proximity, then it is optimal to invest in both assets with a spread trading, that
is, buying one and selling another. And the worst-case correlation corresponds to the lowest prior correlation
ρ(t) where the profit from the spread trading is minimal. This case corresponds to κ̂1

t (ρ(t))κ̂2
t (ρ(t)) < 0. By

analogy with the second case, we have κ̂1
t (ρ)κ̂2

t (ρ) < 0 for any ρ ∈ [ρ(t), ρ̄(t)], meaning that it is optimal to
invest with spread trading with lower bound of correlation.

This diversification result with only correlation uncertainty has been also observed in the literature [14]
for a continuous-time expected utility problem, [34] for a single-period mean-variance problem and [25] for
a continuous-time mean-variance problem, and is extended here in a continuous time framework with time
varying ambiguity set for both drift and correlation uncertainty. One interesting additional finding in con-
tinuous time is that at some time we can be in the first case where under-diversification occurs, and next at
a future time, in case 2 or 3 with directional or spread trading due to a change in the relation between the
bounds of correlations and Sharpe ratio proximity. ♦

• Three-asset model: d = 3

We finally provide an explicit description of the optimal robust strategy in a three-asset model under drift
uncertainty and ambiguous correlation where ambiguity set does not vary with time for simplicity.
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Theorem 4.3 Let Θ = {(b, ρ) ∈ R3×Γ : ‖σ(ρ)−1(b− b̂)‖2 ≤ δ}, with Γ = [ρ
12
, ρ̄12] × [ρ

13
, ρ̄13] × [ρ

23
, ρ̄23] ⊂

C3
>+, and assume w.l.o.g. that |β̂1| ≥ |β̂2| ≥ |β̂3| and β̂1 6= 0. Then, we have the following possible exclusive

cases:

1. (Anti-diversification) If %̂12 ∈ [ρ
12
, ρ̄12], and %̂13 ∈ [ρ

13
, ρ̄13], then an optimal portfolio strategy is explic-

itly given by

α∗t =
[
x0 +

1

2λ
e(|β̂1|−δ)2T −X∗t

](
1− δ

|β̂1|

)
1{|β̂1|>δ}

 b̂1
σ2
1

0
0

 , 0 ≤ t ≤ T, PΘ − q.s..

2. (Under-diversification: no investment in the third asset)

(i) If ρ̄12 < %̂12, and κ̂3(ρ̄12, ρ̄13, ρ̄23)κ̂3(ρ̄12, ρ13
, ρ

23
) ≤ 0, then an optimal portfolio strategy is(

α1,∗
t

α2,∗
t

)
=

[
x0 +

1

2λ
e(‖σ−3(ρ̄12)−1b̂−3‖2−δ)2T −X∗t

](
1− δ

‖σ−3(ρ̄12)−1b̂−3‖2

)
1{‖σ−3(ρ̄12)−1b̂−3‖2>δ}Σ−3(ρ̄12)−1b̂−3

α3,∗
t ≡ 0,

and if ‖σ−3(ρ̄12)−1b̂−3‖2 > δ, then α1,∗
t α2,∗

t > 0.
(ii) If ρ

12
> %̂12, and κ̂3(ρ

12
, ρ

13
, ρ̄23)κ̂3(ρ

12
, ρ̄13, ρ23

) ≤ 0, then an optimal portfolio strategy is(
α1,∗
t

α2,∗
t

)
=

[
x0 +

1

2λ
e(‖σ−3(ρ

12
)−1b̂−3‖2)−δ)2T −X∗t

](
1− δ

‖σ−3(ρ
12

)−1b̂−3‖2

)
1{‖σ−3(ρ

12
)−1b̂−3‖2>δ}Σ−3(ρ̄12)−1b̂−3

α3,∗
t ≡ 0,

and if ‖σ−3(ρ
12

)−1b̂−3‖2 > δ, then α1,∗
t α2,∗

t < 0.

3. (Under-diversification: no investment in the second asset)

(i) If ρ̄13 < %̂13, and κ̂2(ρ̄12, ρ̄13, ρ̄23)κ̂2(ρ
12
, ρ̄13, ρ23

) ≤ 0, then an optimal portfolio strategy is(
α1,∗
t

α3,∗
t

)
=

[
x0 +

1

2λ
e(‖σ−2(ρ̄13)−1b̂−2‖2−δ)2T −X∗t

](
1− δ

‖σ−2(ρ̄13)−1b̂−2‖2

)
1{‖σ−2(ρ̄13)−1b̂−2‖2>δ}Σ−2(ρ̄13)−1b̂−2

α2,∗
t ≡ 0,

and if ‖σ−2(ρ̄13)−1b̂−2‖2 > δ, then α1,∗
t α3,∗

t > 0.
(ii) If ρ

13
> %̂13, and κ̂2(ρ

12
, ρ

13
, ρ̄23)κ̂2(ρ̄12, ρ13

, ρ
23

) ≤ 0, then an optimal portfolio strategy is given
by (

α1,∗
t

α3,∗
t

)
=

[
x0 +

1

2λ
e(‖σ−2(ρ

13
)−1b̂−2‖2−δ)2T −X∗t

](
1− δ

‖σ−2(ρ
13

)−1b̂−2‖2

)
1{‖σ−2(ρ

13
)−1b̂−2‖2>δ}Σ−2(ρ

13
)−1b̂−2

α2,∗
t ≡ 0,

and if ‖σ−2(ρ
13

)−1b̂−2‖2 > δ, then α1,∗
t α3,∗

t < 0.
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4. (Under-diversification: no investment in the first asset)

(i) If ρ̄23 < %̂23, and κ̂1(ρ
12
, ρ

13
, ρ̄23)κ̂1(ρ̄12, ρ̄13, ρ̄23) ≤ 0, then an optimal portfolio strategy is(

α2,∗
t

α3,∗
t

)
=

[
x0 +

1

2λ
e(‖σ−1(ρ̄23)−1b̂−1‖2−δ)2T −X∗t

](
1− δ

‖σ−1(ρ̄23)−1b̂−1‖2

)
1{‖σ−1(ρ̄23)−1b̂−1‖2>δ}Σ−1(ρ̄23)−1b̂−1

α1,∗
t ≡ 0,

and if ‖σ−1(ρ̄23)−1b̂−1‖2 > δ, then α2,∗
t α3,∗

t > 0.

(ii) If ρ
23
> %̂23, and κ̂1(ρ

12
, ρ̄13, ρ23

)κ̂1(ρ̄12, ρ13
, ρ

23
) ≤ 0, then an optimal portfolio strategy is(

α2,∗
t

α3,∗
t

)
=

[
x0 +

1

2λ
e(‖σ−1(ρ

23
)−1b̂−1‖2−δ)2T −X∗t

](
1− δ

‖σ−1(ρ
23

)−1b̂−1‖2

)
1{‖σ−1(ρ

23
)−1b̂−1‖2>δ}Σ−1(ρ

23
)−1b̂−1

α1,∗
t ≡ 0,

and if ‖σ−1(ρ
23

)−1b̂−1‖2 > δ, then α2,∗
t α3,∗

t < 0.

5. (Well-diversification)

(i) If κ̂1κ̂2(ρ̄12, ρ̄13, ρ̄23) > 0, and κ̂1κ̂3(ρ̄12, ρ̄13, ρ̄23) > 0, then an optimal portfolio strategy is given by

α∗t =
[
x0 +

1

2λ
e(‖σ(ρ̄12,ρ̄13,ρ̄23)−1b̂‖2−δ)2T −X∗t

](
1− δ

‖σ(ρ̄12, ρ̄13, ρ̄23)−1b̂‖2

)
1{‖σ(ρ̄12,ρ̄13,ρ̄23)−1b̂‖2>δ}Σ(ρ̄12, ρ̄13, ρ̄23)−1b̂.

(ii) If κ̂1κ̂2(ρ
12
, ρ

13
, ρ̄23) < 0, and κ̂1κ̂3(ρ

12
, ρ

13
, ρ̄23) < 0, then an optimal portfolio strategy is given by

α∗t =
[
x0 +

1

2λ
e(‖σ(ρ

12
,ρ

13
,ρ̄23)−1b̂‖2−δ)2T −X∗t

](
1− δ

‖σ(ρ
12
, ρ

13
, ρ̄23)−1b̂‖2

)
1{‖σ(ρ

12
,ρ

13
,ρ̄23)−1b̂‖2>δ}Σ(ρ

12
, ρ

13
, ρ̄23)−1b̂.

(iii) If κ̂1κ̂2(ρ̄12, ρ13
, ρ

23
) > 0, and κ̂1κ̂3(ρ̄12, ρ13

, ρ
23

) < 0, then an optimal portfolio strategy is given by

α∗t =
[
x0 +

1

2λ
e(‖σ(ρ̄12,ρ13,ρ23)−1b̂‖2−δ)2T −X∗t

](
1− δ

‖σ(ρ̄12, ρ13
, ρ

23
)−1b̂‖2

)
1{‖σ(ρ̄12,ρ13,ρ23)−1b̂‖2>δ}Σ(ρ̄12, ρ13

, ρ
23

)−1b̂.

(iv) If κ̂1κ̂2(ρ
12
, ρ̄13, ρ23

) < 0, and κ̂1κ̂3(ρ
12
, ρ̄13, ρ23

) > 0, then an optimal portfolio strategy is given by

α∗t =
[
x0 +

1

2λ
e‖(σ(ρ

12
,ρ̄13,ρ23)−1b̂‖2−δ)2T −X∗t

](
1− δ

‖σ(ρ
12
, ρ̄13, ρ23

)−1b̂‖2

)
1{‖σ(ρ

12
,ρ̄13,ρ23)−1b̂‖2>δ}Σ(ρ

12
, ρ̄13, ρ23

)−1b̂.
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Proof. In view of formula (4.29) of the optimal portfolio strategy in Proposition 4.4, we only need to compute
κ̂(ρ∗) = Σ(ρ∗)−1b̂, and ‖σ(ρ∗)−1b̂‖2, i.e., R(b̂, ρ∗), which are given explicitly in the proof of Proposition 4.3
(see B.5 in Appendix) when computing ρ∗. In the case 1., we obtain (see (B.72)) κ̂(ρ∗) = ( b̂1

σ2
1
, 0, 0)ᵀ, and

R(b̂, ρ∗) = b̂ᵀκ̂(ρ∗) = |β̂1|2. In the case 2., let us focus on subcase (i) as the other subcase (ii) is dealt
with similarly: we have ρ∗12 = ρ̄12, (κ̂1(ρ̄12), κ̂2(ρ̄12))ᵀ = Σ−3(ρ̄12)b̂−3, κ̂3(ρ̄12, ρ

∗
13, ρ

∗
23) = 0, and R(b̂, ρ∗) =

b̂ᵀ−3Σ−3(ρ̄12)b̂−3, by (B.80), (B.81). The other cases are computed in the same way and omitted here. 2

Remark 4.10 (Financial interpretation) In case 1, corresponding to large correlation ambiguities for the
second and third assets (recall Remark 4.4), it is optimal to invest only in the first asset, namely the one
with the highest estimated Sharpe ratio, which is consistent with the anti-diversification result obtained in
Theorem 4.1 (see also Remark 4.7).

In case 2, corresponding to a large correlation ambiguity for the third asset (see Remark 4.4), the investor
does not invest in the third asset, but only in the first and second assets. Moreover, depending on whether the
correlation of the first and second assets is small or large compared to the Sharpe ratio proximity (ρ̄12 < %̂12

or ρ
12
> %̂12), the investment in the first and second assets follows a directional trading or a spread trading.

We have a similar under-diversification effect in cases 3 and 4, and notice that it may happen that one
does not invest in the first asset even though it has the highest estimated Sharpe ratio. The result in case 4
is quite interesting and is a priori unexpected. Intuitively, an investor should always invest in the asset with
the greatest absolute Sharpe ratio. For example, this is the case when anti-diversification occurs and also in
cases 1, 2, 3, 5. However, the case 4 means that the asset with the greatest absolute Sharpe ratio (the first
asset) may not be traded in the optimal portfolio while the one with the smallest absolute Sharpe ratio (the
third asset) may be traded. The idea is that depending on the drift and correlation ambiguity levels, investing
in the two other assets may achieve higher risk premium than investing in the first asset. Take case 4(i) for
example, in this case, the risk premium is R(b̂−1, ρ̄23) = β̂ᵀ

−1C(ρ̄23)−1β̂−1 where β̂−1 := (β̂2, β̂3)ᵀ, especially,
R(b̂−1, ρ̄23) = |β̂2|2 + |β̂3|2 when ρ̄23 = 0. It follows from (B.75) in appendix that R(b̂−1, ρ̄23) > |β̂1|2. In [34],
the authors constructed a simple example where such scenario occurs in a single period model in the case
where the second and third assets are independent, hence with no correlation ambiguity.

Finally, in case 5, corresponding to a small correlation ambiguity (see Remark 4.4), the investor has
incentive to well-diversify her portfolio among the three assets. ♦

5 Portfolio Sharpe ratio

In this section, we illustrate through two examples how drift estimation error δ(t) and correlation estimation
interval denoted by ε(t) affects the portfolio Sharpe ratio of a strategy.

5.1 The impact of drift estimation error δ(t) on portfolio Sharpe ratio

We consider a market with one risky asset, and assume that the true dynamics of the stock price is given by
the Black-Scholes model

dSt = St(b
odt+ σodWt),

where the true drift bo > 0 and the true volatility σo > 0 are constants, and W is Brownian motion under
some probability measure P. The portfolio Sharpe ratio of a strategy α ∈ A over the finite horizon T is
defined by

SRT (α) =
E[Xα

T ]− x0√
Var(Xα

T )
,
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that is the excess of the expected return per unit of the standard deviation under the true probability measure
P.
• Let us first consider an investor who knows the true drift bo and true volatility σo. In other words, she
knows that the stock price is governed by a Black-Scholes model of parameter (bo, σo). Therefore, from our
Remark 2.4, the optimal mean-variance portfolio strategy of this investor with risk-aversion parameter λ >
0, and initial capital x0 is given by

α∗t =
[
x0 +

e|β
o|2T

2λ
−X∗t

] bo

|σo|2
,

where βo = bo/σo, and X∗t is the wealth process with feedback strategy α∗. By noting that the evolution of
her wealth process X∗t under P is governed by

dX∗t = α∗t b
odt+ α∗tσ

odWt,

we get, after straightforward calculation, that her terminal wealth is given by

X∗T − x0 =
1

2λ

[
e|β

o|2T − e−
1
2
|βo|2T−βoWT

]
, P− a.s.

Therefore, its expectation and variance under P are explicitly given by

E[X∗T ]− x0 =
1

2λ

[
e|β

o|2T − 1
]
, Var(X∗T ) =

1

4λ2

[
e|β

o|2T − 1],

and thus the portfolio Sharpe ratio of the first investor following a portfolio strategy α∗ is

SR
(1)
T := SRT (α∗) =

√
e|βo|2T − 1.

• Let us next consider a second investor with risk-aversion parameter λ, initial capital x0, who knows the
true volatility but is uncertain about the drift: she believes that the drift lies in an ellipsoidal set around bo

with constant δ. From Proposition 4.4, her robust optimal portfolio strategy denoted by α̃ is given by

α̃t =
[
x0 +

1

2λ
e(βo−δ)2T − X̃t

]
(1− δ

βo
)1{βo>δ}

bo

|σo|2
.

where X̃t is wealth process associated to α̃. By noting that the evolution of X̃ under the true probability
measure P is

dX̃t = α̃tb
odt+ α̃tσ

odWt,

we get its explicit expression under true probability measure P

X̃T − x0 =
1

2λ

[
e(βo−δ)2T − e

1
2

(δ2−|βo|2)T+(δ−βo)WT

]
1{βo>δ}, P− a.s.

It follows that the excess expected return and variance under P are explicitly given by

E[X̃T ]− x0 =
1

2λ

[
e(βo−δ)2T − eδ(δ−βo)T

]
1{βo>δ},

Var(X̃T ) =
1

4λ2
[e(βo−δ)(βo−3δ)T − e2δ(δ−βo)T ]1{βo>δ}.

Therefore, the portfolio Sharpe ratio of the second investor following a portfolio strategy α̃ is

SR
(2)
T := SRT (α̃) =

eβ
o(βo−δ)T − 1√
e(βo−δ)2T − 1

1{βo>δ},
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with the convention that SR(2)
T = 0 when X̃T = x0.

• Finally, let us consider a third investor with risk-aversion parameter λ, initial capital x0, who knows the
true volatility and has ambiguity about the drift which lies in ellipsoidal set around bo, but compared to
the second investor, she learns information about drift, so that her estimation error is δ(t) = δ√

1+t
, hence

decreasing with time. It follows from Proposition 4.4 that an optimal robust portfolio strategy α̂ is

α̂t = [x0 +
1

2λ
e

∫ T
0 (βo− δ√

1+s
)21{βo> δ√

1+s
}ds − X̂t

]
(1− δ

βo
√

1 + t
)1{βo> δ√

1+t
}
bo

|σo|2
.

Similarly as the previous two investors, we compute the terminal wealth associated to α̂t under the true
probability measure P as

X̂T − x0 =
1

2λ

[
e

∫ T
0 (βo− δ√

1+t
)21{βo> δ√

1+t
}dt

− e
∫ T
0

1
2

( δ
2

1+t
−|βo|2)1{βo> δ√

1+t
}dt−

∫ T
0 (βo− δ√

1+t
)1{βo> δ√

1+t
}dWt]

=
1

2λ

[
e
∫ T
to (βo− δ√

1+t
)2dt − e

∫ T
to

1
2

( δ
2

1+t
−|βo|2)dt−(βo− δ√

1+t
)dWt

]
1{βo> δ√

T+1
},

where we set to = max( δ2

|βo|2 − 1, 0). Therefore, the expectation and variance of X̂T under P are given by

E[X̂T ]− x0 =
1

2λ

[
e
∫ T
to (βo− δ√

1+t
)2dt − e

∫ T
to ( δ

2

1+t
− δβo√

1+t
)dt
]
1{βo> δ√

T+1
},

Var(X̂T ) =
1

4λ2

[
e
∫ T
to (βo− 3δ√

1+t
)(βo− δ√

1+t
)dt − e

∫ T
to ( 2δ2

1+t
− 2δβo√

1+to
)dt
]
1{βo> δ√

T+1
}.

It follows that the portfolio Sharpe ratio of the third investor following the strategy α̂ is

SR
(3)
T := SRT (α̂) =

e
∫ T
to β

o(βo− δ√
1+t

)dt − 1√
e
∫ T
to (βo− δ√

1+t
)2dt − 1

1{βo> δ√
1+T
}

with the convention that SR(3)
T = 0 when X̂T = x0.

Let us illustrate numerically the effect of the estimation error on the robust optimal portfolio strategy. We
take bo = 20%, σo = 30%. Figure 1 shows the portfolio Sharpe ratio of investors when varying the estimation
error δ at investment horizon T = 2, and varying terminal time T with estimation error δ = 0.5. We see
that the Sharpe ratio of the first investor who knows true parameters is always better than the two other
investors who have ambiguity on drift. Moreover, we notice that the Sharpe ratio decreases as the estimation
error increases, and that when investment horizon T is large, the Sharpe ratio of the third investor who learns
information with time performs noticeably better than the one of the second investor.

5.2 The impact of correlation uncertainty level ε(t) on portfolio Sharpe ratio

We consider a market with two risky assets, and assume that the true dynamics of the stock prices S =
(S1, S2) is governed by

dSt = diag(St)(b
odt+ σ(ρo)dWt)

= diag(St)

((
bo1
bo2

)
dt+

(
σ1

√
1− |ρo|2 σ1ρ

o

0 σ2

)(
dW 1

t

dW 2
t

))
,
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Figure 1: Portfolio Sharpe ratios for different estimation errors (above) and terminal horizons

where the drift bo = (bo1, b
o
2)ᵀ, σ1 > 0, σ2 > 0, and the true correlation ρo ∈ (−1, 1) are known constants under

some probability measure P. Recall βoi =
boi
σi
, i = 1, 2, we assume w.l.o.g. βo1 ≥ βo2 > 0, and denote by %o12 =

βo2
βo1

the Sharpe ratio proximity. Note that the true correlation ρo is not necessarily equal to %o12.

• Let us consider the first investor who knows the true correlation ρo. Therefore, from our Remark 2.4,
the optimal mean-variance portfolio strategy of this investor with risk-aversion parameter λ > 0, and initial
capital x0 is given by

α∗t = [x0 +
1

2λ
eR

oT −X∗t ]Σ(ρo)−1bo,

where Ro = (bo)ᵀΣ(ρo)−1bo and X∗t is the wealth process with feedback strategy α∗. Since her wealth process
X∗t under P is given by

dX∗t = (α∗t )
ᵀ(bodt+ σ(ρo)dWt),

we get, after straightforward calculations, that her terminal wealth is given by

X∗T − x0 =
1

2λ

[
eR

oT − e−
1
2
RoT−(bo)ᵀσ(ρo)−1WT

]
, P− a.s.

Therefore, its expectation and variance under P are explicitly given by

E[X∗T ]− x0 =
1

2λ
[eR

oT − 1], Var(X∗T ) =
1

4λ2
[eR

oT − 1],
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hence the portfolio Sharpe ratio of this investor associated to α∗ is

SR
(1)
T := SRT (α∗) =

√
eRoT − 1.

• Let us consider the second investor who knows the true expected rate of return bo but is uncertain about
correlation. She believes that the correlation lies in an interval [ρ, ρ̄] = [ρo − ε, ρo + ε] ∈ (−1, 1), with ε a
positive constant. From Proposition 4.2, the robust optimal portfolio strategy denoted by α̃(2) of the second
investor is given by

α̃
(2)
t =

[
x0 +

1

2λ
eR(ρ(2),∗)T − X̃(2)

t

]
Σ(ρ(2),∗)−1bo,

where R(ρ) = (bo)ᵀΣ(ρ)−1bo, X̃(2)
t is wealth process associated to α̃(2), and

ρ(2),∗ = %o121{%o12∈[ρ,ρ̄]} + ρ̄1{ρ̄<%o12} + ρ1{ρ>%o12}, (5.31)

R(ρ(2),∗) = |βo1 |21{%o12∈[ρ,ρ̄]} + (bo)ᵀΣ(ρ̄)−1bo1{ρ̄<%o12} + (bo)ᵀΣ(ρ)−1bo1{ρ>%o12}.

By noting that the evolution of X̃(2) under probability measure P is

dX̃
(2)
t = (α̃

(2)
t )ᵀ(bodt+ σ(ρo)dWt),

we get its explicit expression under P

X̃
(2)
T − x0 =

1

2λ

[
eR(ρ(2),∗)T − e−(bo)ᵀΣ(ρ(2),∗)−1σ(ρo)WT− 1

2
(bo)ᵀΣ(ρ(2),∗)−1Σ(ρo)Σ(ρ(2),∗)−1boT

]
,

and thus the expectation and variance of X̃(2)
T under P are

E[X̃
(2)
T ]− x0 =

1

2λ

[
eR(ρ(2),∗)T − 1

]
,

Var(X̃
(2)
T ) =

1

4λ2
(e(bo)ᵀΣ(ρ(2),∗)−1Σ(ρo)Σ(ρ(2),∗)−1boT − 1),

therefore the portfolio Sharpe ratio of the investor is given by

SR
(2)
T := SRT (α̃2) =

eR(ρ(2),∗)T − 1√
e(bo)ᵀΣ(ρ(2),∗)−1Σ(ρo)Σ(ρ(2),∗)−1boT − 1

. (5.32)

Substituting ρ = ρo − ε and ρ̄ = ρo + ε into (5.31), we get the explicit form of ρ(2),∗.

(i) If ρo = %o12, then ρ(2),∗ = %o12.

(ii) If ρo < %o12, then

ρ(2),∗ =

{
ρo + ε, if ε < %o12 − ρo,
%o12, if ε ≥ %o12 − ρo,

(iii) If ρo > %o12, then

ρ(2),∗ =

{
ρo − ε, if ε < ρo − %o12,
%o12, if ε > ρo − %o12,
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• The third investor is more informed than the second investor, and believes that the correlation lies in an
interval [ρ(t), ρ̄(t)] = [ρo − ε√

1+t
, ρo + ε√

1+t
] ∈ (−1, 1). From Proposition 4.2, the robust optimal portfolio

strategy denoted by α̃(3) of the third investor is given by

α̃
(3)
t =

[
x0 +

1

2λ
e
∫ T
0 R(ρ(3),∗(s))ds − X̃(3)

t

]
Σ(ρ(3),∗(t))−1bo,

where X̃(3)
t is wealth process associated to α̃(3), and

ρ(3),∗(t) = %o121{%o12∈[ρ(t),ρ̄(t)]} + ρ̄(t)1{ρ̄(t)<%o12} + ρ(t)1{ρ(t)>%o12}, (5.33)

R(ρ(3),∗(t)) = |βo1 |21{%o12∈[ρ(t),ρ̄(t)]} + (bo)ᵀΣ(ρ̄(t))−1bo1{ρ̄(t)<%o12} + (bo)ᵀΣ(ρ(t))−1bo1{ρ(t)>%o12}.

The portfolio Sharpe ratio of the third investor is computed in the same way as the second investor, and is
given by:

SR
(3)
T := SRT (α̃3) =

e
∫ T
0 R(ρ(3),∗(s))ds − 1√

e
∫ T
0 (bo)ᵀΣ(ρ(3),∗(s))−1Σ(ρo)Σ(ρ(3),∗(s))−1bods − 1

. (5.34)

Plugging ρ(t) = ρo − ε√
1+t

, and ρ̄(t) = ρo + ε√
1+t

into (5.33), we get the explicit expression of ρ(3),∗(t).

(i) If ρo = %o12, then ρ(3),∗(t) = %o12.

(ii) If ρo < %o12, then

ρ(3),∗(t) =


ρo + ε√

1+t
, if ε < %o12 − ρo,

%o121{t∈[0, ε2

|%o12−ρ
o|2
−1]} + (ρo + ε√

1+t
)1{t∈[ ε2

|%o12−ρ
o|2
−1,T ]}, if ε√

1+T
< %o12 − ρo < ε,

%o12, if ε√
1+T
≥ %o12 − ρo.

(iii) If ρo > %o12, then

ρ(3),∗(t) =


ρo − ε√

1+t
, if ε < ρo − %o12,

%o121{t∈[0, ε2

|%o12−ρ
o|2
−1]} + (ρo − ε√

1+t
)1{t∈[ ε2

|%o12−ρ
o|2
−1,T ]}, if ε√

1+T
< %o − %o12 < ε,

%o12, if ε√
1+T

> ρo − %o12.

Let us illustrate numerically the effect of the correlation ambiguity on the robust optimal portfolio strategy.
We fix investment horizon T = 2 and take βo1 = 1.5, βo2 = 0.5, hence giving Sharpe ratio proximity %o12 =
1
3 . We select ρo = %o12 = 1

3 , or ρ
o = 0 < %o12, or ρo = 1

2 > %o12. Figure 2 shows the effect of the correlation
ambiguity level on the portfolio Sharpe ratio. We see that portfolio Sharpe ratio decreases with correlation
ambiguity level except when true correlation equals Sharpe ratio proximity. In this case, when true correlation
equals Sharpe ratio proximity under which under-diversification occurs, whatever the correlation level ε is,
portfolio Sharpe ratio is a constant.
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for their careful reading of our paper and their valuable comments. We feel that, thanks to all the comments
we received, the clarity and the scientific value of the paper have been greatly improved.
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Figure 2: Portfolio Sharpe ratio for different correlation levels ε
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Appendix

A Separation principle for robust portfolio selection

We show in this section that the separation principle is actually quite general, valid not only for mean-variance
problem, but also for other classes in decision making problems, like popular expected utility criteria. It turns
out that the proof of the separation principle for standard utility criteria is simpler than for mean-variance
problems.

We consider a model uncertainty setting as in Section 2.1. The investor’s preferences are represented by
utility functions U defined from R to R, strictly concave and increasing. The wealth process Xα is defined as
in (2.4), and the set A of admissible controls consists of Rd-valued F-progressively measurable process α such
that the process U(Xα) is uniformly integrable. The robust portfolio selection problem is then formulated as

V0 = sup
α∈A

inf
θ.∈VΘ

Eθ.
[
U(Xα

T )]. (A.35)

This is a rather standard min-max stochastic control problem, which is associated by the dynamic program-
ming principle to the Bellman-Isaacs partial differential equation:

∂v

∂t
+ sup
a∈Rd

inf
θ∈Θ(t)

Ht(vx, vxx, a, θ) = 0, on [0, T )× R

v(T, .) = U,
(A.36)

(assuming that v(t, x) is smooth and strictly concave in x), where for t ∈ [0, T ], Ht is the Hamiltonian function
defined on R× (−∞, 0)× Rd ×Θ(t) by

Ht(p,M, a, θ) = paᵀb+
1

2
MaᵀΣ(ρ)a, p ∈ R,M < 0, a ∈ Rd, θ = (b, ρ) ∈ Θ(t).

In the no-uncertainty model case, i.e., Θ(t) is reduced to a singleton Θ(t) = {θo(t) = (bo(t), ρo(t))}, t ∈
[0, T ], corresponding to a multi-dimensional Black-Scholes model with deterministic mean return vector bo(t),
covariance matrix Σo(t) = Σ(ρo(t)), and deterministic risk premium Ro(t) = R(θo(t)) = (bo(t))ᵀ(Σo(t))−1bo(t),
the Bellman-Isaacs equation reduces to the Bellman equation arising in classical expected utility maximization,
and called Black-Scholes-Merton Bellman PDE:

∂vo

∂t
− Ro(t)

2

(vox)2

voxx
= 0, on [0, T )× R

vo(T, .) = U.
(A.37)

Moreover, when there exists a smooth function vo(t, x) to (A.37), strictly concave in x, it is known by classical
verification theorem (see e.g. [41]) that the optimal portfolio strategy is given by

αo,∗t = Ro(t,X∗t )(Σo(t))−1bo(t), 0 ≤ t ≤ T,

where Ro(t, x) := − vox(t,x)
voxx(t,x) is the so-called risk tolerance function, X∗ is the wealth process associated to α∗.

For example, when U is a CRRA utility function, i.e., U(x) = xγ , x > 0, with 0 < γ < 1, we obtain the

famous Merton solution: vo(t, x) = exp
(∫ T

t Ro(s)ds

2
γ

1−γ
)
U(x), and Ro(t, x) = x/(1− γ). When U is of CARA

type, i.e., U(x) = −e−ηx, with η > 0, we have vo(t, x) = exp
(∫ T

t Ro(s)ds

2

)
U(x), and Ro(t, x) = 1/η.

In our general model uncertainty setting under (HΘ), a key lemma is the following saddle point property:
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Lemma A.1 Fix t ∈ [0, T ], and assume that there exists θ∗(t) = (b∗(t), ρ∗(t)) ∈ arg min
θ∈Θ(t)

R(θ). Let us

denote by

a∗(t, p,M) = − p

M
(Σ(ρ∗(t))−1b∗(t), p ∈ R, M < 0. (A.38)

Then, for p ∈ R, M < 0, the pair (a∗(t, p,M), θ∗(t)) is a saddle-point of (a, θ) ∈ Rd×Θ(t) 7→ Ht(p,M, a, θ),
i.e.

Ht(p,M, a∗(t, p,M), θ) ≤ Ht(p,M, a∗(t, p,M), θ∗(t)) = −1

2

p2

M
R(θ∗(t))

≤ Ht(p,M, a, θ∗(t)), ∀a ∈ Rd, θ ∈ Θ(t).

Proof. For any n ∈ N \ {0}, let us introduce the compact set Cdn,>+ of all elements ρ = (ρij)1≤i<j≤d in the
open set Cd>+, such that |ρij | ≤ 1 − 1

n , 1 ≤ i < j ≤ d. Given the ambiguity set Θ(t), let us consider the
sequence of sets:

Θn(t) =
{
θ = (b, ρ) ∈ Θ(t) : ρ ∈ Cdn,>+

}
, n > 0,

and notice by (HΘ) that its closure Θn(t) is a compact convex set of Rd × Cd>+. For fixed (t, p,M) ∈
[0, T ]×R× (−∞, 0), it is clear that the function Ht(p,M, ., .) is concave in a ∈ Rd, and linear (hence convex)
in θ lying in the convex-compact set Θn(t). By the min-max theorem (see e.g. Theorem 45.8 in [45]), we then
get the so-called Isaacs relation:

sup
a∈Rd

inf
θ∈Θn(t)

Ht(p,M, a, θ) = inf
θ∈Θn(t)

sup
a∈Rd

Ht(p,M, a, θ). (A.39)

By square completion, we can rewrite the function Ht as:

Ht(p,M, a, θ) =
M

2

(
a− ā(p,M, θ)

)ᵀ
Σ(ρ)(a− ā(p,M, θ)

)
− 1

2

p2

M
R(θ), (A.40)

with ā(p,M, θ) := − p

M
Σ−1(ρ)b, θ = (b, ρ) ∈ Θ(t),

from which we get

sup
a∈Rd

Ht(p,M, a, θ) = Ht(p,M, ā(p,M, θ), θ) = −1

2

p2

M
R(θ). (A.41)

Observe that for n large enough, n ≥ N∗, the element θ∗(t) = (b∗(t), ρ∗(t)) ∈ arg min
θ∈Θ(t)

R(θ) lies in Θn(t),

and thus, using also the continuity of R(.) on Rd × Cd>+: inf
θ∈Θ(t)

R(θ) = inf
θ∈Θn(t)

R(θ) = R(θ∗(t)). We deduce

with (A.41) that for n ≥ N∗,

H∗t (p,M) := inf
θ∈Θ(t)

sup
a∈Rd

Ht(p,M, a, θ) = inf
θ∈Θn(t)

sup
a∈Rd

Ht(p,M, a, θ)

= −1

2

p2

M
R(θ∗(t)). (A.42)

On the other hand, we see that the continuous function a ∈ Rd 7→ Ht(p,M, a) := inf
θ∈Θn(t)

Ht(p,M, a, θ)

is concave in a, and goes to −∞, as |a| goes to infinity (recall that M < 0). This implies that Ht(p,M, .)
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attains its supremum at some point ã(t, p,M), and we then have

inf
θ∈Θn(t)

Ht(p,M, ã(t, p,M), θ) = sup
a∈Rd

inf
θ∈Θn(t)

Ht(p,M, a, θ)

= inf
θ∈Θn(t)

sup
a∈Rd

Ht(p,M, a, θ) = H∗t (p,M)

= sup
a∈Rd

Ht(p,M, a, θ∗(t)) ≥ Ht(p,M, a, θ∗(t)), ∀a ∈ Rd,

where we used Isaacs condition (A.39) in the second equality, (A.42) in the third equality, and (A.41) for θ
= θ∗(t) in the fourth one. We then deduce

Ht(p,M, ã(t, p,M), θ∗(t)) ≥ inf
θ∈Θn(t)

Ht(p,M, ã(t, p,M), θ) = H∗t (p,M)

≥ Ht(p,M, a, θ∗(t)), ∀a ∈ Rd. (A.43)

Similarly, we have for any n ≥ N∗,

sup
a∈Rd

Ht(p,M, a, θ∗(t)) = inf
θ∈Θn(t)

sup
a∈Rd

Ht(p,M, a, θ)

= sup
a∈Rd

inf
θ∈Θn(t)

Ht(p,M, a, θ) = H∗t (p,M)

= inf
θ∈Θn(t)

H(p,M, ã(t, p,M), θ) ≤ Ht(p,M, ã(t, p,M), θ), ∀θ ∈ Θn(t),

which implies that

Ht(p,M, ã(t, p,M), θ∗(t)) ≤ sup
a∈Rd

Ht(p,M, a, θ∗(t)) = H∗t (p,M)

≤ Ht(p,M, ã(t, p,M), θ), ∀θ ∈ Θ(t), (A.44)

since any θ ∈ Θ(t) lies in Θn(t) for n large enough. Relations (A.43)-(A.44) mean the saddle-point prop-
erty of the pair (ã(t, p,M), θ∗(t)) for the function (a, θ) ∈ Rd × Θ(t) 7→ Ht(p,M, a, θ), and also imply that
Ht(p,M, ãt(p,M), θ∗(t)) = H∗t (p,M). Recalling the expression (A.40) of Ht, this is written as

M

2

(
ã(t, p,M)− ā(p,M, θ∗(t))

)ᵀ
Σ(ρ∗(t))(ã(t, p,M)− ā(p,M, θ∗(t))

)
+H∗t (p,M)

= H∗t (p,M).

This proves that ã(t, p,M) = ā(p,M, θ∗(t)) = a∗(t, p,M) as defined in (A.38), and ends the proof. 2

Proposition A.1 (Separation Principle for utility criteria) Suppose that there exists a pair θ∗ = (θ∗(t))t =
(b∗,ρ∗) = (b∗(t), ρ∗(t))t ∈ Θ solution to arg min

θ∈Θ
R(θ), i.e., θ∗(t) ∈ arg min

θ∈Θ(t)
R(θ), for all t ∈ [0, T ], and a

smooth solution v(t, x), strictly concave in x, to the Black-Scholes Merton Bellman PDE: ∂v

∂t
− R∗(t)

2

(vx)2

vxx
= 0, on [0, T )× R

v(T, .) = U,
(A.45)

where we set R∗(t) := R(θ∗(t)), and satisfying the growth condition v(t, x) ≤ C(1 + |U(x)|). Then the robust
utility maximization problem (A.35) admits an optimal portfolio strategy given by

α∗t = R∗(t,X∗t )(Σ∗(t))−1b∗(t), 0 ≤ t ≤ T, PΘ − q.s.,
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where R∗(t, x) := − vx(t,x)
vxx((,x) , Σ∗(t) := Σ(ρ∗(t)), and X∗ is the state process associated to α∗t . Moreover,

V0 = v(0, x0) = sup
α∈A

inf
θ.∈VΘ

Eθ.
[
U(Xα

T )] = Eθ∗
[
U(Xα∗

T )]

= inf
θ.∈VΘ

sup
α∈A

Eθ.
[
U(Xα

T )]. (A.46)

Proof. For any α ∈ A, and θ. ∈ VΘ, the dynamics of v(t,Xα
t ) under Pθ. is given by Itô’s formula by

dv(t,Xα
t ) = Dα,θ.

t dt+ vx(t,Xα
t )αᵀ

tσ(ρt)dW
θ
t ,

where

Dα,θ.
t =

∂v

∂t
(t,Xα

t ) +Ht(vx(t,Xα
t ), vxx(t,Xα

t ), αt, θt), 0 ≤ t ≤ T.

Observe that α∗t = a∗(t, vx(t,X∗t ), vxx(t,X∗t )) as defined in Lemma A.1, and the Black-Scholes Merton Bellman
PDE for v is written as

∂v

∂t
(t, x) +Ht(vx(t, x), vxx(t, x), a∗(t, vx(t, x), vxx(t, x)), θ∗(t))) = 0, (t, x) ∈ [0, T )× R.

From the saddle point property in this Lemma A.1„ we then have

Dα,θ∗

t ≤ 0 ≤ Dα∗,θ.
t , 0 ≤ t < T, ∀α ∈ A, θ. ∈ VΘ.

This implies that the process (v(t,Xα
t ))t is a local supermartingale under Pθ∗ , for any α ∈ A, while (v(t,Xα∗

t ))t
is a local submartingale under Pθ. , for any θ. ∈ VΘ. By considering a sequence of localizing stopping times
(τn)n converging to T as n goes to infinity, we then have

Eθ∗ [v(τn, X
α
τn)] ≤ v(0, X0) ≤ Eθ. [v(τn, X

α∗
τn ], ∀α ∈ A, θ. ∈ VΘ.

From the growth condition on v, and as U(Xα) is uniformly integrable for α ∈ A, we deduce by sending n to
infinity, and recalling that v(T, x) = U(x):

Eθ∗ [U(Xα
T )] ≤ v(0, x0) ≤ Eθ. [U(Xα∗

T )], ∀α ∈ A, θ. ∈ VΘ.

As the deterministic process θ∗ lies in particular in VΘ, and noting that supα∈A infθ.∈VΘ ≤ infθ.∈VΘ supα∈A,
this above saddle-point relation yields (A.46). 2

Remark A.1 A similar separation principle holds for robust portfolio selection in a discrete-time setting. We
first compute at any time t = 0, . . . , T − 1, the parameter θ∗(t) = (b∗(t), ρ∗(t)), which achieves the minimum
of the risk premium function R(θ) = bᵀΣ(ρ)−1b, over θ = (b, ρ) lying in the ambiguity set Θ(t) at time t.
The solution to the robust portfolio selection problem is then given by the solution to the portfolio selection
problem in the discrete-time model with mean return b∗(t) and covariance matrix Σ(ρ∗(t)) at time t. 2

B Proofs of some Lemmas and Propositions

Notations, differentiation and characterization of convex function
Let us introduce some notations and state some results which will be used frequently in the proof of some
Lemmas and Propositions.

1. We introduce the so-called variance risk ratios

κ̂t(ρ) := Σ(ρ)−1b̂(t) = (κ̂1
t (ρ), . . . , κ̂dt (ρ))ᵀ,

κ(b, ρ) := Σ(ρ)−1b = (κ1(b, ρ), . . . , κd(b, ρ))ᵀ.
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2. From some matrix calculations (see e.g. corollary 95 and corollary 105 in [10]), we obtain the explicit
expressions of the first partial derivatives of R(b, ρ) = bᵀκ(b, ρ) with respect to bi, ρij denoted by ∂R(b,ρ)

∂bi

and ∂R(b,ρ)
∂ρij

, 1 ≤ i < j ≤ d,

∂R(b, ρ)

∂bi
= 2κi(b, ρ),

∂R(b, ρ)

∂ρij
= −σiσjκi(b, ρ)κj(b, ρ). (B.47)

We also denote by ∇bR(b, ρ) and ∇ρR(b, ρ) the gradients of R(b, ρ) with respect to b and ρ respectively,{
∇bR(b, ρ) = (∂R(b,ρ)

∂b1
, . . . , ∂R(b,ρ)

∂bd
)ᵀ

∇ρR(b, ρ) = (∂R(b,ρ)
∂ρ12

, . . . , ∂R(b,ρ)
∂ρ1d

, . . . , ∂R(b,ρ)
∂ρ(d−1)d

)ᵀ
(B.48)

3. (Sufficient and necessary optimality condition). It is known (see e.g. Lemma 2.2 in [11]) that R(b, ρ) is
jointly convex in b and ρ. Similarly, R(b̂(t), ρ) is convex in ρ. Then ρ∗(t) is a global minimum of ρ 7→
R(b̂(t), ρ) over Γ(t) convex set of Cd+ if and only if, for any ρ ∈ Γ(t) (see e.g. section 4.2.3 in [5]),

(ρ− ρ∗(t))ᵀ∇ρR(b̂(t), ρ∗(t)) =
d∑
j=1

j−1∑
i=1

∂R(b̂(t), ρ∗(t))

∂ρij
(ρij − ρ∗ij) ≥ 0,

which is written from (B.47) as,

d∑
j=1

j−1∑
i=1

σiσj κ̂
i
tκ̂
j
t (ρ
∗(t))(ρij − ρ∗ij(t)) ≤ 0. (B.49)

B.1 Proof of Lemma 3.2

Notice that if there exists (b∗(t), ρ∗(t)) ∈ arg min
θ∈Θ(t)

R(θ), then the first-order condition implies that for any

(b, ρ) lying in the convex set Θ(t):

(b− b∗(t))ᵀ∇bR(θ∗(t)) + (ρ− ρ∗(t))ᵀ∇ρR(θ∗(t)) ≥ 0. (B.50)

Recalling the expression ofHt(b, ρ) in (3.9) and explicit expressions (B.47), (B.48) of∇bR(θ∗(t)) and∇ρR(θ∗(t)),
we have

Ht(b
∗(t), ρ)−Ht(b

∗(t), ρ∗(t)) =
d∑
j=1

j−1∑
i=1

κi(b∗(t), ρ∗(t))κj(b∗(t), ρ∗(t))σiσj(ρij − ρ∗ij(t))

= (ρ∗(t)− ρ)ᵀ∇ρR(θ∗(t)),

2
(
Ht(b

∗(t), ρ∗(t))−Ht(b, ρ
∗(t))

)
= 2

d∑
i=1

(b∗i (t)− bi)κi(b∗(t), ρ∗(t))

= (b∗(t)− b)ᵀ∇bR(θ∗(t)),

where by convention, we set:
0∑
i=1

· = 0 . It follows immediately from the sum of the above two equalities that

Ht(b
∗(t), ρ∗(t))− 2Ht(b, ρ

∗(t)) +Ht(b
∗(t), ρ)

= (ρ∗(t)− ρ)ᵀ∇ρR(θ∗(t)) + (b∗(t)− b)ᵀ∇bR(θ∗(t)) ≤ 0,

where we used (B.50) in the last inequality .

2
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B.2 Proof of Lemma 4.1

Due to the dependence of b on ρ in the ellipsoidal set Θ(t) written as Θ(t) = {(b, ρ) ∈ Rd × Γ(t) : b ∈ ∆ρ(t)}
where ∆ρ(t) := {b ∈ Rd : ‖σ(ρ)−1(b− b̂(t))‖2 ≤ δ(t)}, we use a Lagrangian approach.
For fixed ρ ∈ Γ(t), let us first focus on the inner minimization

min
b∈∆ρ(t)

R(b, ρ). (B.51)

The Lagrangian with nonnegative multiplier µ associated to this constrained minimization problem is

L1
t (b, µ) = R(b, ρ)− µ

(
|δ(t)|2 − (b− b̂(t))ᵀΣ(ρ)−1(b− b̂(t))

)
, (B.52)

and the first-order condition gives

∂L1
t (b, µ)

∂b
= 2Σ(ρ)−1b+ 2µΣ(ρ)−1(b− b̂(t)) = 0,

∂L1
t (b, µ)

∂µ
= |δ(t)|2 − (b− b̂(t))ᵀΣ(ρ)−1(b− b̂(t)) = 0.

Solving these two equations for fixed ρ, and recalling that the Lagrange multiplier is nonnegative, yield µ∗t (ρ) = (
‖σ(ρ)−1b̂(t)‖2

δ(t) − 1)1{‖σ(ρ)−1b̂(t)‖2>δ(t)}
,

b∗t (ρ) = b̂(t)(1− δ(t)

‖σ(ρ)−1b̂(t)‖2
)1{‖σ(ρ)−1b̂(t)‖2>δ(t)}.

(B.53)

Substituting these expressions into the Lagrangian (B.52), we get

L1
t (b
∗
t (ρ), ρ) = R(b∗t (ρ), ρ) =

(
‖σ(ρ)−1b̂(t)‖2 − δ(t)

)2
1{‖σ(ρ)−1b̂(t)‖2>δ(t)},

and thus, the original problem inf
Θ(t)

R(θ) is reduced to

inf
θ=(b,ρ)∈Θ(t)

R(θ) = inf
ρ∈Γ(t)

inf
b∈∆ρ(t)

R(b, ρ) = inf
ρ∈Γ(t)

R(b∗t (ρ), ρ)

= inf
ρ∈Γ(t)

{(
‖σ(ρ)−1b̂(t)‖2 − δ(t)

)2
1{‖σ(ρ)−1b̂(t)‖2>δ(t)}

}
=

(
inf

ρ∈Γ(t)
‖σ(ρ)−1b̂(t)‖2 − δ(t)

)2
1{

inf
ρ∈Γ(t)

‖σ(ρ)−1b̂(t)‖2 > δ(t)
}. (B.54)

Therefore, whenever ρ∗(t) ∈ arg min
Γ(t)
‖σ(ρ)−1b̂(t)‖2 exists, we see from (B.54) that R attains its infimum at

θ∗(t) = (b∗(t), ρ∗(t)) with b∗(t) = b∗t (ρ
∗(t)) as in (B.53) with ρ = ρ∗(t), which leads to the expressions as

described in (4.27) and (4.28) of Lemma 4.1. 2

B.3 Proof of Proposition 4.1

For any t ∈ [0, T ], let us introduce for 1 ≤ l ≤ p,

Θl(t) = {(b, ρ) ∈ Rd × Γ(t) : ‖σJl(ρ)−1(bJl − b̂Jl(t))‖2 ≤ δl}, (B.55)

then we have the following Lemma, which is useful in the proof of Proposition 4.1.
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Lemma B.1 Let Θl(t) be an ellipsoidal set as in (B.55) with Γ(t) = Cd>+, and assume there exists ml = ml(t)

∈ Jl s.t. |β̂ml(t)| > max
j∈Jl,j 6=ml

|β̂j(t)|, then we have arg min
(b,ρ)∈Θl(t)

‖σJl(ρ)−1bJl‖2 6= ∅ attained at (b∗(t), ρ∗(t))

with

ρ∗mlj(t) = %̂mlj(t), j ∈ Jl, j 6= ml,

b∗Jl(t) = b̂Jl(t)(1−
δl(t)

|β̂ml(t)|
)1{|β̂ml (t)|>δl(t)}

.

Moreover,

min
Θl(t)

bᵀJlΣJl(ρ)−1bJ1 = (|β̂ml(t)| − δl(t))
21{|β̂ml (t)|>δl(t)}

.

Proof. W assume w.l.o.g. that l = 1 and ml = 1, i.e., |β̂1(t)| > max
j∈J1,j 6=1

|β̂j(t)|, otherwise we rearrange the

assets. By noting that bᵀJ1ΣJ1(ρ)−1bJ1 is actually prior (squared) risk premium associated to the assets in the
subclass J1, and that Lemma 4.1 is valid for any number of assets. we deduce from Lemma 4.1 that

inf
(b,ρ)∈Θ1(t)

bᵀJ1ΣJ1(ρ)−1bJ1

=
(

inf
ρ∈Cd>+

‖σJ1(ρ)−1b̂J1(t)‖2 − δ1(t)
)2

1{
inf

ρ∈Cd>+

‖σJ1(ρ)−1b̂J1(t)‖2 > δ1(t)
}.

Let us show that if |β̂1(t)| > max
j∈J1,j 6=1

|β̂j(t)|, then inf
ρ∈Cd>+

‖σJ1(ρ)−1b̂J1(t)‖2 is attained over Cd>+. The key point

is that (b̂J1(t))ᵀΣJ1(ρ)−1b̂J1(t) is written as the sum of two nonnegative parts by matrix transformations. The
procedures are as follows: we express ΣJ1(ρ) as the form of block matrix

ΣJ1(ρ) =

(
σ2

1 ΣJ1−1,1(ρ)ᵀ

ΣJ1−1,1(ρ) ΣJ1−1(ρ)

)
,

by transforming ΣJ1(ρ) to block diagonal matrix, and taking the inverse, we then obtain

ΣJ1(ρ)−1 =

(
1 −ΣJ1−1,1(ρ)ᵀ

σ2
1

0J1−1,1 IJ1−1

)(
1
σ2
1

0ᵀ
J1−1,1

0J1−1,1 AJ1−1(ρ)−1

)(
1 −ΣJ1−1,1(ρ)ᵀ

σ2
1

0J1−1,1 IJ1−1

)ᵀ

(B.56)

where IJ1−1 is (|J1| − 1) × (|J1| − 1) unit matrix and AJ1−1(ρ) := ΣJ1−1(ρ)− ΣJ1−1,1(ρ)ΣJ1−1,1(ρ)ᵀ

σ2
1

lies in Sd>+.

From the expression of ΣJ1(ρ)−1 in (B.56) and by writing b̂J1(t) in corresponding block form (b̂1(t), (b̂J1−1(t))ᵀ)ᵀ,
we get

(b̂J1(t))ᵀΣJ1(ρ)−1b̂J1(t)

= |β̂1(t)|2 +
(
b̂J1−1(t)− b̂1(t)

σ2
1

ΣJ1−1,1(ρ)
)ᵀ
AJ1−1(ρ)−1

(
b̂J1−1(t)− b̂1(t)

σ2
1

ΣJ1−1,1(ρ)
)

≥ |β̂1(t)|2,

and thus ‖σJ1(ρ∗(t))−1b̂J1(t)‖2 = |β̂1(t))| only when the second term is zero

b̂J1−1(t)− b̂1(t)

σ2
1

ΣJ1−1,1(ρ∗(t)) = 0, (B.57)
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which has the explicit solution

ρ∗1j(t) = %̂1j(t) ∈ (−1, 1), j ∈ J1, j 6= 1. (B.58)

Therefore, we deduce from (B.58) and (4.27) that

ρ∗1j(t) = %̂1j(t), j ∈ J1, j 6= 1, b∗J1(t) = b̂J1(t)(1− δ1(t)

|β̂1(t)|
)1{|β̂1(t)|>δ1(t)}. (B.59)

Once (ρ∗1j(t))j∈J1,j 6=1 is given in the above equality, we can complete the other values of ρ∗ij(t) such that ρ∗(t)
∈ Cd>+. For instance, ρ∗1j(t) = %̂1j(t), 1 < j ≤ d, ρ∗ij(t) = %̂1i(t)%̂1j(t), 1 < i 6= j ≤ d. It is easy to check that
such a construction of ρ∗(t) ∈ Cd>+. Moreover in this case, it follows from (B.56) and (B.57) that

ΣJ1(ρ∗(t))−1b̂J1(t) = (
b̂1(t)

σ2
1

, 0, . . . , 0)ᵀ. (B.60)

2

Let us now prove Proposition 4.1: if |β̂ml(t)| > max
j∈Jl,j 6=ml

|β̂j(t)| and |β̂mk(t)| − δk(t) > max
1≤l≤p,l 6=k

(|β̂ml(t)|−

δl(t)) , then inf
Θ(t)

R(b, ρ) exists and (b∗(t), ρ∗(t)) ∈ arg min
(b,ρ)∈Θ(t)

R(b, ρ) is computed explicitly. Let us consider

w.l.o.g. the case of p = 2 subsets, and reorder the assets s.t. J1 = {1, . . . , ko − 1}, J2 = {ko, . . . , d} and m1

= 1, m2 = ko for some 1 ≤ ko ≤ d, i.e.

|β̂1(t)| > max
j∈J1,j 6=1

|β̂j(t)|, |β̂ko(t)| > max
j∈J2,j 6=ko

|β̂j(t)|, |β̂1(t)| − δ1(t) > |β̂ko(t)| − δ2(t). (B.61)

Notice thatR(b, ρ) can be expressed as the sum of two nonnegative parts in the same way as (b̂J1(t))ᵀΣJ1(ρ)−1b̂J1(t)
in Lemma B.1. Σ(ρ) is written in a form of blocks as follows

Σ(ρ) =

(
ΣJ1(ρ) ΣJ21(ρ)ᵀ

ΣJ21(ρ) ΣJ2(ρ)

)
,

and its inverse Σ(ρ) is in the form

Σ(ρ)−1 =

(
IJ1 −ΣJ1(ρ)−1ΣJ21(ρ)ᵀ

0J21 IJ2

)(
ΣJ1(ρ)−1 0J12

0J21 AJ2(ρ)−1

)
(

IJ1 −ΣJ1(ρ)−1ΣJ21(ρ)ᵀ

0J21 IJ2

)ᵀ

, (B.62)

where IJl , l = 1, 2, is |Jl| × |Jl| unit matrix, and AJ2(ρ) := ΣJ2(ρ) − ΣJ21(ρ)ΣJ1(ρ)−1ΣJ21(ρ)ᵀ lies in Sd>+.
Recalling that R(b, ρ) = bᵀΣ(ρ)−1b and rewriting vector b in corresponding block matrix form (bᵀJ1 |b

ᵀ
J2

)ᵀ,
together with (B.62), we express R(b, ρ) as two nonnegative terms

R(b, ρ)

= bᵀJ1ΣJ1(ρ)−1bJ1 +
(
bJ2 − ΣJ21(ρ)ΣJ1(ρ)−1bJ1

)ᵀ
AJ2(ρ)−1

(
bJ2 − ΣJ21(ρ)ΣJ1(ρ)−1bJ1

)
≥ bᵀJ1ΣJ1(ρ)−1bJ1 ≥ (|β̂1(t)| − δ1(t))21{|β̂1(t)|>δ1(t)},

where we used AJ2(ρ) ∈ Sd>+ in the first inequality, and the second inequality is from Θ(t) = Θ1(t) ∩
Θ2(t), hence infΘ(t) b

ᵀ
J1

ΣJ1(ρ)−1bJ1 ≥ infΘ1(t) b
ᵀ
J1

ΣJ1(ρ)−1bJ1 , and Lemma B.1. Therefore, R(b∗(t), ρ∗(t)) =

(|β̂1(t)| − δ1(t))21{|β̂1(t)|>δ1(t)} is minimum if and only if (b∗(t), ρ∗(t)) ∈ Θ(t) satisfies (B.59) and

b∗J2(t)− ΣJ21(ρ∗(t))ΣJ1(ρ∗(t))−1b∗J1(t) = 0, (B.63)
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which yields, together with (B.60), the explicit form,

β∗j (t) = β∗1(t)ρ∗1j(t) = β̂1(t)(1− δ1(t)

|β̂1(t)|
)1{|β̂1(t)|>δ1(t)}ρ

∗
1j(t), j ∈ J2. (B.64)

In fact when (B.61) holds, there exists an element θ∗(t) = (b∗(t), ρ∗(t)) ∈ Θ(t) attaining this infimum. For
instance, we construct (b∗(t), ρ∗(t)) satisfying (B.59)-(B.64) in the form β∗J1(t) = (1− δ1(t)

|β̂1(t)|
)1{|β̂1(t)|>δ1(t)}β̂J1(t),

β∗J2(t) = (1− δ2(t)

|β̂ko (t)|
)1{|β̂ko (t)|>δ2(t)}β̂J2(t),

(B.65)

and



ρ∗1j(t) = β∗j (t)/β∗1(t) = %̂1j(t), j ∈ J1, j 6= 1,

ρ∗koj(t) = β∗j (t)/β∗ko(t) = %̂koj(t), j ∈ J2, j 6= ko,

ρ∗ij(t) = %̂1i(t)%̂1j(t), 1 < i 6= j ∈ J1,

ρ∗ij(t) = %̂koi(t)%̂koj(t), ko < i 6= j ∈ J2,

ρ∗1j(t) = β∗j (t)/β∗1(t) =
(1− δ2(t)

|β̂ko (t)|
)β̂j(t)

(1− δ1(t)

|β̂1(t)|
)β̂1(t)

∈ (−1, 1), j ∈ J2,

ρ∗ij(t) = ρ∗1i(t)ρ
∗
1j(t), otherwise ,

(B.66)

The rest of the proof is to check that (b∗(t), ρ∗(t)) given in (B.65)-(B.66) belongs to Θ(t), i.e., ρ∗(t) ∈
Cd>+ and ‖σJl(ρ∗(t))−1(b∗Jl(t)− b̂Jl(t))‖2 ≤ δl(t), l = 1, 2.
• Let us first check that ρ∗(t) in (B.66) belongs to Cd>+. In this case, C(ρ∗(t)) is written in the form (in what
follows we often omit the dependence in t of β∗ = β∗(t) and ρ∗ = ρ∗(t)),

C(ρ∗) =



1 %̂12 . . . %̂1ko−1
β∗ko
β∗1

β∗ko+1

β∗1
. . .

β∗d
β∗1

%̂12 1 . . . %̂12%̂1ko−1
β∗2β

∗
ko

|β∗1 |2
β∗2β

∗
ko+1

|β∗1 |2
. . .

β∗2β
∗
d

|β∗1 |2
...

...
. . .

...
...

... . . .
...

%̂1ko−1 %̂12%̂1ko−1 . . . 1
β∗ko−1β

∗
ko

|β∗1 |2
β∗ko−1β

∗
ko+1

|β∗1 |2
. . .

β∗ko−1β
∗
d

|β∗1 |2
β∗ko
β∗1

β∗2β
∗
ko

|β∗1 |2
. . .

β∗ko−1β
∗
ko

|β∗1 |2
1 %̂koko+1 . . . %̂kod

β∗ko+1

β∗1

β∗2β
∗
ko+1

|β∗1 |2
. . .

β∗ko−1β
∗
ko+1

|β∗1 |2
%̂koko+1 1 . . . %̂koko+1%̂kod

...
... . . .

...
...

...
. . .

...
β∗d
β∗1

β∗2β
∗
d

|β∗1 |2
. . .

β∗ko−1β
∗
ko

|β∗1 |2
%̂kod %̂koko+1%̂kod . . . 1



,

observe that 
1 0 . . . 0

−β∗2
β∗1

1 . . . 0
...

...
. . .

...
−β∗d
β∗1

0 . . . 1

C(ρ∗)


1 0 . . . 0

−β∗2
β∗1

1 . . . 0
...

...
. . .

...
−β∗d
β∗1

0 . . . 1


ᵀ

=

(
ĈJ1(ρ∗) 0ᵀ

J21

0J21 ĈJ2(ρ∗)

)

where ĈJ1(ρ∗) is a diagonal matrix in the form diag(1, 1− |%̂12|2, . . . , 1− |%̂1ko−1|2), and

ĈJ2(ρ∗) =


1− |β

∗
ko

β∗1
|2 β∗ko+1

β∗ko
(1− |β

∗
ko

β∗1
|2) . . .

β∗d
β∗ko

(1− |β
∗
ko

β∗1
|2)

β∗ko+1

β∗ko
(1− |β

∗
ko

β∗1
|2) 1− |β

∗
ko+1

β∗1
|2 . . .

β∗ko+1β
∗
d

|β∗ko |2
− β∗ko+1β

∗
d

|β∗1 |2
...

...
. . .

...
β∗d
β∗ko

(1− |β
∗
ko

β∗1
|2)

β∗ko+1β
∗
d

|β∗ko |2
− β∗ko+1β

∗
d

|β∗1 |2
. . . 1− |β

∗
d
β∗1
|2

 ,
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then notice that 
1 0 . . . 0

−β∗ko+1

β∗ko
1 . . . 0

...
...

. . .
...

− β∗d
β∗ko

0 . . . 1

 ĈJ2(ρ∗)


1 0 . . . 0

−β∗ko+1

β∗ko
1 . . . 0

...
...

. . .
...

− β∗d
β∗ko

0 . . . 1


ᵀ

= diag(1− |
β∗ko

β∗1
|2, 1− |%̂koko+1|2, . . . , 1− |%̂kod|2).

Since ĈJ1(ρ∗) and ĈJ2(ρ∗) are both symmetric positive definite matrices, then we have ρ∗(t) as in (B.66)
belongs to Cd>+.

• Then it is easily checked that ‖σJl(ρ∗(t))−1(b∗Jl(t) − b̂Jl(t))‖2 ≤ δl, l = 1, 2, with (b∗(t), ρ∗(t)) given by
(B.65)-(B.66) because we have

‖σJl(ρ
∗(t))−1(b∗Jl(t)− b̂Jl(t))‖2 =

δl(t)

|β̂ml(t)|
‖σJl(ρ

∗(t))−1b̂Jl(t)‖21{|β̂ml (t)|>δl(t)}

= δl(t)1{|β̂ml (t)|>δl(t)}
≤ δl(t),

where we used ‖σJl(ρ∗(t))−1b̂Jl(t)‖2 = |β̂ml(t)|, l = 1, 2 in Lemma B.1.
Consequently, we deduce that (b∗(t), ρ∗(t)) ∈ Θ(t) given by (B.65)-(B.66) achieves the minimal risk premium

R(b∗(t), ρ∗(t)) = (|β̂1(t)| − δ1(t))21{|β̂1(t)|>δ1(t)}, (B.67)

and with (B.62), (B.63) and (B.60) that

Σ(ρ∗(t))−1b∗(t) = (
b̂1(t)

σ2
1

, 0, . . . , 0)ᵀ(1− δ1(t)

|β̂1(t)|
)1{|β̂1(t)|>δ1(t)}, (B.68)

which completes the proof. 2

B.4 Proof of Proposition 4.2

As Γ(t) = [ρ(t), ρ̄(t)] is compact for fixed t ∈ [0, T ], we know that ρ∗(t) = arg min
ρ∈Γ(t)

R(b̂(t), ρ) exists, and from

Lemma 4.1, we only need to compute the minimum of the function ρ 7→ R(b̂(t), ρ) over Γ(t). From (B.49)
with d = 2, we obtain the sufficient and necessary condition of ρ∗(t) for being global minimum of R(b̂(t), ρ)
over Γ(t):

σ1σ2κ̂
1
t (ρ
∗(t))κ̂2

t (ρ
∗(t))(ρ− ρ∗(t)) ≤ 0, for all ρ ∈ [ρ(t), ρ̄(t)], (B.69)

where κ̂t(ρ) is explicitly written as

κ̂t(ρ) =
1

1− ρ2

 b̂1(t)
σ2
1
− b̂2(t)

σ1σ2
ρ

b̂2(t)
σ2
2
− b̂1(t)

σ1σ2
ρ

 =
1

1− ρ2

(
β̂1(t)−β̂2(t)ρ

σ1
β̂2(t)−β̂1(t)ρ

σ2

)
. (B.70)

From (B.69), we have following possible cases for fixed t:

• κ̂1
t (ρ
∗(t))κ̂2

t (ρ
∗(t)) = 0. From the explicit expression (B.70) of κ̂(ρ∗(t)) and definition of %̂12(t) in (4.26),

we obtain (%̂12(t) − ρ∗(t))(1 − %̂12(t)ρ∗(t)) = 0, and as ρ∗(t) has to belong to [ρ(t), ρ̄(t)] ⊂ (−1, 1), we
obtain ρ∗(t) = %̂12(t), and so R(b̂(t), ρ∗(t)) = (max(|β̂1(t)|, |β̂2(t)|))2.
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• κ̂1
t (ρ
∗(t))κ̂2(ρ∗(t)) > 0. Then (B.69) is satisfied iff ρ∗(t) = ρ̄(t). Moreover, from the above explicit

expression of κ̂t(ρ∗(t)), we obtain ρ̄(t) < %̂12(t).

• κ̂1
t (ρ
∗(t))κ̂2

t (ρ
∗(t)) < 0. Then (B.69) is satisfied iff ρ∗(t) = ρ(t). Moreover, from the explicit expression

of κ̂t(ρ∗(t)), we obtain ρ(t) > %̂12(t).

By combining this with Lemma 4.1, we obtain b∗(t) described as in Proposition 4.2. 2

B.5 Proof of Proposition 4.3

As Γ =

3∏
j=1

j−1∏
i=1

[ρ
ij
, ρ̄ij ] is compact, we already know that ρ∗ = arg min

ρ∈Γ
R(b̂, ρ) exists. From Lemma 4.1, we

only need to compute the minimum of the function ρ 7→ R(b̂, ρ) over Γ by applying the optimality principle
(B.49) when d = 3,

3∑
j=1

j−1∑
i=1

σiσj κ̂
i(ρ∗)κ̂j(ρ∗)(ρij − ρ∗ij) ≤ 0 for any ρ ∈ Γ. (B.71)

Observe from (B.71) that similar as Proposition 4.2, each ρ∗ij , 1 ≤ i < j ≤ 3 may be lower bound ρ
ij
, upper

bound ρ̄ij , or an interior point in (ρ
ij
, ρ̄ij), which corresponds to κiκj(ρ∗) > 0, κiκj(ρ∗) < 0, or κiκj(ρ∗) =

0 respectively. Therefore, let us consider the following possible exclusive cases depending on the number of
zero components in κ̂(ρ∗):

1. κ̂1κ̂2(ρ∗) = 0, κ̂1κ̂3(ρ∗) = 0, κ̂2κ̂3(ρ∗) = 0.
In this case, (B.71) is immediately satisfied. As we assume that b̂ 6= 0, κ̂(ρ∗) is not zero, i.e., at least one
component of κ̂(ρ∗) is nonzero. Then, two components of κ̂(ρ∗) are zero. Under the assumption that
|β̂1| ≥ |β̂2| ≥ |β̂3|, (B.68), (B.67) in Section B.3 yield the explicit expressions of ρ∗, κ̂(ρ∗) and R(b̂, ρ∗)

ρ∗12 = %̂12 ∈ [ρ
12
, ρ̄12], ρ∗13 = %̂13 ∈ [ρ

13
, ρ̄13], any ρ∗23 ∈ [ρ

23
, ρ̄23]

and

κ̂(ρ∗) = (
b̂1
σ2

1

, 0, 0)ᵀ, R(b̂, ρ∗) = |β̂1|2. (B.72)

Let us show that |β̂1|2 in (B.72) is strict minimum value in the sense that R(b̂, ρ∗) = |β̂1|2 if and only if
ρ∗12 = %̂12 ∈ [ρ

12
, ρ̄12], ρ∗13 = %̂13 ∈ [ρ

13
, ρ̄13] and any ρ∗23 ∈ [ρ

23
, ρ̄23]. We express Σ(ρ) as the following

block matrix

Σ(ρ) =

(
σ2

1 Cᵀ
1

C1 Σ−1(ρ23)

)
,

where the vector C1 = (σ1σ2ρ12, σ1σ3ρ13)ᵀ.

Noting that (
1 01×2

−C1

σ2
1

I2×2

)(
σ2

1 Cᵀ
1

C1 Σ−1(ρ23)

)(
1 −Cᵀ

1

σ2
1

02×1 I2×2

)
=

(
σ2

1 01×2

02×1 A

)
, (B.73)

where I2×2 denotes 2 × 2 identity matrix and A = Σ−1(ρ23) − C1C
ᵀ
1

σ4
1

is 2 × 2 positive definite matrix,
and inverting on both sides of (B.73), we get

Σ−1(ρ) =

(
1 −Cᵀ

1

σ2
1

02×1 I2×2

)(
σ−2

1 01×2

02×1 A−1

)(
1 01×2

−C1

σ2
1

I2×2

)
. (B.74)
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We express b̂ as (b̂1, b̂
ᵀ
−1)ᵀ and then write R(b̂, ρ) as two nonnegative decompositions from (B.74),

R(b̂, ρ) = |β̂1|2 + (b̂−1 −
b̂1
σ2

1

C1)ᵀA−1(b̂−1 −
b̂1
σ2

1

C1) (B.75)

≥ |β̂1|2,

where in the last inequality, ‘=’ holds if and only if b̂−1 − b̂1
σ2
1
C1 = 0, i.e., ρ∗12 = %̂12, ρ∗13 = %̂13. This

corresponds to case 1. of Proposition 4.3.

2. κ̂1κ̂2(ρ∗) 6= 0, κ̂1κ̂3(ρ∗) = 0, κ̂2κ̂3(ρ∗) = 0.
In this case, we express Σ(ρ) as the following block-matrix form for convenience,

Σ(ρ) =

(
Σ−3(ρ12) C3

Cᵀ
3 σ2

3

)
,

where the vector C3 = (σ1σ3ρ13, σ2σ3ρ23)ᵀ.
By first transforming Σ(ρ) to block diagonal matrix as (B.74) and then taking inverse, we obtain

Σ(ρ)−1 =

(
I2×2 −Σ−3(ρ12)−1C3

01×2 1

)(
Σ−3(ρ12)−1 02×1

01×2 a(ρ)−1

)
(

I2×2 02×1

−Cᵀ
3Σ−3(ρ12)−1 1

)
, (B.76)

where a(ρ) = σ2
3 − C

ᵀ
3Σ−3(ρ12)−1C3 is positive.

Recalling the definition of κ(b̂, ρ) and R(b̂, ρ) , we obtain from (B.76)
(
κ̂1(ρ)
κ̂2(ρ)

)
= Σ−3(ρ12)−1b̂−3 − κ̂3(ρ)Σ−3(ρ12)−1C3

κ̂3(ρ) = 1
a(ρ)(b̂3 − Cᵀ

3Σ−3(ρ12)−1b̂−3),
(B.77)

and

R(b̂, ρ) = b̂ᵀ−3Σ−3(ρ12)−1b̂−3 + a(ρ)|κ̂3(ρ)|2. (B.78)

In the following, we write b̂ᵀ−3Σ−3(ρ12)−1b̂−3 as R(b̂−3, ρ12).
As κ̂3(ρ∗) = 0, we obtain from (B.71) that

σ1σ2κ̂
1κ̂2(ρ∗12)(ρ12 − ρ∗12) ≤ 0 for all ρ12 ∈ [ρ

12
, ρ̄12] (B.79)

and from (B.77) and (B.78) that
(
κ̂1(ρ∗12)
κ̂2(ρ∗12)

)
= Σ−3(ρ∗12)−1b̂−3

R(b̂, ρ∗) = R(b̂−3, ρ
∗
12).

(B.80)

This is the case of ambiguous correlation in the two risky assets: the first and second assets with
ambiguous correlation ρ12 in [ρ

12
, ρ̄12]. In this case, κ̂1(ρ∗) and κ̂2(ρ∗) are not zero, therefore we have

that from Proposition 4.2

ρ∗12 = ρ̄121{ρ̄12<%̂12} + ρ
12

1{ρ
12
>%̂12}. (B.81)
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By setting g(ρ∗12, ρ13, ρ23) := a(ρ∗12, ρ13, ρ23)κ3(ρ∗12, ρ13, ρ23) for fixed ρ∗12 in (B.81), we deduce from
(B.77) that the function

(ρ13, ρ23) 7→ g(ρ∗12, ρ13, ρ23) = b̂3 − σ1σ3κ̂
1(ρ∗12)ρ13 − σ2σ3κ̂

2(ρ∗12)ρ23,

is linear in (ρ13, ρ23) ∈ [ρ
13
, ρ̄13] × [ρ

23
, ρ̄23], and has the same sign as κ̂3(ρ∗12, ρ13, ρ23) due to the

positiveness of a(ρ∗12, ρ13, ρ23). To study the condition of κ3(ρ∗) = 0 on Γ, we discuss it in the following
two cases:

(i) if ρ̄12 < %̂12, then κ̂1κ̂2(ρ̄12) > 0, the function (ρ13, ρ23) 7→ g(ρ̄12, ρ13, ρ23) has the same monotonicity
with respect to ρ13, ρ23. Therefore, to ensure that the function g(ρ̄12, ρ13, ρ23) has a root in
[ρ

13
, ρ̄13] × [ρ

23
, ρ̄23], we need g(ρ̄12, ρ13

, ρ
23

)g(ρ̄12, ρ̄13, ρ̄23) ≤ 0, or equivalently κ̂3(ρ̄12, ρ13
, ρ

23
)

κ̂3(ρ̄12, ρ̄13, ρ̄23) ≤ 0.
(ii) if ρ

12
> %̂12, then κ̂1κ̂2(ρ

12
) < 0, the function (ρ13, ρ23) 7→ g(ρ

12
, ρ13, ρ23) has the opposite mono-

tonicity with respect to ρ13, ρ23. Therefore, when g(ρ
12
, ρ̄13, ρ23

) g(ρ
12
, ρ

13
, ρ̄23)≤ 0, or equivalently

κ̂3(ρ
12
, ρ̄13, ρ23

)κ̂3(ρ
12
, ρ

13
, ρ̄13) ≤ 0, the function g(ρ

12
, ρ13, ρ23) has a root in [ρ

13
, ρ̄13] × [ρ

23
, ρ̄23].

Therefore, we deduce that R(b̂, ρ) ≥ R(b̂−3, ρ12) ≥ R(b̂−3, ρ̄121{ρ̄12<%̂12} + ρ
12

1{ρ
12
>%̂12}) and that ‘=’

holds if and only if ρ∗12 = ρ̄121{ρ̄12<%̂12} + ρ
12

1{ρ
12
>%̂12} and ρ

∗
13, ρ∗23 satisfies κ̂3(ρ∗12, ρ

∗
13, ρ

∗
23) = 0. This

corresponds to subcases 2.(i) and 2.(ii) of Proposition 4.3.

3. κ̂1κ̂2(ρ∗) = 0, κ̂1κ̂3(ρ∗) 6= 0, κ̂2(ρ∗)κ̂3(ρ∗) = 0.
In this case, we make permutations as follows,(

κ̂−2(ρ)
κ̂2(ρ)

)
=

(
Σ−2(ρ13) C2

Cᵀ
2 σ2

2

)−1(
b̂−2

b̂2

)
, (B.82)

where κ̂−2(ρ) := (κ̂1(ρ), κ̂3(ρ))ᵀ and C2 := (σ1σ2ρ12, σ2σ3ρ23)ᵀ. Using (B.82) and proceeding with the
same arguments as in the case 2., we obtain the result of κ̂2(ρ∗) = 0, κ̂1(ρ∗)κ̂3(ρ∗) 6= 0 as described in
the subcases 3.(i) and 3.(ii) of Proposition 4.3.

4. κ̂1κ̂2(ρ∗) = 0, κ̂1κ̂3(ρ∗) = 0, κ̂2(ρ∗)κ̂3(ρ∗) 6= 0.
Notice that (

κ̂−1(ρ)
κ̂1(ρ)

)
=

(
Σ−1(ρ23) C1

Cᵀ
1 σ2

1

)−1(
b̂−1

b̂1

)
, (B.83)

where κ̂−1(ρ) := (κ̂2(ρ), κ̂3(ρ))ᵀ and C1 := (σ1σ2ρ12, σ1σ3ρ13)ᵀ. Using (B.83) and proceeding with the
same arguments as in the case 2., we obtain the result of κ̂1(ρ∗) = 0, κ̂2(ρ∗)κ̂3(ρ∗) 6= 0 as described in
subcases 4.(i) and 4.(ii) of Proposition 4.3.

5. κ̂1κ̂2(ρ∗) 6= 0, κ̂1κ̂3(ρ∗) 6= 0, κ̂2(ρ∗)κ̂3(ρ∗) 6= 0.
In this case, we see from (B.71) that each ρ∗ij takes value in {ρ

ij
, ρ̄ij} relying on the sign of κ̂iκ̂j(ρ∗).

Notice that once the signs of κ̂1κ̂2(ρ∗) and κ̂1κ̂3(ρ∗) are known, the sign of κ̂2(ρ∗)κ̂3(ρ∗) is determined.
Therefore, by combination, there are 4 possible sub-cases as described in the case 5. of Proposition 4.3.
As κ̂i(ρ∗)κ̂j(ρ∗) 6= 0 in each subcase, left right hand of (B.71) is strictly negative for any ρ ∈ Γ \ {ρ∗}.
From the first-order characterization for convexity of R(b̂, ρ) (see e.g. Section 3.1.3 in [5]) and (B.47),
we obtain for any ρ ∈ Γ \ {ρ∗},

R(b̂, ρ) ≥ R(b̂, ρ∗) + (ρ− ρ∗)ᵀ∇ρR(b̂, ρ∗)

= R(b̂, ρ∗)−
3∑
j=1

j−1∑
i=1

σiσj κ̂
i(ρ∗)κ̂j(ρ∗)(ρij − ρ∗ij)

> R(b̂, ρ∗),
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which indicates that ρ∗ in each sub-case of case 5. in Proposition 4.3 is a strict minimum of R(b̂, ρ).

As R(b̂, ρ∗) in each subcase is strict minimum value, we conclude that each subcase in Proposition 4.3 is
exclusive. By combining this with Lemma 4.1, we obtain b∗ described as in Proposition 4.3. 2
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