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Abstract

This paper is concerned with a multi-asset mean-variance portfolio selection pro-
blem under model uncertainty. We develop a continuous time framework for taking into
account ambiguity aversion about both expected return rates and correlation matrix
of the assets, and for studying the effects on portfolio diversification. We prove a
separation principle for the associated robust control problem, which allows to reduce
the determination of the optimal dynamic strategy to the parametric computation
of the minimal risk premium function. Our results provide a justification for under-
diversification, as documented in empirical studies. We explicitly quantify the degree of
under-diversification in terms of correlation and Sharpe ratio ambiguity. In particular,
we show that an investor with a poor confidence in the expected return estimation does
not hold any risky asset, and on the other hand, trades only one risky asset when the
level of ambiguity on correlation matrix is large. This extends to the continuous-time
setting the results obtained by Garlappi, Uppal and Wang [13], and Liu and Zeng [24]
in a one-period model.
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1 Introduction

In the Finance and Economics literature, there are many studies on under-diversification of
portfolio, i.e., when investors hold only a small part of risky assets among a large number
of available risky assets. In the extreme case the anti-diversification effect means that
investors hold only a single stock (or even do not hold any risky asset) and exclude many
others. Empirical studies reported in numerous papers, see [12], [7], [27], [6], [15], have
shown the evidence of portfolio under-diversification in practice. For example, in [12], [7], it
is observed that there exists a concentration on (bias towards) domestic assets compared to
foreign assets in investors’ international equity portfolios. These results are in contrast with
the portfolio well-diversification suggested by the classical mean-variance portfolio theory
initiated in a single period model in [25], and later in a continuous-time model in [22].
A possible explanation to under-diversification is provided in the Finance and Economics
literature by model uncertainty, often also called ambiguity or Knightian uncertainty.

In the classical portfolio theory, the model and the parameters are assumed to be per-
fectly known. However, in reality, due to statistical estimation issues, there is always un-
certainty (ambiguity) about the model or the parameters. In this case, the least favorable
model can be used to compute the robust optimal portfolio, i.e., investor take portfolio
decisions under the worst-case scenario that corresponds to the least favorable distribution
implied by the set of ambiguous parameters. Abundant research has been conducted to
tackle different types of model uncertainty. Related works include [13], [30], [19] for uncer-
tainty solely about drift, [26] for ambiguity about volatility (in a probabilistic setup) with a
family of nondominated probability measures, [33], [23], [1], [28] for combined uncertainty
about both drift and volatility, and also [14] for uncertainty about the probability law gen-
erating market data. We are aware of only few results dealing with correlation ambiguity
[11], [17]. It is known that the estimation of correlation between assets may be extremely
inaccurate, due to the asynchronous data and lead-lag effect, especially when the number
of assets is large, see [18], [20]. Besides correlation ambiguity, we are also interested in drift
uncertainty as the estimation of expected rate of return is notoriously known to be difficult.
In the existing literature, there are two common types of drift uncertainty set: polyhedral
set in [33], [23] and ellipsoidal set in [3]. The ellipsoidal representation for the drift ambi-
guity allows to take into account correlation structure of the assets in the drift uncertainty
modelling. Our purpose is to explore the joint effects of ambiguity about drift and corre-
lation on portfolio selection and diversification with mean-variance criterion in continuous
time. Notice that in the above cited papers, portfolio selection problems are mainly based
on expected utility criterion and effect on portfolio diversification is not really studied.

When it comes to the portfolio diversification, the authors in [5], [34] considered ambi-
guity about the assets’ returns. Their framework includes both uncertainty about the joint
distribution of returns for all assets and for different levels of uncertainty for the marginal
distribution of returns for any subsets of these assets. They showed that the different levels
of uncertainty on different asset subclasses could result in significant under-diversification.
They also applied their theoretical results to real data and found consistent results with
the empirical studies in [7], [12] among others, showing that international equity portfolios
are strongly biased towards domestic stocks, and in [16] and [31], where a similar lack of
diversification is revealed on domestic portfolios. The model in [5], [34] offers a partial
explanation for the observed under-diversification and bias towards familiar securities.

More recently, in [24], the authors considered the uncertainty about the correlation of the
assets. With a static mean-variance investment, they found that the under-diversification
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of the robust optimal portfolio depends on the level of correlation ambiguity. They also
provided results with market data and showed that using their uncertain (ambiguous) cor-
relation model, the investor only holds less than 20 (17 stocks in average) among 100 stocks
randomly selected from about 100 stocks in S&P500. In the two risky assets case, they
also found that the degree of diversification depends on the comparison between the ratio
of assets’ Sharpe ratios and the correlation ambiguity parameters.

A further explanation for under-diversification is that investors can reduce the uncer-
tainty on the model or the parameters through learning. In [35], the authors built a frame-
work to solve jointly for investment and information choices, with general preferences and
information cost functions. They showed that, for some special preferences and information
acquisition technologies, investors tend to learn more about the assets with which they are
more familiar (typically, the domestic assets rather than the foreign ones), and become even
more familiar with those assets after learning. As a consequence of this learning procedure,
the investors select those assets they have learnt at the expense of others for which they
have less information. Their results are consistent with the empirical studies on portfolios
of international investors.

The contributions of our paper are threefold: (1) First, we develop a robust model that
takes into account uncertainty about both drift and correlation of multi risky assets for d
≥ 2, in a dynamic mean-variance portfolio setting. Robust mean-variance problem under
covariance matrix uncertainty, in particular, correlation ambiguity, has been considered
in [17]. However, the authors neither tackle the drift uncertainty nor study the portfolio
diversification in detail, and mainly focus in the two asset case d = 2. One key assumption in
[17] is that one can aggregate a family of processes, however in the case of drift uncertainty,
this condition does not hold anymore; (2) Secondly, we derive a separation principle for the
associated robust control problem formulated as a mean-field type differential game, which
allows us to reduce the original min-max problem to the parametric computation of minimal
risk premium. The main methodology for the separation principle is based on a weak version
of the martingale optimality principle. We can not apply the classical martingale optimality
principle due to the model uncertainty, in particular, due to the drift uncertainty, see Remark
3.3 for details. Indeed, the features of drift uncertainty and covariance matrix uncertainty
are different, which explains why in the existing literature, such as [17] and [26], only one
type of uncertainty is considered; (3) Finally, we illustrate our results in polyhedral and
ellipsoidal uncertainty set and quantify explicitly the diversification effects on the optimal
robust portfolio in terms of the ambiguity level. We provide notably a complete picture of
the diversification for the optimal robust portfolio in the three risky assets case, which is
new to the best of our knowledge. In particular, our findings consist in no trading in assets
with large expected return ambiguity and trading only one risky asset with high level of
ambiguity about correlation. Both drift uncertainty and correlation uncertainty can result
in under-diversification. For our future studies, we may incorporate the different uncertainty
levels for return as in [34] or introduce the information acquisition procedure as in [35] in
our framework.

The rest of paper is organized as follows. Section 2 presents the formulation of the
model uncertainty setting and the robust mean-variance problem. In Section 3, we derive
the separation principle and explicit robust solution. Section 4 provides several examples
arising from the separation principle, and the implications for the optimal robust portfolio
strategy and the portfolio diversification.
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2 Problem formulation

2.1 Model uncertainty setting

We consider a financial market with one risk-free asset, assumed to be constant equal to
one, and d risky assets on a finite investment horizon [0, T ]. Model uncertainty is formulated
by using a probabilistic setup as in [28]. We define the canonical state space by Ω = {ω =
(ω(t))t∈[0,T ] ∈ C([0, T ],Rd) : ω(0) = 0} representing the continuous paths driving the risky
assets. We equip Ω with the uniform norm and the corresponding Borel σ-field F . We
denote by B = (Bt)t∈[0,T ] the canonical process, i.e., Bt(ω) = ω(t), and by F = (Ft)0≤t≤T

the canonical filtration, i.e. the natural (raw) filtration generated by B.
We assume that the investor knows the marginal volatilities σi > 0 of each asset i =

1, . . . , d, typically through a quadratic variation estimation of the assets, and we denote by
S the known constant diagonal matrix with i-th diagonal term equal to σi, i = 1, . . . , d.
However, there is uncertainty about the drift (expected rate of return) and the correlation
between the multi-assets, which are parameters notoriously difficult to estimate in practice.

The ambiguity about drift and correlation matrix is parametrized by a nonempty convex
set

Θ ⊂ R
d × C

d
>+,

where C
d
>+ is the subset of all elements ρ = (ρij)1≤i<j≤d ∈ [−1, 1]d(d−1)/2 s.t. the symmetric

matrix C(ρ) with diagonal terms 1 and anti-diagonal terms ρij:

C(ρ) =











1 ρ12 . . . ρ1d
ρ12 1 . . . .
...

...
. . .

...
ρ1d . . . . 1











lies in S
d
>+, the set of positive definite symmetric matrices in R

d×d. Notice that C
d
>+ is an

open convex set of [−1, 1]d(d−1)/2 . The first component set of Θ represent the prior values
taken by the (possibly random) drift of the assets, while the matrices C(ρ), when ρ runs in
the second component set of Θ, represent the prior correlation matrices of the multi-assets.
The prior covariance matrices of the assets are given by

Σ(ρ) = SC(ρ)S =











σ2
1 σ1σ2ρ12 . . . σ1σdρ1d

σ1σ2ρ12 σ2
2 . . . .

...
...

. . .
...

σ1σdρ1d . . . . σ2
d











,

and we denote by σ(ρ) = Σ
1
2 (ρ) the square-root matrix, called volatility matrix. Let us also

introduce the prior (square) risk premium

R(θ) = b⊺Σ−1(ρ)b = ‖σ(ρ)−1b‖22 for θ = (b, ρ) ∈ Θ. (2.1)

Hereafter, ⊺ denotes the transpose of matrix and ‖ · ‖2 denotes the Euclidean norm in R
d.

Remark 2.1 There exists different conditions for characterizing the positive definiteness of
the correlation matrix C(ρ). For example, Sylvester’s criterion states that C(ρ) is positive
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definite if and only if all the leading principal minors are positive, e.g., in dimension d = 2, ρ
∈ (−1, 1); in dimension d = 3, ρij ∈ (−1, 1) 1 ≤ i < j ≤ 3 and ρ212+ρ213+ρ223−1−2ρ12ρ13ρ23
< 0. Alternatively, one can characterize the positive definiteness of C(ρ) using angular
coordinates as in [29]. ♦

In the sequel, we shall focus on the two following cases for the parametrization of the
ambiguity set Θ, which are relevant for practical applications:

(HΘ)

(i) Product set: Θ = ∆× Γ, where ∆ is a compact convex set of Rd, e.g., in rectangular

form ∆ =

d
∏

i=1

[bi, b̄i], for some constants bi ≤ b̄i, i = 1, . . . , d, and Γ is a convex set

of Cd
>+. In this product formulation, one considers that the uncertainty on drift is

independent of the uncertainty on the correlation.

(ii) Ellipsoidal set: Θ = {(b, ρ) ∈ R
d × Γ : ‖σ(ρ)−1(b− b̂)‖2 ≤ δ} for some convex set Γ of

C
d
>+, where b̂ is a known vector, representing a priori expected rates of return, and

δ > 0 represents a level of ambiguity around b̂ due to estimation error. It is known
from Lemma 2.2 in [10] that Θ is a convex set. This ellipsoidal set in which varies the
uncertain drift, for fixed correlation, is used in [2], and allows to take into account the
correlation structure of the assets in the drift uncertainty modelling.

We denote by VΘ the set of F-progressively measurable processes θ = (θt) = (bt, ρt)t =
(b, ρ) valued in Θ, and introduce the set of prior probability measures PΘ:

PΘ = {Pθ : θ ∈ VΘ},

where P
θ is the probability measure on (Ω,F) s.t. B is a semimartingale on (Ω,F ,Pθ) with

absolutely continuous characteristics (w.r.t. the Lebesgue measure dt) (b,Σ(ρ)). The prior
probabilities P

θ are in general non-equivalent, and actually mutually singular, and we say
that a property holds PΘ-quasi surely (PΘ-q.s. in short) if it holds P

θ-a.s. for all θ ∈ VΘ.
The (positive) price process of the d risky assets is given by the dynamics

dSt = diag(St)dBt, 0 ≤ t ≤ T, PΘ − q.s.

= diag(St)
(

btdt+ σ(ρt)dW
θ
t ), P

θ − a.s., for θ = (b, ρ) ∈ VΘ,

where W θ is a d-dimensional Brownian motion under P
θ. Notice that in this uncertainty

modeling, we allow the unknown drift and correlation to be a priori random processes,
valued in Θ.

2.2 Robust mean-variance problem

An admissible portfolio strategy α = (αt)0≤t≤T representing the amount invested in the d
risky assets, is an R

d-valued F-progressively measurable process, satisfying the integrability
condition

sup
Pθ∈PΘ

Eθ

[

∫ T

0
|α⊺

t bt|dt +

∫ T

0
α⊺

tΣ(ρt)αtdt] < ∞, (2.2)
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and denoted by α ∈ A. Hereafter, Eθ denotes the expectation under P
θ. This integrability

condition (2.2) ensures that diag(S)−1α is S-integrable under any P ∈ PΘ. For a portfolio
strategy α ∈ A, and an initial capital x0 ∈ R, the dynamics of the self-financed wealth
process is driven by

dXα
t = α⊺

tdiag(St)
−1dSt = α⊺

tdBt, 0 ≤ t ≤ T, Xα
0 = x0, PΘ − q.s.

= α⊺

t

(

btdt+ σ(ρt)dW
θ
t

)

, 0 ≤ t ≤ T, Xα
0 = x0 ∈ R, P

θ − a.s. (2.3)

for all θ = (b, ρ) ∈ VΘ.
Given a risk aversion parameter λ > 0, the worst-case mean-variance functional under

ambiguous drift and correlation is

Jwc(α) = inf
Pθ∈PΘ

(

Eθ[X
α
T ]− λVarθ(X

α
T )
)

< ∞, α ∈ A,

where Varθ(.) denotes the variance under P
θ, and the robust mean-variance portfolio selec-

tion is formulated as
{

V0 := sup
α∈A

Jwc(α) = sup
α∈A

inf
θ∈VΘ

J(α, θ)

J(α, θ) := Eθ[X
α
T ]− λVarθ(X

α
T ), α ∈ A, θ ∈ VΘ.

(2.4)

Notice that problem (2.4) is a non standard stochastic differential game due to the pre-
sence of the variance term in the criterion, which prevents the use of classical control method
by dynamic programming or maximum principle. We end this section by recalling the
solution to the mean-variance problem when there is no ambiguity on the model parameters,
and which will serve later as benchmark for comparison when studying the uncertainty case.

Remark 2.2 (Case of no uncertainty model) When Θ = {θo = (bo, ρo)} is a singleton,
we are reduced to the Black-Scholes model with drift bo, covariance matrix Σo = Σ(ρo),
volatility σ = σ(ρo), and risk premium Ro = R(θo). In this case, it is known, see e.g. [22],
that the optimal mean-variance strategy is given by

α∗
t =

[

x0 +
eR

oT

2λ
−X∗

t

]

(Σo)−1bo =: Λo(X∗
t )(Σ

o)−1bo, 0 ≤ t ≤ T,

where X∗ is wealth process associated to α∗, while the optimal performance value is

V0 = x0 +
1

4λ

[

eR
oT − 1

]

.

The vector (Σo)−1bo, which depends only on the model parameters of the stock price,
determines the allocation in the multi-assets. The above expression of α∗ shows that, once
we know the exact values of the rate of return and covariance matrix, one diversifies her
portfolio among all the assets according to the components of the vector (Σo)−1bo, and this
is weighted by the scalar term Λo(X∗

t ), which depends on the risk aversion of the investor via
the parameter λ, on the current wealth but also on the initial capital x0 (which is sometimes
refereed to as the pre-committment of the mean-variance criterion). Notice that Λo(X∗

t ) is
positive. Indeed, observe that

dΛo(X∗
t ) = −dX∗

t = −(α∗
t )

⊺(bodt+ σodW o
t )

= −Λo(X∗
t )(R

odt+ (σo)−1bo.dW o
t ), 0 ≤ t ≤ T,
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with Λo(X∗
0 ) =

1
2λe

RoT > 0, which shows clearly that Λo(X∗
t ) > 0, 0 ≤ t ≤ T , and decreases

with λ.
Let us discuss in particular the allocation in the two-asset case. Notice that the vector

(Σo)−1bo of allocation is then given by

(Σo)−1bo =
1

1− |ρo|2

( βo
1−ρoβo

2
σo
1

βo
2−ρoβo

1
σo
2

)

=:

(

κo1
κo2

)

,

where βo
i = boi /σ

o
i is the sharpe ratio of the i-th asset, i = 1, 2. To fix the idea, assume that

βo
1 > βo

2 > 0. We then see that κo1 > 0, while κo2 ≥ 0 if and only if
βo
2

βo
1
≥ ρo. The interpretation

is the following: the ratio
βo
2

βo
1
∈ (0, 1) measures the “proximity" in terms of Sharpe ratio

between the two assets, and has to be compared with the correlation ρo between these assets
in order to determine whether it is optimal to invest according to a directional trading, i.e.,
κo1κ

o
2 > 0 (thus here long in both assets) or according to a spread trading, i.e., κo1κ

o
2 < 0

(long in the first asset and short in the second one) or according to under-diversification, i.e.
κo1κ

o
2 = 0 (only long in the first asset). Notice that under-diversification only occurs when

ρo =
βo
2

βo
1
, a condition “rarely" satisfied in practice. For example, when both assets have close

Sharpe ratio, and their correlation is not too high, then one optimally invests in both assets
with a directional trading. In contrast, when one asset has a much larger Sharpe ratio than
the other one, or when the correlation between the assets is high, then one optimally invests
in both assets with a spread trading. ♦

In the sequel, we study the quantitative impact of the uncertainty model and ambiguity
on the drift and correlation, on the optimal robust mean-variance strategy, in particular
regarding the portfolio diversification.

3 Separation principle and robust solution

The main result of this section is to state a separation principle for solving the robust
dynamic mean-variance problem.

Theorem 3.1 (Separation Principle) Let us consider a parametric set Θ for model un-
certainty as in (HΘ). Suppose that there exists a (constant) pair θ∗ = (b∗, ρ∗) ∈ Θ solution
to argmin

θ∈Θ
R(θ). Then the robust mean-variance problem (2.4) admits an optimal portfolio

strategy given by

α∗
t = Λθ∗(X

∗
t )Σ(ρ

∗)−1b∗, 0 ≤ t ≤ T, PΘ − q.s., (3.1)

where X∗ is the state process associated to α∗
t , and Λθ∗(X

∗
t ) > 0 with

Λθ∗(x) := x0 +
eR(θ∗)T

2λ
− x, x ∈ R (3.2)

Moreover, the corresponding initial value function is

V0 = x0 +
1

4λ

[

eR(θ∗)T − 1
]

.
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Interpretation. Theorem 3.1 means that the robust mean-variance problem (2.4) can be
solved in two steps according to a separation principle: (i) First, we search for the infimum
of the risk premium function θ ∈ Θ 7→ R(θ) as defined in (2.1), which depends only on
the inputs of the uncertainty model. Existence and explicit determination of an element
θ∗ = (b∗, ρ∗) ∈ Θ attaining this infimum will be discussed and illustrated all along the
paper through several examples. (ii) The solution to (2.4) is then given by the solution to
the mean-variance problem in the Black-Scholes model with drift b∗ and correlation ρ∗, see
Remark 2.2, and the worst-case scenario of the robust dynamic mean-variance problem is
simply given by the constant parameter θ∗ = (b∗, ρ∗). Some interesting features show up,
especially regarding portfolio diversification, as detailed in the next section. ♦

The rest of this section is devoted to the proof of Theorem 3.1, and the methodology is
based on the following weak version of the martingale optimality principle.

Lemma 3.1 (Weak optimality principle) Let {V α,θ
t , t ∈ [0, T ], α ∈ A, θ ∈ VΘ} be a

family of real-valued processes in the form

V α,θ
t : = vt(X

α
t ,Eθ[X

α
t ]),

for some measurable functions vt on R× R, t ∈ [0, T ], such that :

(i) vT (x, x̄) = x− λ(x− x̄)2, for all x, x̄ ∈ R,

(ii) the function t ∈ [0, T ] 7→ Eθ∗[V
α,θ∗

t ] is nonincreasing for all α ∈ A and some θ∗ ∈
VΘ,

(iii) Eθ[V
α∗,θ
T − V α∗,θ

0 ] ≥ 0, for some α∗ ∈ A and all θ ∈ VΘ.

Then, α∗ is an optimal portfolio strategy for the robust mean-variance problem (2.4) with a
worst-case scenario θ∗, and

V0 = Jwc(α
∗) = sup

α∈A
inf
θ∈VΘ

J(α, θ) = inf
θ∈VΘ

sup
α∈A

J(α, θ) = v0(x0, x0) (3.3)

= J(α∗, θ∗).

Proof. First, observe that V α,θ
0 = v0(x0, x0) is a constant that does not depend on α, θ

and from condition (i) that Eθ[V
α,θ
T ] = J(α, θ) for all α ∈ A, θ ∈ VΘ. Then, from condition

(ii), we see that

v0(x0, x0) = Eθ∗ [V
α,θ∗

0 ] ≥ Eθ∗ [V
α,θ∗

T ] = J(α, θ∗),

for all α ∈ A, and thus: v0(x0, x0) ≥ sup
α∈A

J(α, θ∗) ≥ inf
θ∈VΘ

sup
α∈A

J(α, θ). Similarly, from

condition (iii), we have: v0(x0, x0) ≤ J(α∗, θ) for all θ ∈ VΘ, and thus: v0(x0, x0) ≤
inf
θ∈VΘ

J(α∗, θ) = Jwc(α
∗) ≤ sup

α∈A
inf
θ∈VΘ

J(α, θ). Recalling that we always have sup
α∈A

inf
θ∈VΘ

J(α, θ)

≤ inf
θ∈VΘ

sup
α∈A

J(α, θ), we obtained the required equality in (3.3). Then, finally, from (ii) with

α∗ and (iii) with θ∗, we obtain that v0(x0, x0) = J(α∗, θ∗). ✷

Remark 3.1 The usual martingale optimality principle for stochastic differential games as
in robust portfolio selection problem, and with classical expected utility criterion for some
nondecreasing and concave utility function U on R, e.g. U(x) = −e−ηx, η > 0:

sup
α∈A

inf
θ∈VΘ

Eθ[U(Xα
T )],
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would consist in finding a family of processes V α,θ
t in the form vt(X

α
t ) for some measurable

functions vt on R s.t. (i) vT (x) = U(x), (ii’) the process (V α,θ∗

t )t is a supermartingale

under Pθ∗ for all α, and some θ∗, and (iii’) the process (V α∗,θ
t )t is a submartingale under

Pθ for some α∗ and all θ. Due to the nonlinear dependence on the law of the state wealth
process via the variance term in the mean-variance criterion, making the problem a priori
time inconsistent, we have to adopt a weaker version of the optimality principle: first, the
functions vt depend not only on the state process Xα

t but also on its mean Eθ[X
α
t ]. Second,

we replace condition (ii’) by the weaker condition (ii) on the mean in Lemma 3.1, and third,

condition (iii’) is substituted by the even weaker condition (iii) than (iii”) t 7→ Eθ[V
α∗,θ
t ] is

nondecreasing for some α∗ and all θ. This asymmetry of condition between (ii) and (iii) is
explained in more detail in Remark 3.3. ♦

We shall also use the following saddle-point property on the infimum of the prior risk
premium function.

Lemma 3.2 (Saddle point property) Given Θ as in (HΘ), and assuming that there
exists θ∗ = (b∗, ρ∗) ∈ argmin

θ∈Θ
R(θ), let us define the function H on Θ by

H(θ) := b⊺Σ(ρ∗)−1Σ(ρ)Σ(ρ∗)−1b∗, for θ = (b, ρ) ∈ Θ. (3.4)

Then, we have for all b ∈ Θb, ρ ∈ Γ:

H(b∗, ρ) ≤ H(θ∗) = R(θ∗) ≤ H(b, ρ∗). (3.5)

where Θb is the projection of Θ onto b-plane, in (HΘ)(i), Θb = ∆; and in (HΘ)(ii), Θb =
{b ∈ R

d : b ∈ ∆ρ, ρ ∈ Γ} with ∆ρ = {b ∈ R
d : ‖σ(ρ)−1(b− b̂)‖2 ≤ δ}.

Proof. See Section A.1 in Appendix. ✷

Proof of Theorem 3.1. We aim to construct a family of processes {V α,θ
t , t ∈ [0, T ], α ∈

A, θ ∈ VΘ} as in Lemma 3.1, and given the linear-quadratic structure of our optimization
problem, we look for measurable functions vt in the form:

vt(x, x̄) = Kt(x− x̄)2 + Ytx+ χt, t ∈ [0, T ], (x, x̄) ∈ R
2, (3.6)

for some deterministic processes (Kt, Yt, χt)t to be determined. Condition (i) in Lemma 3.1
fixes the terminal condition

KT = −λ, YT = 1, χT = 0. (3.7)

We now consider θ∗ ∈ Θ as in Theorem 3.1, hence defining in particular a (constant)
process θ∗ ∈ VΘ, and α∗ given by (3.1). Let us first check that α∗ ∈ A. The corresponding
wealth process X∗ satisfies under any P

θ, θ = (b, ρ) ∈ VΘ, a linear stochastic differential
equation with bounded random coefficients (notice that b and σ(ρ) are bounded process),
and thus by standard estimates: Eθ

[

sup0≤t≤T |X∗
t |2] ≤ C(1 + |x0|2) for some constant C

independent of θ ∈ VΘ. It follows immediately that α∗ satisfies the integrability condition
in (2.2), i.e., α∗ ∈ A.

The main issue is now to show that such a pair (α∗, θ∗) satisfies conditions (ii)-(iii) of
Lemma 3.1.

• Step 1: condition (ii) of Lemma 3.1.
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For any α ∈ A, with associated wealth process X = Xα, let us compute the derivative of
the deterministic function t 7→ Eθ∗[V

α,θ∗

t ] = Eθ∗ [vt(Xt,Eθ∗ [Xt])] with vt as in (3.6). From
the dynamics of X = Xα

t in (2.3) under P
θ∗ and by applying Itô’s formula, we obtain

dEθ∗ [Xt]

dt
= Eθ∗ [α

⊺

tb
∗]

dVarθ∗(Xt)

dt
= 2Covθ∗(Xt, α

⊺

tb
∗) + Eθ∗[α

⊺

tΣ(ρ
∗)αt].

From the quadratic form of vt in (3.6), with (K,Y, χ) differentiable in time, we then have

dEθ∗ [V
α,θ∗

t ]

dt
=

dEθ∗ [vt(Xt,Eθ∗ [Xt])]

dt

= K̇tVarθ∗(Xt) +Kt
dVarθ∗(Xt)

dt
+ ẎtEθ∗ [Xt] + Yt

dEθ∗ [Xt]

dt
+ χ̇t

= K̇tVarθ∗(Xt) + ẎtEθ∗[Xt] + χ̇t + Eθ∗ [Gt(α)] (3.8)

where

Gt(α) = α⊺

tQtαt + α⊺

t

[

2Ut(Xt − Eθ∗[Xt]) +Ot

]

,

with the deterministic coefficients

Qt = KtΣ(ρ
∗), Ut = Ktb

∗, Ot = Ytb
∗.

By square completion, we rewrite Gt(α) as

Gt(α) =
(

αt − ât(Xt,Eθ∗ [Xt])
)

⊺

Qt

(

αt − ât(Xt,Eθ∗ [Xt])
)

− ζt,

where for t ∈ [0, T ], x, x̄ ∈ R
2,

ât(x, x̄) := −Q−1
t Ut(x− x̄)− 1

2
Q−1

t Ot

and

ζt = U ⊺

t Q
−1
t UtVarθ∗(Xt) +

1

4
O⊺

tQ
−1
t Ot = KtR(θ∗)Varθ∗(Xt) +

Y 2
t

4Kt
R(θ∗).

The expression in (3.8) is then rewritten as

dEθ∗ [V
α,θ∗

t ]

dt
= (K̇t −KtR(θ∗))Varθ∗(Xt) + ẎtEθ∗[Xt] + χ̇t −

Y 2
t

4Kt
R(θ∗) (3.9)

+ KtEθ∗
[(

αt − ât(Xt,Eθ∗ [Xt])
)

⊺

Σ(ρ∗)
(

αt − ât(Xt,Eθ∗ [Xt])
)]

.

Therefore, whenever










K̇t −KtR(θ∗) = 0,

Ẏt = 0,

χ̇t − Y 2
t

4Kt
R(θ∗) = 0,

(3.10)

holds for all t ∈ [0, T ], which yields, together with the terminal condition (3.7), the explicit
forms:

Kt = −λeR(θ∗)(t−T ) < 0, Yt = 1, χt =
1

4λ

[

eR(θ∗)(T−t) − 1
]

, (3.11)
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we have

dEθ∗ [V
α,θ∗

t ]

dt
= KtEθ∗

[(

αt − ât(Xt,Eθ∗ [Xt])
)

⊺

Σ(ρ∗)
(

αt − ât(Xt,Eθ∗ [Xt])
)]

,

which is nonpositive for all α ∈ A, i.e., the process V α,θ∗

t satisfies the condition (ii) of
Lemma 3.1. Moreover, notice that in this case,

V α,θ∗

0 = v0(x0, x0) = x0 +
1

4λ

[

eR(θ∗)T − 1
]

, (3.12)

and

ât(x, x̄) = −Σ(ρ∗)−1b∗
(

x− x̄− 1

2λ
eR(θ∗)(T−t)

)

. (3.13)

Notice that in this step, we have not yet used the property that θ∗ attains the infimum of
the prior risk premium function. This will be used in the next step.

• Step 2: Condition (iii) of Lemma 3.1.

Let us now prove that V α∗,θ
0 ≤ Eθ[V

α∗,θ
T ], for all θ ∈ VΘ. A sufficient condition is the

nondecreasing monotonicity of the function t 7→ Eθ[V
α∗,θ
t ], by proving that

dEθ [V
α∗,θ
t ]

dt is
nonnegative, for all θ ∈ VΘ. However, while this nondecreasing property is valid when there
is no uncertainty on the drift, this does not hold true in the general uncertainty case as
shown in Remark 3.3. We then proceed by computing directly the difference: Eθ[V

α∗,θ
T ] −

V α∗,θ
0 . Notice from (3.1), (2.3), that the dynamics of Λθ∗(X

∗), with Λθ∗(x) defined in (3.2),
under P

θ, θ ∈ VΘ, is given by

dΛθ∗(X
∗
t ) = −Λθ∗(X

∗
t )(b

∗)⊺Σ(ρ∗)−1
[

btdt+ σ(ρt)dW
θ
t

]

,

with Λθ∗(x0) =
eR(θ∗)T

2λ . By setting N∗
t := 2λ

eR(θ∗)T Λθ∗(X
∗
t ), we deduce that

N∗
t = exp

(

−
∫ t

0

(

b⊺sΣ(ρ
∗)−1b∗ +

1

2
(b∗)⊺Σ(ρ∗)−1Σ(ρ)Σ(ρ∗)−1b∗

)

ds

−
∫ t

0
(b∗)⊺Σ(ρ∗)−1σ(ρs)dW

θ
s

)

, 0 ≤ t ≤ T, Pθ − a.s.

X∗
t = x0 +

eR(θ∗)T

2λ
(1−N∗

t ), 0 ≤ t ≤ T, PΘ − q.s.

and thus

Eθ[X
∗
t ] = x0 +

eR(θ∗)T

2λ
(1− Eθ[N

∗
t ]), Varθ(X

∗
t ) =

e2R(θ∗)T

4λ2
Varθ(N

∗
t ). (3.14)

By using the quadratic form (3.6) of vt, together with the terminal condition (3.7), (3.12),
and (3.14), we then obtain for all θ ∈ VΘ:

Eθ[V
α∗,θ
T ]− V α∗,θ

0 = Eθ

[

vT (X
∗
T ,Eθ[X

∗
T ])
]

− v0(x0, x0)

= −λVarθ(X
∗
T ) + Eθ[X

∗
T ]− x0 −

1

4λ
(eR(θ∗)T − 1)

= −e2R(θ∗)T

4λ
Varθ(N

∗
T ) +

eR(θ∗)T

2λ
(1− Eθ[N

∗
T ])−

1

4λ
(eR(θ∗)T − 1)

=
eR(θ∗)T

4λ

(

1− eR(θ∗)T
Eθ[|N∗

T |2]
)

+
1

4λ

(

eR(θ∗)T
Eθ[N

∗
T ]− 1

)2

≥ eR(θ∗)T

4λ

(

1− eR(θ∗)T
Eθ[|N∗

T |2]
)

=:
eR(θ∗)T

4λ
∆∗

T (θ). (3.15)
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Noting that N∗ is rewritten in terms of H introduced in Lemma 3.2 as

N∗
t = exp

(

−
∫ t

0

(

H(bs, ρ
∗) +

1

2
H(b∗, ρs)

)

ds−
∫ t

0
(b∗)⊺Σ(ρ∗)−1σ(ρs)dW

θ
s

)

, 0 ≤ t ≤ T, P
θ − a.s.

and observing that |(b∗)⊺Σ(ρ∗)−1σ(ρs)|2 = H(b∗, ρs), we see that

|N∗
t |2 = exp

(

−
∫ t

0

(

2H(bs, ρ
∗)−H(b∗, ρs)

)

ds
)

M∗
t ,

where

M∗
t = exp

(

− 2

∫ t

0
|(b∗)⊺Σ(ρ∗)−1σ(ρs)|2ds− 2

∫ t

0
(b∗)⊺Σ(ρ∗)−1σ(ρs)dW

θ
s

)

, 0 ≤ t ≤ T, P
θ − a.s.

is an exponential Doléans-Dade local martingale under any P
θ, θ ∈ VΘ. Actually, the

Novikov criterion

Eθ

[

exp
(1

2

∫ T

0
|2(b∗)⊺Σ(ρ∗)−1σ(ρt)|2dt

)]

= Eθ

[

exp
(

2

∫ T

0
H(b∗, ρt)dt

)]

≤ exp
(

2R(θ∗)T
)

< ∞,

is satisfied by (3.5), and then (M∗
t )0≤t≤T is a martingale under any P

θ, θ ∈ VΘ. Conse-
quently, we have

∆∗
T (θ) = 1− Eθ

[

exp
(

∫ t

0

(

R(θ∗)− 2H(bs, ρ
∗) +H(b∗, ρs)

)

ds
)

M∗
T

]

≥ 1− Eθ[M
∗
T ] = 1−M∗

0 = 0,

where we used (3.5) in the above inequality. From (3.15), this proves condition (iii) of
Lemma (3.1), and finally concludes the proof of Theorem 3.1. ✷

Remark 3.2 The optimal strategy α∗ given in (3.1) can be expressed in feedback form as

α∗
t = ât(X

∗
t ,Eθ∗ [X

∗
t ]), 0 ≤ t ≤ T, PΘ − q.s. (3.16)

where ât is defined in (3.13). Indeed, denoting by α̂ ∈ A the process defined by α̂t =
ât(X̂t,Eθ∗ [X̂t]), 0 ≤ t ≤ T, PΘ − q.s, where X̂ is the wealth process associated to α̂, we see
from (2.3) that X̂ satisfies the dynamics under P

θ∗:

dX̂t = −
[

X̂t − Eθ∗ [X̂t]−
1

2λ
eR(θ∗)(T−t)

]

(b∗)⊺Σ(ρ∗)−1
[

b∗dt+ σ(ρ∗)dW θ∗
t ].

By taking expectation under P
θ∗ , we get: dEθ∗ [X̂t] =

1
2λe

R(θ∗)(T−t)R(θ∗)dt, and thus

Eθ∗[X̂t] = x0 +
eR(θ∗)T

2λ

[

1− e−R(θ∗)t
]

,

α̂t = Λθ∗(X̂t)Σ(ρ
∗)−1b∗, 0 ≤ t ≤ T, PΘ − q.s.

This implies that X̂ and X∗ satisfy the same linear SDE under P
θ, for any θ ∈ VΘ, and so

X̂t = X∗
t , 0 ≤ t ≤ T , PΘ-q.s. This proves that α∗ = α̂, equal to (3.16). ♦
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Remark 3.3 By similar derivation as in (3.9), and using (3.10), (3.16), we have that for
all θ = (θt)t = (bt, ρt)t ∈ VΘ, t ∈ [0, T ],

dEθ[V
α∗,θ
t ]

dt
= Kt

(

R(θ∗)−R(θt)
)

Varθ(X
∗
t ) +

1

4Kt

(

R(θ∗)−R(θt)
)

(3.17)

+ KtEθ

[

(

ât(X
∗
t ,Eθ∗ [X

∗
t ])− ât(X

∗
t ,Eθ[X

∗
t ])
)

⊺

Σ(ρt)

(

ât(X
∗
t ,Eθ∗ [X

∗
t ])− ât(X

∗
t ,Eθ[X

∗
t ])
)

]

≥ KtEθ

[

(

ât(X
∗
t ,Eθ∗ [X

∗
t ])− ât(X

∗
t ,Eθ[X

∗
t ])
)

⊺

Σ(ρt)

(

ât(X
∗
t ,Eθ∗ [X

∗
t ])− ât(X

∗
t ,Eθ[X

∗
t ])
)

]

(3.18)

by definition of θ∗ ∈ argminθ∈ΘR(θ), and as Kt < 0. In the case when there is no uncertainty
on the drift, i.e., for any θ = (b, ρ) ∈ VΘ, b is a constant equal to bo, the dynamics of X∗

under any P
θ, θ ∈ VΘ, is given by

dX∗
t =

[

x0 +
eR(θ∗)T

2λ
−X∗

t

]

(bo)⊺Σ(ρ∗)−1
[

bodt+ σ(ρt)dW
θ
t

]

,

from which, we deduce by taking expectation under P
θ:

Eθ[X
∗
t ] = x0 +

eR(θ∗)T

2λ

[

1− e−R(θ∗)t
]

.

This means that the expectation under P
θ of the optimal wealth process X∗ does not

depend on θ ∈ VΘ, and the r.h.s. of (3.18) is then equal to zero. Therefore, the function t

7→ Eθ[V
α∗,θ
t ] is nondecreasing for all θ ∈ VΘ, which implies in particular condition (iii) of

Lemma 3.1.
However, in the case of drift uncertainty, we cannot conclude as above, and actually this

nondecreasing property does not always hold true. Indeed, consider for example the case
where there is only drift uncertainty in a single asset model d = 1, with Θ = {θ ∈ [b, b̄]},
0 ≤ b < b̄, and known variance Σo normalized to one. Notice that R(θ) = θ2, and θ∗ =
argminθ∈ΘR(θ) = b. For any θ ∈ Θ, we can compute explicitly from (3.14) the expectation
and variance of X∗ under P

θ:

Eθ[X
∗
t ] =

1

2λ
eR(θ∗)T

[

1− e−θθ∗t
]

,

Varθ(X
∗
t ) =

1

4λ2
e2R(θ∗)T

[

e(R(θ∗)−2θθ∗)t − e−2θθ∗t
]

.

Plugging into (3.17), and using also the expression of K, â in (3.11), (3.13), we have for all
θ ∈ Θ, t ∈ [0, T ], after some straightforward rearrangement:

dEθ[V
α∗,θ
t ]

dt
=

1

2λ
eR(θ∗)T

[

ce−2ct − e−R(θ∗)t(1− e−ct)
(R(θ∗)

2
−
(R(θ∗)

2
+ c
)

e−ct
)]

=: f(t, c),

where we set c = (θ− θ∗)θ∗ ≥ 0. Now, we easily see that for all t ∈ [0, T ], f(t, c) converges

to −R(θ∗)
4λ eR(θ∗)(T−t) < 0, as c goes to infinity. Then, by continuity of f with respect to c,

we deduce that for θ large enough (hence for c large enough),
dEθ [V

α∗,θ
t ]

dt is negative, which

means that the function t 7→ Eθ[V
α∗,θ
t ] is not nondecreasing for all θ ∈ Θ. Actually, we have

proved in Theorem 3.1 the weaker condition (iii) of Lemma 3.1 that V α∗,θ
0 ≤ Eθ[V

α∗,θ
T ], for

all θ ∈ VΘ. ♦
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4 Applications and examples

We provide in this section several examples for the determination of the minimal risk pre-
mium arising from the separation principle in Theorem 3.1, and the implications for the
optimal robust portfolio strategy and the portfolio diversification. We shall focus in this
section on the case of ellipsoidal uncertainty set Θ as in (HΘ)(ii), i.e., in the form:

Θ = {(b, ρ) ∈ R
d × Γ : ‖σ(ρ)−1(b− b̂)‖2 ≤ δ}, (4.1)

and refer to the thesis manuscript [36] for the case of rectangular uncertainty set.

4.1 Minimal risk premium and worst-case scenario

We compute the infimum of the prior risk premium function θ ∈ Θ 7→ R(θ) as defined
in (2.1), and (when it exists) the element θ∗ ∈ Θ which achieves this minimum, i.e., the
worst-case scenario for uncertain parameters.

Given Θ as in (4.1), we denote by β̂i :=
b̂i
σi

the Sharpe ratio of the i-th asset associated

with a priori expected rate of return b̂i, and marginal volatility σi > 0, i = 1, . . . , d. In
what follows, we always assume w.l.o.g that |β̂i| is in descending order: |β̂1| ≥ |β̂2| ≥ . . .
|β̂d| and β̂1 6= 0, i.e., b̂ 6= 0 (in the trivial case b̂ = 0, the optimal portfolio strategy is to
never trade, i.e. α∗

t ≡ 0), and define the Sharpe ratio "proximity" between asset i and asset
j by

ˆ̺ij =
β̂j

β̂i
∈ [−1, 1], 1 ≤ i < j ≤ d, (4.2)

with the convention that ˆ̺ij = 0 when β̂i = 0.

Lemma 4.1 Let Θ be an ellipsoidal set as in (4.1), and assume that there exists ρ∗ ∈
argmin

ρ∈Γ
R(b̂, ρ) = argmin

ρ∈Γ

∥

∥σ(ρ)−1b̂
∥

∥

2
. Then θ∗ = (b∗, ρ∗) with

b∗ =
(

1− δ

‖σ(ρ∗)−1b̂‖2

)

1{‖σ(ρ∗)−1 b̂‖2>δ} b̂,

and R(θ∗) =
(

‖σ(ρ∗)−1b̂‖2 − δ
)2
1{‖σ(ρ∗)−1 b̂‖2>δ}.

Proof. See proof of Lemma A.3 in Appendix. ✷

Remark 4.1 The existence of ρ∗ is guaranteed when Γ is a compact set of Cd
>+ by conti-

nuity of the function ρ 7→
∥

∥σ(ρ)−1b̂
∥

∥

2
. We also show in Proposition 4.1 its existence when

Γ = C
d
>+, and under the condition that there exists a highest a priori Sharpe ratio. ♦

In the particular case when there is full ambiguity about the correlation, i.e., Γ = C
d
>+,

and there is an asset with a priori highest (absolute value) Sharpe ratio, one can compute
explicitly the worst-case scenario ρ∗ ∈ Θ for correlation.
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Proposition 4.1 (Full ambiguity correlation) Let Θ as in (4.1), with Γ = C
d
>+, and

assume that |β̂1| > |β̂2| = max
i 6=1

|β̂i|. Then, we have argmin
Θ

R(b, ρ) 6= ∅, attained at b∗, ρ∗

= (ρ∗ij)1≤i<j≤d ∈ C
d
>+ with

ρ∗1j = ˆ̺1j , b∗ = (1− δ

|β̂1|
)1{|β̂1|>δ}b̂, 1 < j ≤ d,

and

R(θ∗) = (|β̂1| − δ)21{|β̂1|>δ}.

In particular, when |β̂1| > |β̂2| > . . . > |β̂d|, then ρ∗ij = ˆ̺ij , 1 ≤ i < j ≤ d, and the associated
correlation matrix C(ρ∗) is positive definite.

Proof. See A.2 in Appendix. ✷

Remark 4.2 The proof of proposition 4.1 states that R(b̂, ρ) has minimum value over Cd
>+

if and only if |β̂1| > max
j 6=1

|β̂j |. Indeed, if there are more than one greatest (absolute) Sharpe

ratio, R(b̂, ρ) does not have minimum value. For example, if d = 2, β̂1 = β̂2, then C
2
>+ =

(−1, 1), and R(b̂, ρ) = 2|β̂1|2

1+ρ . We thus obtain inf
C2
>+

R(b̂, ρ) = |β̂1|2, and see that this infimum

cannot be attained over C
2
>+. ♦

We now consider a model for two-risky assets, i.e., with d = 2, mixing partial ambiguity
about correlation and drift uncertainty. In this case, the following result provides the explicit
expression of the worst-case scenario achieving the minimal risk premium.

Proposition 4.2 (Ambiguous drift and correlation in the two-assets case) Let Θ =
{(b, ρ) ∈ R

2 × [ρ, ρ̄] : ‖σ(ρ)−1(b − b̂)‖2 ≤ δ}, with −1 < ρ ≤ ρ̄ < 1, and assume w.l.o.g that

|β̂1| ≥ |β̂2|, β̂1 6= 0. Recall that ρ̂12 : =
β̂2

β̂1
. Then,

1. If ˆ̺12 ∈ [ρ, ρ̄], then ρ∗ = ˆ̺12, and b∗ = b̂(1− δ
|β̂1|

)1{|β̂1|>δ}.

2. If ρ̄ < ˆ̺12, then ρ∗ = ρ̄, and b∗ = b̂(1− δ
‖σ(ρ̄)−1 b̂‖2

)1{‖σ(ρ̄)−1 b̂‖2>δ}.

3. If ρ > ˆ̺12, then ρ∗ = ρ, and b∗ = b̂(1− δ
‖σ(ρ)−1 b̂‖2

)1{‖σ(ρ)−1 b̂‖2>δ}.

Proof. See A.3 in Appendix. ✷

Remark 4.3 The computation of the worst-case correlation ρ∗ is determined according to
three cases depending on the relation between the Sharpe ratio proximity ρ̂12 and the two
correlation bounds ρ and ρ̄.

In the first case when the range of correlation ambiguity is large enough so that ρ̂12 ∈
[ρ, ρ̄], or in other words, no stock is clearly dominating the other one in terms of Sharpe
ratio, then the worst-case correlation is attained at the point ρ̂12 inside the interval [ρ, ρ̄].

In the second case, when ρ̄ < ˆ̺12, meaning that both assets have close Sharpe ratios
with a correlation upper bound not too large, then the worst-case correlation is attained at
the prior highest correlation ρ̄.
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In the third case, when ρ > ˆ̺12, meaning that Sharpe ratios of the two assets are rather
distinctive with respect to the correlation lower bound, then the worst-case correlation is
given by the prior lowest correlation ρ. ♦

We finally consider a model for three-risky assets (d = 3) mixing partial ambiguity
about correlation and drift uncertainty, hence with Θ in the form Θ = {(b, ρ) ∈ R

3 × Γ :
‖σ(ρ)−1(b− b̂)‖2 ≤ δ} with Γ = [ρ

12
, ρ̄12] × [ρ

13
, ρ̄13] × [ρ

23
, ρ̄23], a subset of C3

>+.
Recall that

ˆ̺12 :=
β̂2

β̂1
∈ [−1, 1], ˆ̺13 :=

β̂3

β̂1
∈ [−1, 1], ˆ̺23 :=

β̂3

β̂2
∈ [−1, 1]. (4.3)

We introduce the so-called variance risk ratio κ̂(ρ),

Σ(ρ)−1b̂ =: κ̂(ρ) = (κ̂1(ρ), κ̂2(ρ), κ̂3(ρ))⊺, (4.4)

which represents (up to a scalar term) the vector of allocation in the assets when the drift
is b̂ and the correlation is ρ.

We denote by b̂−i the a priori expected rate of return b̂ with the i-th component b̂i
removed, and by Σ−i(ρ) the covariance matrix Σ(ρ) with i-th row and i-th column removed,

and σ−i(ρ) = Σ−i(ρ)
1
2 . Notice that Σ−1(ρ) depends only on ρ23. We will write Σ−1(ρ) as

Σ−1(ρ23), similarly, Σ−2(ρ13), Σ−3(ρ12).
In this case, the following result provides the explicit expression of the worst-case scenario

achieving the minimal risk premium.

Proposition 4.3 (Ambiguous drift and correlation in the three-asset case) Let Θ
= {(b, ρ) ∈ R

3 × Γ : ‖σ(ρ)−1(b − b̂)‖2 ≤ δ} with Γ = [ρ
12
, ρ̄12] × [ρ

13
, ρ̄13] × [ρ

23
, ρ̄23] ⊂

C
3
>+, and assume w.l.o.g that |β̂1| ≥ |β̂2| ≥ |β̂3|, β̂1 6= 0. Then, we have the following

possible exclusive cases:

1. (High-level correlation ambiguity for the second and third assets)

If ˆ̺12 ∈ [ρ
12
, ρ̄12], ˆ̺13 ∈ [ρ

13
, ρ̄13], then ρ∗ = (ˆ̺12, ˆ̺13, ρ

∗
23) for any ρ∗23 ∈ [ρ

23
, ρ̄23],

and b∗ = b̂(1− δ
|β̂1|

)1{|β̂1|>δ}.

2. (High-level correlation ambiguity for the third asset)

(i) If ρ̄12 < ˆ̺12, κ̂
3(ρ̄12, ρ̄13, ρ̄23)κ̂

3(ρ̄12, ρ13, ρ23) ≤ 0, then ρ∗ = (ρ̄12, ρ
∗
13, ρ

∗
23) satis-

fying κ̂3(ρ̄12, ρ
∗
13, ρ

∗
23) = 0, and b∗ = b̂(1− δ

‖σ−3(ρ̄12)−1 b̂−3‖2
)1{‖σ−3(ρ̄12)−1 b̂−3‖2>δ}.

(ii) If ρ
12

> ˆ̺12, κ̂
3(ρ

12
, ρ

13
, ρ̄23)κ̂

3(ρ
12
, ρ̄13, ρ23) ≤ 0, then ρ∗ = (ρ

12
, ρ∗13, ρ

∗
23) satis-

fying κ̂3(ρ
12
, ρ∗13, ρ

∗
23) = 0, and b∗ = b̂(1− δ

‖σ−3(ρ12)
−1 b̂−3‖2

)1{‖σ−3(ρ12)
−1 b̂−3‖2>δ}.

3. (High-level correlation ambiguity for the second asset)

(i) If ρ̄13 < ˆ̺13, κ̂
2(ρ̄12, ρ̄13, ρ̄23)κ̂

2(ρ
12
, ρ̄13, ρ23) ≤ 0, then ρ∗ = (ρ∗12, ρ̄13, ρ

∗
23) satis-

fying κ̂2(ρ∗12, ρ̄13, ρ
∗
23) = 0, and b∗ = b̂(1− δ

‖σ−2(ρ̄13)−1 b̂−2‖2
)1{‖σ−2(ρ̄13)−1 b̂−2‖2>δ}.

(ii) If ρ
13

> ˆ̺13, κ̂
2(ρ

12
, ρ

13
, ρ̄23)κ̂

2(ρ̄12, ρ13, ρ23) ≤ 0, then ρ∗ = (ρ∗12, ρ13, ρ
∗
23) satis-

fying κ̂2(ρ∗12, ρ13, ρ
∗
23) = 0, and b∗ = b̂(1− δ

‖σ−2(ρ13)
−1 b̂−2‖2

)1{‖σ−2(ρ13)
−1 b̂−2‖2>δ}.
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4. (High-level correlation ambiguity for the first asset)

(i) If ρ̄23 < ˆ̺23, κ̂
1(ρ̄12, ρ̄13, ρ̄23)κ̂

1(ρ
12
, ρ

13
, ρ̄23) ≤ 0, then ρ∗ = (ρ∗12, ρ

∗
13, ρ̄23) satis-

fying κ̂1(ρ∗12, ρ
∗
13, ρ̄23) = 0, and b∗ = b̂(1− δ

‖σ−1(ρ̄23)−1 b̂−1‖2
)1{‖σ−1(ρ̄23)−1 b̂−1‖2>δ}.

(ii) If ρ
23

> ˆ̺23, κ̂
1(ρ

12
, ρ̄13, ρ23)κ̂

1(ρ̄12, ρ13, ρ23) ≤ 0, then ρ∗ = (ρ∗12, ρ
∗
13, ρ23) satis-

fying κ̂1(ρ∗12, ρ
∗
13, ρ23) = 0, and b∗ = b̂(1− δ

‖σ−1(ρ23)
−1 b̂−1‖2

)1{‖σ−1(ρ23)
−1 b̂−1‖2>δ}.

5. (Small ambiguity about correlation)

(i) If κ̂1κ̂2(ρ̄12, ρ̄13, ρ̄23) > 0, κ̂1κ̂3(ρ̄12, ρ̄13, ρ̄23) > 0, then ρ∗ = (ρ̄12, ρ̄13, ρ̄23), and
b∗ = b̂(1− δ

‖σ(ρ̄12 ,ρ̄13,ρ̄23)−1 b̂‖2
)1{‖σ(ρ̄12 ,ρ̄13,ρ̄23)−1 b̂‖2>δ}.

(ii) If κ̂1κ̂2(ρ
12
, ρ

13
, ρ̄23) < 0, κ̂1κ̂3(ρ

12
, ρ

13
, ρ̄23) < 0, then ρ∗ = (ρ

12
, ρ

13
, ρ̄23), and

b∗ = b̂(1− δ
‖σ(ρ

12
,ρ

13
,ρ̄23)−1 b̂‖2

)1{‖σ(ρ
12
,ρ

13
,ρ̄23)−1 b̂‖2>δ}.

(iii) If κ̂1κ̂2(ρ̄12, ρ13, ρ23) > 0, κ̂1κ̂3(ρ̄12, ρ13, ρ23) < 0, then ρ∗ = (ρ̄12, ρ13, ρ23), and

b∗ = b̂(1− δ
‖σ(ρ̄12 ,ρ13,ρ23)

−1 b̂‖2
)1{‖σ(ρ̄12 ,ρ13,ρ23)

−1 b̂‖2>δ}.

(iv) If κ̂1κ̂2(ρ
12
, ρ̄13, ρ23) < 0, κ̂1κ̂3(ρ

12
, ρ̄13, ρ23) > 0, then ρ∗ = (ρ

12
, ρ̄13, ρ23), and

b∗ = b̂(1− δ
‖σ(ρ

12
,ρ̄13,ρ23)

−1 b̂‖2
)1{‖σ(ρ

12
,ρ̄13,ρ23)

−1 b̂‖2>δ}.

Proof. See A.4 in Appendix. ✷

Remark 4.4 The different cases in the above Proposition depend on the relation between
the Sharpe ratio proximities and the correlation intervals bounds, and can be roughly divided
into 5 cases with subcases with the following interpretation:

In case 1 where the range of correlation ambiguity for the second and third asset is large
enough, in the sense that the intervals [ρ

12
, ρ̄12] and [ρ

13
, ρ̄13] contain respectively ρ̂12 and

ρ̂13, then the worst-case correlation is attained at the Sharpe ratio proximity value ρ∗ =
(ˆ̺12, ˆ̺13, ρ

∗
23).

Let us now discuss case 2, and more specifically (i). This corresponds to the situation
where the assets 1 and 2 have close Sharpe ratios with a correlation upper bound between
these assets not too large, while the correlation ambiguity for the third asset is high, which
is quantified by the fact that the function (ρ13, ρ23) 7→ κ̂(ρ̄12, ρ13, ρ23) evaluated at the prior
lower bounds (ρ

13
, ρ

23
) and the prior upper bounds (ρ̄13, ρ̄23) have opposite signs. In this

case, the worst-case correlation is achieved at the prior highest correlation ρ̄12 for ρ12, and
at the point (ρ∗13, ρ

∗
23) cancelling the term κ̂(ρ̄12, ρ

∗
13, ρ

∗
23). Similar interpretations hold for

cases 3 and 4.
Let us finally discuss case 5, which involves explicitly the signs of κ̂1κ̂2 and κ̂1κ̂3 at the

prior correlation bounds. Assuming that these functions κ̂1κ̂2 and κ̂1κ̂3 do not vanish at
some point ρ ∈ [ρ

12
, ρ̄12] × [ρ

13
, ρ̄13] × [ρ

23
, ρ̄23], then by continuity, and provided that the

range of these correlation bounds are small enough, we see that one should fall into one of
the 4 subcases 5.(i), (ii), (iii), (iv), and for which the worst-case correlation is obtained on
the prior upper or lower correlation bounds. ♦

4.2 Optimal robust strategy and portfolio diversification

We first provide the general explicit expression of the robust optimal strategy in the case
of ellipsoidal ambiguity set. This follows directly from Theorem 3.1 and Lemma 4.1.
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Proposition 4.4 Let Θ be an ellipsoidal set as in (4.1), and assume that there exists ρ∗ ∈
argmin

ρ∈Γ

∥

∥σ(ρ)−1b̂
∥

∥

2
. Then, an optimal portfolio strategy for (2.4) is given by

α∗
t =

[

x0 +
1

2λ
e(‖σ(ρ

∗)−1 b̂‖2−δ)2T −X∗
t

]

(

1− δ

‖σ(ρ∗)−1b̂‖2

)

1{‖σ(ρ∗)−1 b̂‖2>δ}Σ(ρ
∗)−1b̂. (4.5)

Remark 4.5 We have seen in the previous section that ρ∗ exists when Γ is compact (in
particular when it is a singleton, i.e., there is no ambiguity on correlation) or when Γ = C

d
>+,

i.e., there is full ambiguity on correlation. From (4.5), we observe notably that whenever δ ≥
‖σ(ρ∗)−1b̂‖2, then α∗ ≡ 0. In other words, when the level of ambiguity about the expected
rate of return is high (or when the investor is poorly confident about her estimation b̂ on
the expected rate of return), then she does not make risky investment at all. ♦

4.2.1 Full ambiguity correlation and anti-diversification

In this paragraph, we consider the case of full ambiguity on correlation, i.e., Γ = C
d
>+, and

investigate the impact on optimal robust portfolio strategy.

Theorem 4.1 (Full ambiguity correlation) Let Θ be an ellipsoidal set as in (4.1), with
Γ = C

d
>+, and assume that |β̂1| > |β̂2| = max

j 6=1
|β̂j |, β1 6= 0. Then an optimal portfolio

strategy for the robust mean-variance problem (2.4) is explicitly given by

α∗
t =

[

x0 +
1

2λ
e(|β̂1 |−δ)2T −X∗

t

]

(

1− δ

|β̂1|

)

1|β̂1|>δ

( b̂1
σ2
1

, 0, . . . , 0
)

⊺

, 0 ≤ t ≤ T, PΘ − q.s.

Proof. From the formula (4.5) of the optimal portfolio strategy in Proposition 4.4, we only
have to compute the vector κ̂(ρ∗) = Σ(ρ∗)−1b̂, and R(b̂, ρ∗), which have been already given
in (A.28), (A.29) in Section A.2. ✷

Remark 4.6 (Financial interpretation: anti-diversification) If the investor is poorly
confident on the drift estimate, i.e., whenever δ is large enough, then she does not make risky
investments at all, i.e. α∗

t ≡ 0. When the investor has good knowledge on drift estimates but
is poorly confident on correlation estimates, she only invests in one asset, namely the one
with the highest a priori Sharpe ratio. This anti-diversification result under full ambiguity
about correlation has been also observed in [24] for a single-period mean-variance problem
without drift uncertainty, and is extended here in a continuous time framework. ♦

4.2.2 Partial diversification

• Two-asset model: d = 2

We provide a complete picture of the optimal robust portfolio strategy in a two-asset model
with ambiguous drift and correlation.

Theorem 4.2 (Ambiguous drift and correlation in the two-assets case) Let Θ =
{(b, ρ) ∈ R

2 × [ρ, ρ̄] : ‖σ(ρ)−1(b − b̂)‖2 ≤ δ}, with −1 < ρ ≤ ρ̄ < 1, and assume w.l.o.g that

|β̂1| ≥ |β̂2|, β̂1 6= 0. We have the following possible cases:
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(1) If ˆ̺12 ∈ [ρ, ρ̄], then an optimal portfolio strategy is explicitly given by

α∗
t =

[

x0 +
1

2λ
e(|β̂1|−δ)2T −X∗

t

](

1− δ

|β̂1|
)

1{|β̂1|>δ}

(

b̂1
σ2
1

0

)

, 0 ≤ t ≤ T, PΘ − q.s.

(2) If ρ̄ < ˆ̺12, then an optimal portfolio strategy is explicitly given by

α∗
t =

[

x0 +
1

2λ
e(‖σ(ρ̄)

−1 b̂‖2−δ)2T −X∗
t

]

(

1− δ

‖σ(ρ̄)−1b̂‖2

)

1{‖σ(ρ̄)−1 b̂‖2>δ}Σ(ρ̄)
−1b̂,

and if ‖σ(ρ̄)−1b̂‖2 > δ, then α1,∗
t α2,∗

t > 0.

(3) If ρ > ˆ̺12, then an optimal portfolio strategy is explicitly given by

α∗
t =

[

x0 +
1

2λ
e(‖σ(ρ)

−1 b̂‖2−δ)2T −X∗
t

]

(

1− δ

‖σ(ρ)−1b̂‖2

)

1{‖σ(ρ)−1 b̂‖2>δ}Σ(ρ)
−1b̂,

and if ‖σ(ρ)−1b̂‖2 > δ, then α1,∗
t α2,∗

t < 0.

Proof. In light of formula (4.5) of the optimal portfolio strategy in Proposition 4.4, we
only need to compute ‖σ(ρ∗)−1b̂‖2, i.e., R(b̂, ρ∗), vector κ̂(ρ∗) = Σ(ρ∗)−1b̂, explicitly given
in the proof of Proposition 4.2 (see A.3 in Appendix) when computing ρ∗, which leads to
the three cases of Theorem 4.2. ✷

Remark 4.7 When there is no ambiguity on the drift, which corresponds to δ = 0, we
retrieve the results obtained in [17] for the correlation ambiguity between two assets (see
their Theorem 4.2). Our Theorem includes in addition the case when there is uncertainty
on the expected rate of return. ♦

Remark 4.8 (Financial interpretation) In the first case when the range of correlation
ambiguity is large enough so that ρ̂12 ∈ (ρ, ρ̄), and thus no stock is clearly dominating the
other one in terms of Sharpe ratio, it is optimal to invest only in one asset, namely the one
with the highest estimated Sharpe ratio.

In the second case when ρ̄ < ρ̂12, this means that no stock is “dominating" the other
one in terms of Sharpe ratio, and it is optimal to invest in both assets with a directional
trading, that is buying or selling simultaneously, and the worst-case correlation refers to the
highest prior correlation ρ̄ (recall Remark 4.3) where the diversification effect is minimal.

Finally, when ρ > ρ̂12, this means that one asset is clearly dominating the other one,
and it is optimal to invest in both assets with a spread trading, that is buying one and
selling another, and the worst-case correlation corresponds to the lowest prior correlation ρ
where the profit from the spread trading is minimal.

This diversification result has been also observed in [24] for a single-period mean-variance
problem with only correlation uncertainty, and is extended here in a continuous time frame-
work with both drift and correlation uncertainty. ♦

• Three-asset model: d = 3

We finally provide an explicit description of the optimal robust strategy in a three-asset
model under drift uncertainty and ambiguous correlation.
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Theorem 4.3 Let Θ = {(b, ρ) ∈ R
3 × Γ : ‖σ(ρ)−1(b − b̂)‖2 ≤ δ}, with Γ = [ρ

12
, ρ̄12] ×

[ρ
13
, ρ̄13] × [ρ

23
, ρ̄23] ⊂ C

3
>+, and assume w.l.o.g that |β̂1| ≥ |β̂2| ≥ |β̂3| and β̂1 6= 0. Then,

we have the following possible exclusive cases:

1. (Anti-diversification) If ˆ̺12 ∈ [ρ
12
, ρ̄12], and ˆ̺13 ∈ [ρ

13
, ρ̄13], then an optimal portfolio

strategy is explicitly given by

α∗
t =

[

x0 +
1

2λ
e(|β̂1|−δ)2T −X∗

t

]

(

1− δ

|β̂1|

)

1{|β̂1|>δ}







b̂1
σ2
1

0
0






, 0 ≤ t ≤ T, PΘ − q.s..

2. (Under-diversification: no investment in the third asset)

(i) If ρ̄12 < ˆ̺12, and κ̂3(ρ̄12, ρ̄13, ρ̄23)κ̂
3(ρ̄12, ρ13, ρ23) ≤ 0, then an optimal portfolio

strategy is
(

α1,∗
t

α2,∗
t

)

=
[

x0 +
1

2λ
e(‖σ−3(ρ̄12)−1 b̂−3‖2−δ)2T −X∗

t

]

(

1− δ

‖σ−3(ρ̄12)−1b̂−3‖2

)

1{‖σ−3(ρ̄12)−1 b̂−3‖2>δ}Σ−3(ρ̄12)
−1b̂−3

α3,∗
t ≡ 0,

and if ‖σ−3(ρ̄12)
−1b̂−3‖2 > δ, then α1,∗

t α2,∗
t > 0.

(ii) If ρ
12

> ˆ̺12, and κ̂3(ρ
12
, ρ

13
, ρ̄23)κ̂

3(ρ
12
, ρ̄13, ρ23) ≤ 0, then an optimal portfolio

strategy is
(

α1,∗
t

α2,∗
t

)

=
[

x0 +
1

2λ
e(‖σ−3(ρ12)

−1 b̂−3‖2)−δ)2T −X∗
t

]

(

1− δ

‖σ−3(ρ12)
−1b̂−3‖2

)

1{‖σ−3(ρ12)
−1 b̂−3‖2>δ}Σ−3(ρ̄12)

−1b̂−3

α3,∗
t ≡ 0,

and if ‖σ−3(ρ12)
−1b̂−3‖2 > δ, then α1,∗

t α2,∗
t < 0.

3. (Under-diversification: no investment in the second asset)

(i) If ρ̄13 < ˆ̺13, and κ̂2(ρ̄12, ρ̄13, ρ̄23)κ̂
2(ρ

12
, ρ̄13, ρ23) ≤ 0, then an optimal portfolio

strategy is
(

α1,∗
t

α3,∗
t

)

=
[

x0 +
1

2λ
e(‖σ−2(ρ̄13)−1 b̂−2‖2−δ)2T −X∗

t

]

(

1− δ

‖σ−2(ρ̄13)−1b̂−2‖2

)

1{‖σ−2(ρ̄13)−1 b̂−2‖2>δ}Σ−2(ρ̄13)
−1b̂−2

α2,∗
t ≡ 0,

and if ‖σ−2(ρ̄13)
−1b̂−2‖2 > δ, then α1,∗

t α3,∗
t > 0.

(ii) If ρ
13

> ˆ̺13, and κ̂2(ρ
12
, ρ

13
, ρ̄23)κ̂

2(ρ̄12, ρ13, ρ23) ≤ 0, then an optimal portfolio
strategy is given by
(

α1,∗
t

α3,∗
t

)

=
[

x0 +
1

2λ
e(‖σ−2(ρ13)

−1 b̂−2‖2−δ)2T −X∗
t

]

(

1− δ

‖σ−2(ρ13)
−1b̂−2‖2

)

1{‖σ−2(ρ13)
−1 b̂−2‖2>δ}Σ−2(ρ13)

−1b̂−2

α2,∗
t ≡ 0,
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and if ‖σ−2(ρ13)
−1b̂−2‖2 > δ, then α1,∗

t α3,∗
t < 0.

4. (Under-diversification: no investment in the first asset)

(i) If ρ̄23 < ˆ̺23, and κ̂1(ρ
12
, ρ

13
, ρ̄23)κ̂

1(ρ̄12, ρ̄13, ρ̄23) ≤ 0, then an optimal portfolio
strategy is

(

α2,∗
t

α3,∗
t

)

=
[

x0 +
1

2λ
e(‖σ−1(ρ̄23)−1 b̂−1‖2−δ)2T −X∗

t

]

(

1− δ

‖σ−1(ρ̄23)−1b̂−1‖2

)

1{‖σ−1(ρ̄23)−1 b̂−1‖2>δ}Σ−1(ρ̄23)
−1b̂−1

α1,∗
t ≡ 0,

and if ‖σ−1(ρ̄23)
−1b̂−1‖2 > δ, then α2,∗

t α3,∗
t > 0.

(ii) If ρ
23

> ˆ̺23, and κ̂1(ρ
12
, ρ̄13, ρ23)κ̂

1(ρ̄12, ρ13, ρ23) ≤ 0, then an optimal portfolio
strategy is

(

α2,∗
t

α3,∗
t

)

=
[

x0 +
1

2λ
e(‖σ−1(ρ23)

−1 b̂−1‖2−δ)2T −X∗
t

]

(

1− δ

‖σ−1(ρ23)
−1b̂−1‖2

)

1{‖σ−1(ρ23)
−1 b̂−1‖2>δ}Σ−1(ρ23)

−1b̂−1

α1,∗
t ≡ 0,

and if ‖σ−1(ρ23)
−1b̂−1‖2 > δ, then α2,∗

t α3,∗
t < 0.

5. (Well-diversification)

(i) If κ̂1κ̂2(ρ̄12, ρ̄13, ρ̄23) > 0, and κ̂1κ̂3(ρ̄12, ρ̄13, ρ̄23) > 0, then an optimal portfolio
strategy is given by

α∗
t =

[

x0 +
1

2λ
e(‖σ(ρ̄12 ,ρ̄13,ρ̄23)

−1 b̂‖2−δ)2T −X∗
t

]

(

1− δ

‖σ(ρ̄12, ρ̄13, ρ̄23)−1b̂‖2

)

1{‖σ(ρ̄12 ,ρ̄13,ρ̄23)−1 b̂‖2>δ}Σ(ρ̄12, ρ̄13, ρ̄23)
−1b̂.

(ii) If κ̂1κ̂2(ρ
12
, ρ

13
, ρ̄23) < 0, and κ̂1κ̂3(ρ

12
, ρ

13
, ρ̄23) < 0, then an optimal portfolio

strategy is given by

α∗
t =

[

x0 +
1

2λ
e(‖σ(ρ12,ρ13,ρ̄23)

−1 b̂‖2−δ)2T −X∗
t

]

(

1− δ

‖σ(ρ
12
, ρ

13
, ρ̄23)−1b̂‖2

)

1{‖σ(ρ
12
,ρ

13
,ρ̄23)−1 b̂‖2>δ}Σ(ρ12, ρ13, ρ̄23)

−1b̂.

(iii) If κ̂1κ̂2(ρ̄12, ρ13, ρ23) > 0, and κ̂1κ̂3(ρ̄12, ρ13, ρ23) < 0, then an optimal portfolio
strategy is given by

α∗
t =

[

x0 +
1

2λ
e(‖σ(ρ̄12 ,ρ13,ρ23)

−1 b̂‖2−δ)2T −X∗
t

]

(

1− δ

‖σ(ρ̄12, ρ13, ρ23)−1b̂‖2

)

1{‖σ(ρ̄12 ,ρ13,ρ23)
−1 b̂‖2>δ}Σ(ρ̄12, ρ13, ρ23)

−1b̂.
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(iv) If κ̂1κ̂2(ρ
12
, ρ̄13, ρ23) < 0, and κ̂1κ̂3(ρ

12
, ρ̄13, ρ23) > 0, then an optimal portfolio

strategy is given by

α∗
t =

[

x0 +
1

2λ
e‖(σ(ρ12,ρ̄13,ρ23)

−1 b̂‖2−δ)2T −X∗
t

]

(

1− δ

‖σ(ρ
12
, ρ̄13, ρ23)

−1b̂‖2

)

1{‖σ(ρ
12
,ρ̄13,ρ23)

−1 b̂‖2>δ}Σ(ρ12, ρ̄13, ρ23)
−1b̂.

Proof. In view of formula (4.5) of the optimal portfolio strategy in Proposition 4.4, we
only need to compute κ̂(ρ∗) = Σ(ρ∗)−1b̂, and ‖σ(ρ∗)−1b̂‖2, i.e., R(b̂, ρ∗), which have been
given explicitly in the proof of Proposition 4.3 (see A.4 in Appendix) when computing ρ∗.

In the case 1., we obtained (see (A.33)) κ̂(ρ∗) = ( b̂1
σ2
1
, 0, 0)⊺, and R(b̂, ρ∗) = b̂⊺κ̂(ρ∗) = β̂2

1 .

In the case 2., let us focus on subcase (i) as the other subcase (ii) is dealt with similarly:
we have ρ∗12 = ρ̄12, (κ̂1(ρ̄12), κ̂

2(ρ̄12))
⊺ = Σ−3(ρ̄12)b̂−3, κ̂3(ρ̄12, ρ

∗
13, ρ

∗
23) = 0, and R(b̂, ρ∗)

= b̂⊺−3Σ−3(ρ̄12)b̂−3, by (A.40), (A.41). The other cases are computed in the same way and
omitted here. ✷

Remark 4.9 (Financial interpretation) In case 1, corresponding to large correlation
ambiguity for the second and third asset (recall Remark 4.4), it is optimal to invest only in
the first asset, namely the one with the highest a priori Sharpe ratio, which is consistent
with the anti-diversification result obtained in Theorem 4.1 (see also Remark 4.6).

In case 2, corresponding to a large correlation ambiguity for the third asset (see Remark
4.4), the investor does not invest in the third asset, but only in the first and second assets.
Moreover, depending on whether the assets 1 and 2 have close Sharpe ratios with a correla-
tion upper bound between these assets not too large (subcase (i)), or the asset 1 dominates
the asset 2 in terms of Sharpe ratio (subcase (ii)), the investment in assets 1 or 2 follows a
directional trading or a spread trading.

We have similar under-diversification effect in cases 3 and 4, and notice that it may
happen that one does not invest in the first asset even though it has the highest a priori
Sharpe ratio. The result in case 4 is quite interesting and is a priori unexpected. Intuitively,
an investor should always invest in the the asset with the greatest absolute Sharpe ratio.
For example, this is the case when anti-diversification occurs and also in cases 1, 2, 3, 5.
However, the case 4 means that the asset with the greatest absolute Sharpe ratio (asset 1)
may not be traded in the optimal portfolio while the one with the smallest absolute Sharpe
ratio (asset 3) may be traded. The idea is that depending on the drift and correlation
ambiguity levels, investing in the two other assets may achieve a higher Sharpe ratio than
investing in asset 1. In [24], the authors constructed a simple example (with no ambiguity
in the correlation between asset 2 and asset 3) for this scenario.

Finally, in the case 5, corresponding to a small correlation ambiguity (see Remark 4.4),
the investor has interest to well-diversify her portfolio among the three assets. ♦
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A Appendix

Notations, differentiation and characterization of convex function

Let us introduce some notations and state some results which will be used frequently in the
proof of some Lemmas and Propositions.

1. We introduce the so-called variance risk ratios

κ̂(ρ) := Σ(ρ)−1b̂ = (κ̂1(ρ), . . . , κ̂d(ρ))⊺,

κ(b, ρ) := Σ(ρ)−1b = (κ1(b, ρ), . . . , κd(b, ρ))⊺.

2. From some matrix calculations (see e.g. corollary 95 and corollary 105 in [9]), we
obtain the explicit expressions of the first partial derivatives of R(b, ρ) = b⊺κ(b, ρ)

with respect to bi, ρij denoted by ∂R(b,ρ)
∂bi

and ∂R(b,ρ)
∂ρij

, 1 ≤ i < j ≤ d,

∂R(b, ρ)

∂bi
= 2κi(b, ρ),

∂R(b, ρ)

∂ρij
= −σiσjκ

i(b, ρ)κj(b, ρ). (A.6)

We also denote by ∇bR(b, ρ) and ∇ρR(b, ρ) the gradients of R(b, ρ) with respect to b
and ρ respectively,

{

∇bR(b, ρ) = (∂R(b,ρ)
∂b1

, . . . , ∂R(b,ρ)
∂bd

)⊺

∇ρR(b, ρ) = (∂R(b,ρ)
∂ρ12

, . . . , ∂R(b,ρ)
∂ρ1d

, . . . , ∂R(b,ρ)
∂ρ(d−1)d

)⊺
(A.7)

3. (Sufficient and necessary optimality condition). It is known (see e.g. Lemma 2.2 in
[10]) that R(b, ρ) is jointly convex in b and ρ. Similarly, R(b̂, ρ) is convex in ρ. Then
ρ∗ is a global minimum of ρ 7→ R(b̂, ρ) over Γ convex set of Cd

+ if and only if, for any
ρ ∈ Γ (see e.g. section 4.2.3 in [4]),

(ρ− ρ∗)⊺∇ρR(b̂, ρ∗) =

d
∑

j=1

j−1
∑

i=1

∂R(b̂, ρ∗)

∂ρij
(ρij − ρ∗ij) ≥ 0,

which is written from (A.6) as,

d
∑

j=1

j−1
∑

i=1

σiσj κ̂
iκ̂j(ρ∗)(ρij − ρ∗ij) ≤ 0. (A.8)

A.1 Proof of Lemma 3.2

The statement of Lemma 3.2 is minimax type theorem, as it implies obviously in the case
where Θ = ∆× Γ is a rectangular set that the function H in (3.4) satisfies

min
b∈∆

max
ρ∈Γ

H(b, ρ) = max
ρ∈Γ

min
b∈∆

H(b, ρ).

However, its proof cannot be deduced directly from standard minimax theorem (see e.g.
Theorem 45.8 in [32]), as it does not fulfill totally their conditions: the function H is linear
(hence convex) in b, linear (hence concave) in ρ, but we do not assume that Γ is a compact
set, and we also consider the case where Θ is an ellipsoidal set.

We distinguish the two cases in (HΘ) whether Θ is a rectangular or ellipsoidal set.
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Lemma A.2 Suppose that Θ = ∆ × Γ is in product set as in (HΘ)(i), and assume that
there exists θ∗ ∈ argmin

Θ
R(θ). Then, we have for all b ∈ ∆, ρ ∈ Γ:

H(b∗, ρ) ≤ H(θ∗) = R(θ∗) ≤ H(b, ρ∗).

Moreover, (b∗, ρ∗) is a saddle point, namely,

inf
b∈∆

sup
ρ∈Γ

H(b, ρ) = sup
ρ∈Γ

inf
b∈∆

H(b, ρ) = H(b∗, ρ∗).

Proof. Note that if there exists (b∗, ρ∗) ∈ argmin
Θ

R(θ), the first-order condition implies

that for any (b, ρ) ∈ Θ,

(b− b∗)⊺∇bR(θ∗) + (ρ− ρ∗)⊺∇ρR(θ∗) ≥ 0. (A.9)

Recalling H(b, ρ) in (3.4) and explicit expressions (A.6), (A.7) of ∇bR(θ∗) and ∇ρR(θ∗),
and fixing b = b∗ or ρ = ρ∗ in (A.9) respectively, we get for any b ∈ ∆, ρ ∈ Γ,

H(b∗, ρ)−H(b∗, ρ∗) =

d
∑

j=1

j−1
∑

i=1

κi(b∗, ρ∗)κj(b∗, ρ∗)σiσj(ρij − ρ∗ij)

= (ρ∗ − ρ)⊺∇ρR(θ∗) ≤ 0,

H(b, ρ∗)−H(b∗, ρ∗) =

d
∑

i=1

(bi − b∗i )κ
i(b∗, ρ∗)

=
1

2
(b− b∗)⊺∇bR(θ∗) ≥ 0,

where by convention, we set:
0
∑

i=1

· = 0 . It follows that

inf
b∈∆

sup
ρ∈Γ

H(b, ρ) ≤ sup
ρ∈Γ

H(b∗, ρ) = H(b∗, ρ∗) = inf
b∈∆

H(b, ρ∗) ≤ sup
ρ∈Γ

inf
b∈∆

H(b, ρ). (A.10)

Since we always have inf
b∈∆

sup
ρ∈Γ

H(b, ρ) ≥ sup
ρ∈Γ

inf
b∈∆

H(b, ρ), the above inequality is indeed an

equality, and this proves the required result. ✷

Lemma A.3 Suppose that Θ = {(b, ρ) ∈ R
d × Γ : ‖σ(ρ)−1(b − b̂)‖2 ≤ δ} is an ellipsoidal

set as in (HΘ)(ii), and assume that ρ∗ = argmin
Γ

‖σ(ρ)−1b̂‖2 exists. Then there exists θ∗

∈ argmin
Θ

R(θ) with θ∗ = (b∗, ρ∗),

b∗ = b̂
(

1− δ

‖σ(ρ∗)−1b̂‖2

)

1{‖σ(ρ∗)−1 b̂‖2>δ}, (A.11)

and

R(θ∗) =
(

‖σ(ρ∗)−1b̂‖2 − δ
)2
1{‖σ(ρ∗)−1 b̂‖2>δ}. (A.12)

Moreover, we have for all b ∈ Θb, ρ ∈ Γ:

H(b∗, ρ) ≤ H(θ∗) = R(θ∗) ≤ H(b, ρ∗). (A.13)

where Θb denotes the projection of the set Θ onto b-plane, i.e., Θb := {b ∈ R
d : b ∈ ∆ρ, ρ ∈

Γ} with ∆ρ : = {b ∈ R
d : ‖σ(ρ)−1(b− b̂)‖2 ≤ δ}.
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Proof. Due to the dependence of b on ρ in the ellipsoidal set Θ written as Θ = {(b, ρ) ∈
R
d × Γ : b ∈ ∆ρ} where ∆ρ is defined in Lemma A.3. We use a Lagrangian approach here.

Step 1. For fixed ρ ∈ Γ, let us first focus on the inner minimization

min
b∈∆ρ

R(b, ρ). (A.14)

The Lagrangian with nonnegative multiplier µ associated to this constrained minimization
problem is

L1(b, µ) = R(b, ρ)− µ
(

δ2 − (b− b̂)⊺Σ(ρ)−1(b− b̂)
)

, (A.15)

and the first-order condition gives

∂L1(b, µ)

∂b
= 2Σ(ρ)−1b+ 2µΣ(ρ)−1(b− b̂) = 0

∂L1(b, µ)

∂µ
= δ2 − (b− b̂)⊺Σ(ρ)−1(b− b̂) = 0.

Solving these two equations for fixed ρ, and recalling that the Lagrange multiplier is non-
negative, yield







µ∗(ρ) = (
‖σ(ρ)−1 b̂‖2

δ − 1)1{‖σ(ρ)−1 b̂‖2>δ},

b∗(ρ) = b̂(1− δ
‖σ(ρ)−1 b̂‖2

)1{‖σ(ρ)−1 b̂‖2>δ}.
(A.16)

Substituting these expressions into the Lagrangian (A.15), we get

L1(b
∗(ρ), ρ) = R(b∗(ρ), ρ) =

(

‖σ(ρ)−1b̂‖2 − δ
)2
1{‖σ(ρ)−1 b̂‖2>δ}.

and thus, the original problem inf
Θ

R(θ) is reduced to

inf
θ=(b,ρ)∈Θ

R(θ) = inf
ρ∈Γ

inf
b∈∆ρ

R(b, ρ) = inf
ρ∈Γ

R(b∗(ρ), ρ)

= inf
ρ∈Γ

{

(

‖σ(ρ)−1b̂‖2 − δ
)2
1{‖σ(ρ)−1 b̂‖2>δ}

}

=
(

inf
ρ∈Γ

‖σ(ρ)−1b̂‖2 − δ
)2

1{
inf
ρ∈Γ

‖σ(ρ)−1b̂‖2 > δ
}. (A.17)

Therefore, whenever ρ∗ ∈ argmin
Γ

‖σ(ρ)−1b̂‖2 exists, we see from (A.17) that R attains its

infimum at θ∗ = (b∗, ρ∗) with b∗ = b∗(ρ∗) as in (A.16) with ρ = ρ∗, which leads to the
expressions as described in (A.11) and (A.12) of Lemma A.3.

Step 2. Suppose that there exists ρ∗ ∈ argmin
Γ

‖σ(ρ)−1b̂‖2. From Step 1, there exists θ∗ =

(b∗, ρ∗) ∈ argmin
Θ

R(θ). Let us now prove that H(b∗, ρ) ≤ R(θ∗) for any ρ ∈ Γ. Substituting

the expression (A.11) of b∗ in H(b∗, ρ), we rewrite H(b∗, ρ) as

H(b∗, ρ) =
(

1− δ

‖σ(ρ∗)−1b̂‖2

)2
b̂⊺Σ(ρ∗)−1Σ(ρ)Σ(ρ∗)−1b̂1{‖σ(ρ∗)−1 b̂‖2>δ}.

As ρ∗ ∈ argmin
Γ

b̂⊺Σ(ρ)−1b̂, we use Lemma A.2 by setting ∆ = {b̂}, and immediately obtain

sup
ρ∈Γ

b̂⊺Σ(ρ∗)−1Σ(ρ)Σ(ρ∗)−1b̂ = b̂⊺Σ(ρ∗)−1b̂. (A.18)
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By multiplying both sides of the above equality with the constant
(

1− δ
‖σ(ρ∗)−1 b̂‖2

)2
1{‖σ(ρ∗)−1 b̂‖2>δ},

we get

sup
ρ∈Γ

H(b∗, ρ) = H(b∗, ρ∗) = R(θ∗), (A.19)

which shows that

H(b∗, ρ) ≤ R(θ∗), for all ρ ∈ Γ.

Step 3. Let us finally prove that H(b, ρ∗) ≥ R(θ∗) for any b ∈ Θb. Again, we use a
Lagrangian approach. For fixed ρ ∈ Γ, we focus on the inner minimization

inf
b∈∆ρ

H(b, ρ∗),

and consider the associated Lagrangian function with nonnegative multiplier µ

L2(b, µ) = H(b, ρ∗)− µ
(

δ2 − (b− b̂)⊺Σ(ρ)−1(b− b̂)
)

. (A.20)

The first-order condition gives

∂L2(b, µ)

∂b
= Σ(ρ∗)−1b∗ + 2µΣ(ρ)−1(b− b̂) = 0,

∂L2(b, µ)

∂µ
= δ2 − (b− b̂)⊺Σ(ρ)−1(b− b̂) = 0,

and by solving these two equations for fixed ρ (recalling also that the Lagrangian multiplier
is nonnegative), we get







µ∗∗(ρ) =

√
H(b∗,ρ)

2δ ≥ 0

b∗∗(ρ) = b̂− δ√
H(b∗,ρ)

Σ(ρ)Σ(ρ∗)−1b∗.
(A.21)

Substituting these expressions into the Lagrangian (A.20), we get

L2(b
∗∗(ρ), ρ) = H(b∗∗(ρ), ρ∗) = b̂⊺Σ(ρ∗)−1b∗ − δ

√

H(b∗, ρ).

The outer minimization over Γ then yields

inf
b∈Θb

H(b, ρ∗) = inf
ρ∈Γ

inf
b∈∆ρ

H(b, ρ∗) = inf
ρ∈Γ

H(b∗∗(ρ), ρ∗)

= inf
ρ∈Γ

{

b̂⊺Σ(ρ∗)−1b∗ − δ
√

H(b∗, ρ)
}

= b̂⊺Σ(ρ∗)−1b∗ − δ sup
ρ∈Γ

√

H(b∗, ρ)

= b̂⊺Σ(ρ∗)−1b∗ − δ
√

R(θ∗)

= R(θ∗),

where we used (A.19) in the last second equality, and last equality comes from (A.11). This
shows that the infimum of H(b, ρ∗) over b ∈ Θb is attained at b∗∗(ρ∗) = b∗ as in (A.21) with
ρ = ρ∗. We conclude that for any b ∈ Θb,

H(b, ρ∗) ≥ R(θ∗), (A.22)

which completes the proof. ✷
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A.2 Proof of Proposition 4.1

Let us prove that under the condition |β̂1| > |β̂2| = max
i 6=1

|β̂i|, the function ρ 7→ R(b̂, ρ) attains

its infimum over C
d
>+ ⊂ (−1, 1)d(d−1)/2 , and this infimum ρ∗ can be computed explicitly.

By convexity and differentiability of ρ 7→ R(b̂, ρ) over the convex open set Γ = C
d
>+, the

existence of such minimum is equivalent to the existence of critical points to R(b̂, .), i.e.,

∂R(b̂, ρ∗)

∂ρij
= 0, 1 ≤ i < j ≤ d. (A.23)

Recalling that σi > 0 i = 1, . . . , d, this is written from (A.6) as the system of d(d − 1)/2
equations:

κ̂i(ρ∗)κ̂j(ρ∗) = 0, 1 ≤ i < j ≤ d, (A.24)

which indicates that at most one component of κ̂(ρ∗) is not zero. Notice that due to the
assumption that b̂ 6= 0, κ̂(ρ∗) = Σ(ρ∗)−1b̂ is never zero, i.e. at least one component of
κ̂(ρ∗) is not zero. Therefore, exactly one component of κ̂(ρ∗) is not zero. Then (A.24) is
equivalent to κ̂i1(ρ∗) 6= 0, κ̂j(ρ∗) = 0, j 6= i1, for some i1 = 1, . . ., d. In other words, we
have

(0, . . . , 0, κ̂i1(ρ∗), 0, . . . , 0)⊺ = Σ(ρ∗)−1b̂, for some i1 = 1, . . . , d. (A.25)

Pre-multiplying Σ(ρ∗) on both sides of (A.25) and then writing out l.h.s, we obtain
{

σ2
i1
κ̂i1(ρ∗) = b̂i1

σi1σiρ
∗
i1i
κ̂i1(ρ∗) = b̂i 1 ≤ i ≤ d, i 6= i1,

(A.26)

which yields the explicit form:










κ̂i1(ρ∗) =
b̂i1
σ2
i1

ρ∗i1i = β̂i

β̂i1

i 6= i1, 1 ≤ i ≤ d.
(A.27)

As |ρ∗i1i| < 1 in (A.27), together with condition |β̂1| > max
i 6=1

|β̂i|, we thus have i1 = 1 and

Σ(ρ∗)−1b̂ = κ̂(ρ∗) = (
b̂1
σ2
1

, 0, . . . , 0)⊺, ρ∗1i = ˆ̺1i, 2 ≤ i ≤ d. (A.28)

Once {ρ∗1i}2≤i≤d is given as in (A.28), we can complete the other values of ρ∗ij ∈ (−1, 1) such

that ρ∗ belongs to C
d
>+. For instance, by choosing as in Corollary 2 in [24], ρ∗ij = ρ∗1iρ

∗
1j =

ˆ̺1i ˆ̺1j , 2 ≤ i < j ≤ d, we check that C(ρ∗) ∈ S
d
>+. Indeed, in this case we have











1 0 . . . 0
− ˆ̺12 1 . . . 0

...
...

. . .
...

− ˆ̺1d 0 . . . 1

























1 ˆ̺12 ˆ̺13 . . . ˆ̺1d
ˆ̺12 1 ˆ̺12 ˆ̺13 . . . ˆ̺12 ˆ̺1d
ˆ̺13 ˆ̺12 ˆ̺13 1 . . . ˆ̺13 ˆ̺1d
...

...
...

. . .
...

ˆ̺1d ˆ̺12 ˆ̺1d ˆ̺13 ˆ̺1d . . . 1

























1 0 . . . 0
− ˆ̺12 1 . . . 0

...
...

. . .
...

− ˆ̺1d 0 . . . 1











⊺

= diag{1, 1 − | ˆ̺12|2, 1− | ˆ̺13|2, . . . , 1− | ˆ̺1d|2},
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which is positive definite since 1− | ˆ̺1i|2 > 0, i = 2, . . ., d.
In particular when |β̂i| is in strictly descending order, i.e. |β̂1| > |β̂2| > . . . > |β̂d|, ρ∗ =

(ρ∗ij)1≤i<j≤d = (ˆ̺ij)1≤i≤j≤d = : ˆ̺ also belongs to C
d
>+. Indeed, in this case, observe that











1 0 . . . 0
− ˆ̺12 1 . . . 0

...
...

. . .
...

− ˆ̺1d 0 . . . 1











C(ˆ̺)











1 0 . . . 0
− ˆ̺12 1 . . . 0

...
...

. . .
...

− ˆ̺1d 0 . . . 1











⊺

=















1 0 0 . . . 0
0 1− ˆ̺212 ˆ̺23 − ˆ̺12 ˆ̺13 . . . ˆ̺2d − ˆ̺12 ˆ̺1d
0 ˆ̺23 − ˆ̺12 ˆ̺13 1− ˆ̺213 . . . ˆ̺3d − ˆ̺13 ˆ̺1d
...

...
...

. . .
...

0 ˆ̺2d − ˆ̺12 ˆ̺1d ˆ̺3d − ˆ̺13 ˆ̺1d . . . 1− ˆ̺21d















.

Denote by C1(ˆ̺) the matrix in the r.h.s of the above equality and note that ˆ̺1i = ˆ̺12 ˆ̺2i, i
= 3, . . ., d. Then we have















1 0 0 . . . 0
0 1 0 . . . 0
0 − ˆ̺23 1 . . . 0
...

...
...

. . .
...

0 − ˆ̺2d 0 . . . 1















C1(ˆ̺)















1 0 0 . . . 0
0 1 0 . . . 0
0 − ˆ̺23 1 . . . 0
...

...
...

. . .
...

0 − ˆ̺2d 0 . . . 1















⊺

=



















1 0 0 0 . . . 0
0 1− ˆ̺212 0 0 . . . 0
0 0 1− ˆ̺223 ρ̂34 − ρ̂23ρ̂24 . . . ρ̂3d − ˆ̺23 ˆ̺2d
0 0 ˆ̺34 − ˆ̺23 ˆ̺24 1− ˆ̺224 . . . ˆ̺4d − ˆ̺24 ˆ̺2d
...

...
...

...
. . .

...
0 0 ˆ̺3d − ˆ̺23 ˆ̺2d ˆ̺4d − ˆ̺24 ˆ̺2d . . . 1− ˆ̺22d



















.

Denote by C2(ˆ̺) the matrix in the r.h.s of the above equality and again note that ˆ̺2i = ˆ̺23
ˆ̺3i, i = 4, . . ., d. Then we can do the similar matrix congruence with C2(ˆ̺) as with C1(ˆ̺).
And so on. After d− 1 steps of matrix congruence, we arrive at the diagonalization of the
matrix C(ˆ̺)

TC(ˆ̺)T ⊺ = diag{1, 1 − | ˆ̺12|2, 1− | ˆ̺23|2, . . . , 1− | ˆ̺d−1d|2},

where T = Td · · · T1 with Ti being invertible matrix with diagonal terms 1, (j, i)-th term
− ˆ̺ij , j > i, and other terms 0.

We deduce that the system of equations (A.24) has solutions in C
d
>+ given by (A.28).

Moreover, we have from (A.28)

min
ρ∈Cd

>+

R(b̂, ρ) = R(b̂, ρ∗) = b̂⊺κ̂(ρ∗) = b̂1κ̂
1(ρ∗) = β̂2

1 . (A.29)

Combining this with Lemma A.3, we obtain b∗ described in 4.1. ✷

A.3 Proof of Proposition 4.2

As Γ = [ρ, ρ̄] is compact, we already know that ρ∗ = argminρ∈ΓR(b̂, ρ) exists, and from

Lemma A.3, we only need to compute the minimum of the function ρ 7→ R(b̂, ρ) over Γ.
From (A.8) with d = 2, we obtain the sufficient and necessary condition of ρ∗ for being
global minimum of R(b̂, ρ) over Γ:

σ1σ2κ̂
1(ρ∗)κ̂2(ρ∗)(ρ− ρ∗) ≤ 0, ∀ρ ∈ [ρ, ρ̄], (A.30)
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where κ̂(ρ) is explicitly written as

κ̂(ρ) =
1

1− ρ2





b̂1
σ2
1
− b̂2

σ1σ2
ρ

b̂2
σ2
2
− b̂1

σ1σ2
ρ



 =
1

1− ρ2

(

β̂1−β̂2ρ
σ1

β̂2−β̂1ρ
σ2

)

. (A.31)

From (A.30), we have three possible cases:

• κ̂1(ρ∗)κ̂2(ρ∗) = 0. From the explicit expression (A.31) of κ̂(ρ∗), and as ρ∗ has to
belong to [ρ, ρ̄] ⊂ (−1, 1), we obtain κ̂2(ρ∗) = 0, i.e., ρ∗ = ˆ̺12, and so R(b̂, ρ∗) = β̂2

1 .

• κ̂1(ρ∗)κ̂2(ρ∗) > 0. Then (A.30) is satisfied iff ρ∗ = ρ̄. Moreover, from the above
explicit expression of κ̂(ρ∗), we obtain ρ̄ < ˆ̺12.

• κ̂1(ρ∗)κ̂2(ρ∗) < 0. Then (A.30) is satisfied iff ρ∗ = ρ. Moreover, from the explicit
expression of κ̂(ρ∗), we obtain ρ > ˆ̺12.

By combining this with Lemma A.3, we obtain b∗ described as in Proposition 4.2. ✷

A.4 Proof of Proposition 4.3

As Γ =

3
∏

j=1

j−1
∏

i=1

[ρ
ij
, ρ̄ij ] is compact, we already know that ρ∗ = argmin

ρ∈Γ
R(b̂, ρ) exists. From

Lemma A.3, we only need to compute the minimum of the function ρ 7→ R(b̂, ρ) over Γ by
applying the optimality principle (A.8) when d = 3,

3
∑

j=1

j−1
∑

i=1

σiσjκ̂
i(ρ∗)κ̂j(ρ∗)(ρij − ρ∗ij) ≤ 0 for any ρ ∈ Γ. (A.32)

We observe from (A.32) that similar as Proposition 4.2, each ρ∗ij , 1 ≤ i < j ≤ 3 may be lower

bound ρ
ij

, upper bound ρ̄ij , or an interior point in (ρ
ij
, ρ̄ij), which corresponds to κiκj(ρ∗)

> 0, κiκj(ρ∗) < 0, or κiκj(ρ∗) = 0 respectively. Therefore, we consider the following possible
exclusive cases depending on the number of zero components in κ̂(ρ∗):

1. κ̂1κ̂2(ρ∗) = 0, κ̂1κ̂3(ρ∗) = 0, κ̂2κ̂3(ρ∗) = 0.
In this case, (A.32) is immediately satisfied. As we assume that b̂ 6= 0, κ̂(ρ∗) is not
zero, i.e. at least one component of κ̂(ρ∗) is nonzero. Then, two components of κ̂(ρ∗)
are zero. Under the assumption that |β̂1| ≥ |β̂2| ≥ |β̂3|, (A.28) and (A.29) in Section
A.2 yield the explicit expressions of ρ∗, κ̂(ρ∗) and R(b̂, ρ∗)

ρ∗12 = ˆ̺12 ∈ [ρ
12
, ρ̄12], ρ

∗
13 = ˆ̺13 ∈ [ρ

13
, ρ̄13], any ρ∗23 ∈ [ρ

23
, ρ̄23]

and

κ̂(ρ∗) = (
b̂1
σ2
1

, 0, 0)⊺, R(b̂, ρ∗) = β̂2
1 . (A.33)

Let us show that β̂2
1 in (A.33) is strict minimum value in the sense that R(b̂, ρ∗) = β̂2

1

iff ρ∗12 = ˆ̺12 ∈ [ρ
12
, ρ̄12], ρ

∗
13 = ˆ̺13 ∈ [ρ

13
, ρ̄13] and any ρ∗23 ∈ [ρ

23
, ρ̄23]. We express

Σ(ρ) as the following block matrix

Σ(ρ) =

(

σ2
1 C⊺

1

C1 Σ−1(ρ23)

)

,
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where the vector C1 = (σ1σ2ρ12, σ1σ3ρ13)
⊺.

(

1 01×2

−C1

σ2
1

I2×2

)

(

σ2
1 C⊺

1

C1 Σ−1(ρ23)

)

(

1 −C⊺

1

σ2
1

02×1 I2×2

)

=

(

σ2
1 01×2

02×1 A

)

, (A.34)

where I2×2 denotes 2 × 2 identity matrix and A = Σ−1(ρ23)− C1C
⊺

1

σ4
1

is 2 × 2 positive

definite matrix.
Inverting on both sides of (A.34), we get

Σ−1(ρ) =

(

1 −C⊺

1

σ2
1

02×1 I2×2

)

(

σ−2
1 01×2

02×1 A−1

)

(

1 01×2

−C1

σ2
1

I2×2

)

. (A.35)

We express b̂ as (b̂1, b̂
⊺

−1)
⊺ and then write R(b̂, ρ) as two nonnegative decompositions

from (A.35),

R(b̂, ρ) = β̂2
1 + (b̂−1 −

b̂1
σ2
1

C1)
⊺A−1(b̂−1 −

b̂1
σ2
1

C1)

≥ β̂2
1 ,

where in the last inequality, ‘=’ holds if and only if b̂−1 − b̂1
σ2
1
C1 = 0, i.e. ρ∗12 = ˆ̺12,

ρ∗13 = ˆ̺13. This corresponds to case 1. of Proposition 4.3.

2. κ̂1κ̂2(ρ∗) 6= 0, κ̂1κ̂3(ρ∗) = 0, κ̂2κ̂3(ρ∗) = 0.
In this case, we express Σ(ρ) as the following block-matrix form for convenience,

Σ(ρ) =

(

Σ−3(ρ12) C3

C⊺

3 σ2
3

)

,

where the vector C3 = (σ1σ3ρ13, σ2σ3ρ23)
⊺.

By first transforming Σ(ρ) to block diagonal matrix as (A.35) and then taking inverse,
we obtain

Σ(ρ)−1 =

(

I2×2 −Σ−3(ρ12)
−1C3

01×2 1

)(

Σ−3(ρ12)
−1

02×1

01×2 a(ρ)−1

)

(

I2×2 02×1

−C⊺

3Σ−3(ρ12)
−1 1

)

, (A.36)

where a(ρ) = σ2
3 − C⊺

3Σ−3(ρ12)
−1C3 is positive.

Recalling the definition of κ(b̂, ρ) and R(b̂, ρ) , we obtain from (A.36)







(

κ̂1(ρ)
κ̂2(ρ)

)

= Σ−3(ρ12)
−1b̂−3 − κ̂3(ρ)Σ−3(ρ12)

−1C3

κ̂3(ρ) = 1
a(ρ)(b̂3 − C⊺

3Σ−3(ρ12)
−1b̂−3)

(A.37)

and

R(b̂, ρ) = b̂⊺−3Σ−3(ρ12)
−1b̂−3 + a(ρ)

(

κ̂3(ρ)
)2
. (A.38)
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In the following, we write b̂⊺−3Σ−3(ρ12)
−1b̂−3 as R(b̂−3, ρ12).

As κ̂3(ρ∗) = 0, we obtain from (A.32) that

σ1σ2κ̂
1κ̂2(ρ∗12)(ρ12 − ρ∗12) ≤ 0 for all ρ12 ∈ [ρ

12
, ρ̄12] (A.39)

and from (A.37) and (A.38) that







(

κ̂1(ρ∗12)
κ̂2(ρ∗12)

)

= Σ−3(ρ
∗
12)

−1b̂−3

R(b̂, ρ∗) = R(b̂−3, ρ
∗
12).

(A.40)

This is the case of ambiguous correlation in the two-risky assets: risky asset 1 and
risky asset 2 with ambiguous correlation ρ12 in [ρ

12
, ρ̄12]. In this case, κ̂1(ρ∗) and

κ̂2(ρ∗) are not zero, therefore we have that from Proposition 4.2

ρ∗12 = ρ̄121{ρ̄12< ˆ̺12} + ρ
12
1{ρ

12
> ˆ̺12}. (A.41)

By setting g(ρ∗12, ρ13, ρ23) : = a(ρ∗12, ρ13, ρ23)κ
3(ρ∗12, ρ13, ρ23) for fixed ρ∗12 in (A.41),

we deduce from (A.37) that the function

(ρ13, ρ23) 7→ g(ρ∗12, ρ13, ρ23) = b̂3 − σ1σ3κ̂
1(ρ∗12)ρ13 − σ2σ3κ̂

2(ρ∗12)ρ23,

is linear in (ρ13, ρ23) ∈ [ρ
13
, ρ̄13] × [ρ

23
, ρ̄23], and has the same sign as κ̂3(ρ∗12, ρ13, ρ23)

due to the positiveness of a(ρ∗12, ρ13, ρ23). To study the condition of κ3(ρ∗) = 0, we
discuss it in the following two cases:

(i) if ρ̄12 < ˆ̺12, then κ̂1κ̂2(ρ̄12) > 0, the function (ρ13, ρ23) 7→ g(ρ̄12, ρ13, ρ23) has
the same monotonicity with respect to ρ13, ρ23. Therefore, to ensure that the
function g(ρ̄12, ρ13, ρ23) has a root in [ρ

13
, ρ̄13] × [ρ

23
, ρ̄23], we need g(ρ̄12, ρ13, ρ23)

g(ρ̄12, ρ̄13, ρ̄23) ≤ 0, or equivalently κ̂3(ρ̄12, ρ13, ρ23) κ̂
3(ρ̄12, ρ̄13, ρ̄23) ≤ 0.

(ii) if ρ
12

> ˆ̺12, then κ̂1κ̂2(ρ
12
) < 0, the function (ρ13, ρ23) 7→ g(ρ

12
, ρ13, ρ23) has the

opposite monotonicity with respect to ρ13, ρ23. Therefore, when g(ρ
12
, ρ̄13, ρ23)

g(ρ
12
, ρ

13
, ρ̄23) ≤ 0, or equivalently κ̂3(ρ

12
, ρ̄13, ρ23)κ̂

3(ρ
12
, ρ

13
, ρ̄13) ≤ 0, the func-

tion g(ρ
12
, ρ13, ρ23) has a root in [ρ

13
, ρ̄13] × [ρ

23
, ρ̄23].

Therefore, we deduce that R(b̂, ρ) ≥ R(b̂−3, ρ12) ≥ R(b̂−3, ρ̄121{ρ̄12< ˆ̺12}+ρ
12
1{ρ

12
> ˆ̺12})

and that ‘=’ holds if and only if ρ∗12 = ρ̄121{ρ̄12< ˆ̺12} + ρ
12
1{ρ

12
> ˆ̺12} and ρ∗13, ρ

∗
23 sat-

isfies κ̂3(ρ∗12, ρ
∗
13, ρ

∗
23) = 0.This corresponds to subcases 2.(i) and 2.(ii) of Proposition

4.3.

3. κ̂1κ̂2(ρ∗) = 0, κ̂1κ̂3(ρ∗) 6= 0, κ̂2(ρ∗)κ̂3(ρ∗) = 0.
In this case, we make permutations as follows,

(

κ̂−2(ρ)
κ̂2(ρ)

)

=

(

Σ−2(ρ13) C2

C⊺

2 σ2
2

)−1(
b̂−2

b̂2

)

, (A.42)

where κ̂−2(ρ) = (κ̂1(ρ), κ̂3(ρ))⊺ and C2 = (σ1σ2ρ12, σ2σ3ρ23)
⊺. Using (A.42) and pro-

ceeding with the same arguments as in the case 2., we obtain the result of κ̂2(ρ∗) =
0, κ̂1(ρ∗)κ̂3(ρ∗) 6= 0 as described in the subcases 3.(i) and 3.(ii) of Proposition 4.3.
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4. κ̂1κ̂2(ρ∗) = 0, κ̂1κ̂3(ρ∗) = 0, κ̂2(ρ∗)κ̂3(ρ∗) 6= 0.
Note that

(

κ̂−1(ρ)
κ̂1(ρ)

)

=

(

Σ−1(ρ23) C1

C⊺

1 σ2
1

)−1(
b̂−1

b̂1

)

, (A.43)

where κ̂−1(ρ) = (κ̂2(ρ), κ̂3(ρ))⊺ and C1 = (σ1σ2ρ12, σ1σ3ρ13)
⊺. Using (A.43) and pro-

ceeding with the same arguments as in the case 2., we obtain the result of κ̂1(ρ∗) =
0, κ̂2(ρ∗)κ̂3(ρ∗) 6= 0 as described in subcases 4.(i) and 4.(ii) of Proposition 4.3.

5. κ̂1κ̂2(ρ∗) 6= 0, κ̂1κ̂3(ρ∗) 6= 0, κ̂2(ρ∗)κ̂3(ρ∗) 6= 0.
In this case, we see from (A.32) that each ρ∗ij takes value in {ρ

ij
, ρ̄ij} relying on the

sign of κ̂iκ̂j(ρ∗). Note that once the signs of κ̂1κ̂2(ρ∗) and κ̂1κ̂3(ρ∗) are known, the
sign of κ̂2(ρ∗)κ̂3(ρ∗) is determined. Therefore, by combination, there are 4 possible
sub-cases as described in the case 5. of Proposition 4.3.
As κ̂i(ρ∗)κ̂j(ρ∗) 6= 0 in each subcase, left right hand of (A.32) is strictly negative for
any ρ ∈ Γ \ {ρ∗}. From the first-order characterization for convexity of R(b̂, ρ) (see
e.g. Section 3.1.3 in [4]) and (A.6), we obtain for any ρ ∈ Γ \ {ρ∗},

R(b̂, ρ) ≥ R(b̂, ρ∗) + (ρ− ρ∗)⊺∇ρR(b̂, ρ∗)

= R(b̂, ρ∗)−
3
∑

j=1

j−1
∑

i=1

σiσjκ̂
i(ρ∗)κ̂j(ρ∗)(ρij − ρ∗ij)

> R(b̂, ρ∗),

which indicates that ρ∗ in each sub-case of case 5. in Proposition 4.3 is a strict
minimum of R(b̂, ρ).

As R(b̂, ρ∗) in this subcase is strict minimum value, we conclude that each subcase in
Proposition A.3 is exclusive.
By combining this with Lemma A.3, we obtain b∗ described as in Proposition 4.3. ✷
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