
HAL Id: hal-01867030
https://hal.science/hal-01867030

Submitted on 3 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

πSOD-M: Building SOC Applications in the Presence of
Non-Functional Requirements

Khalid Belhajjame, Valeria de Castro, Javier A Espinosa-Oviedo, Martin A
Musicante, Umberto Souza da Costa, Plácido A Souza Neto, Genoveva

Vargas-Solar, José-Luis Zechinelli-Martini

To cite this version:
Khalid Belhajjame, Valeria de Castro, Javier A Espinosa-Oviedo, Martin A Musicante, Um-
berto Souza da Costa, et al.. πSOD-M: Building SOC Applications in the Presence of Non-
Functional Requirements. International Journal of Web and Grid Services, 2018, 14 (4), pp.400-431.
�10.1504/IJWGS.2018.095660�. �hal-01867030�

https://hal.science/hal-01867030
https://hal.archives-ouvertes.fr

πSOD-M: Building SOC Applications in the Presence of
Non-Functional Requirements

Khalid Belhajjame

University Paris-Dauphine, PSL Research University,
CNRS, UMR 7243, Centre Lamsade, 75016 Paris, France
E-mail: kbelhajj@googlemail.com

Valeria de Castro

Kybele Research Group, Rey Juan Carlos University, Madrid, Spain
E-mail: valeria.decastro@urjc.es

Javier A. Espinosa-Oviedo

Barcelona Supercomputing Center (BSC), Barcelona, Spain and
French-Mexican Laboratory of Informatics and Automatic Control
(LAFMIA), Puebla, Mexico/ Grenoble, France
E-mail: javiera.espinosa@bsc.es

Martin A. Musicante and
Umberto Souza da Costa

Department of Computer Science (DIMAp),
Federal University of Rio Grande do Norte, Natal, Brazil
E-mail: mam@dimap.ufrn.br
E-mail: umberto@dimap.ufrn.br

Plácido A. Souza Neto∗

Federal Institute for Education, Science and Technology
of Rio Grande do Norte, Natal, Brazil
E-mail: placido.neto@ifrn.edu.br
*Corresponding author

Genoveva Vargas-Solar

Univ. Grenoble Alpes, CNRS, Institute of Engineering Univ. Grenoble
Alpes (Grenoble INP), LIG, 38000 Grenoble, France and
French-Mexican Laboratory of Informatics and Automatic Control
(LAFMIA), Puebla, Mexico/ Grenoble, France

Copyright c© 2017 Inderscience Enterprises Ltd.

2 K. Belhajjame et al.

E-mail: genoveva.vargas@imag.fr

José-Luis Zechinelli-Martini

University of the Americas-Puebla, Cholula, Mexico and
French-Mexican Laboratory of Informatics and Automatic Control
(LAFMIA), Puebla, Mexico/ Grenoble, France
E-mail: joseluis.zechinelli@udlap.mx

Abstract: Specifying non-functional requirements (NFRs) is a complex task,
being usually addressed during the latter phases of the software development
process. The late inclusion of NFRs during the software development may
compromise the quality of the resulting application. This paper presents πSOD-
M, a method and associated tools that (i) allow the early specification of NFRs
allowing users to them in an abstract way without having to care about low level
details; (ii) embraces the MDA philosophy, generating models (code) whenever
possible for reducing the specification and programming effort of the business
application logic and its associated NFRs. Our solution has been used in the
context of an industrial and real case study.

Keywords: MDA, Non-Functional Requirements, Service-based software
process.

Reference to this paper should be made as follows: Khalid Belhajjame,
Valeria de Castro, Javier A. Espinosa-Oviedo, Martin A. Musicante,
Umberto Souza da Costa, Plácido A. Souza Neto, Genoveva Vargas-Solar, José-
Luis Zechinelli-Martini (xxxx) ‘πSOD-M: Building SOC Applications in the
Presence of Non-Functional Requirements’, International Journal of Web and
Grid Services, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Khalid Belhajjame is a lecturer (Maitre de Conférences) at
the University Paris-Dauphine, where he is a member of the LAMSADE. His
research interests lie in the areas of information and knowledge management.
He has made key contributions to the areas of pay-as-you data integration, e-
Science, scientific workflow management, provenance tracking and exploitation,
and semantic web services.

Valeria de Castro is associate professor in the Department of Computing
Languages and Systems at the Rey Juan Carlos University sited in Madrid,
Spain. She received her M.Sc. degree in Information Systems from the National
Technological University, Argentine in 2003 and she got her Ph.D. in Computer
Science by the Rey Juan Carlos University in 2007. She is member of
Kybele Research Group where leads the Service Engineering research line. Her
research interests include Services Engineering, Service Oriented Development,
Web Engineering and Model Driven Engineering. She has co-authored several
publications in national and international conferences and journals. She has
participated in several research projects and has lead the main researcher at the
Spanish Network of Service Science from 2010 to 2014.

Javier Alfonso Espinosa-Oviedo is a computer scientist specialized in the
domains of databases and distributed systems. His research focuses mainly
on large-scale data management and processing based on service oriented

πSOD-M: Building SOC Applications in the Presence of NFRs 3

architectures. He currently works as postdoctoral researcher at the Barcelona
Supercomputing Centre (BSC), in the Extreme Computing Group, and is
researcher at the French-Mexican Laboratory of Informatics and Automatic
Control (LAFMIA), in the Database Management Group. His research interests
include: Stream Processing, Urban Computing, Digital Humanities, Data
Visualization. He has participated in several national and European projects
(CASES EU-FP7; S2EUNET FP7-IRSES; POLIWEB PEPS CNRS), and has
been invited as visiting researcher in different institutions (POLITO, Italy;
UdelaR, Uruguay; NUAA, China; UDLAP, Mexico) where he has lectured on
selected topics of data management.

Martin A. Musicante received his B.Sc at ESLAI, Argentina, in 1988 and his
M.Sc and PhD in Computer Science at Universidade Federal de Pernambuco,
Brazil, in 1990 and 1996, respectively. He is full professor at Universidade
Federal do Rio Grande do Norte-UFRN (Natal, Brazil). He is part of the graduate
program in Computer Science at UFRN. Martin was associate researcher at
LI - Université François Rabelais Tours (2002-2011) and at LIFO - Université
d’Orléans, France, since 2008.

Umberto Souza da Costa received the BS degree in Computer Science from
Federal University of Rio Grande do Norte in 1998. He obtained the MS degree
in Systems and Computation from Federal University of Rio Grande do Norte in
2000. He received the PhD degree in Computer Science from University Federal
de Minas Gerais in 2005. He is currently an associate professor in the Department
of Informatics and Applied Mathematics (DIMAp) at Federal University of
Rio Grande do Norte. His academic interests include Programming Languages,
Service-Oriented Computing and Cloud Computing.

Plácido A. Souza Neto received his B.Sc at CEFET-RN, Brazil, in 2005 and
his M.Sc and PhD in Computer Science at Universidade Federal de Rio Grande
do Norte, Brazil, in 2007 and 2012, respectively. He is an associate professor
at Instituto Federal do Rio Grande do Norte-IFRN (Natal, Brazil). He was part
of LIG (Grenoble - France) between 2014-2015 for as a post-doc fellow. He is
part of the graduate program in Software Analysis and Development at IFRN.
Plácido A. Souza Neto’s main current research topics are Software Engineering,
Data Analysis, Model Driven Development and Web Services.

Genoveva Vargas-Solar (http://www.vargas-solar.com) is senior scientist of the
French Council of Scientific Research (CNRS) and member of the HADAS
group of the Informatics Laboratory of Grenoble, France. She is deputy
director the Franco-Mexican Laboratory of Informatics and Automatic Control
(LAFMIA). She is regular member of the Mexican Academia of Computing
Science. Her research interests in Computer Science concern distributed and
heterogeneous databases, reflexive systems and service based database systems.
Particularly, she contributes to the construction of service based database
management systems. The purpose is to provide methodologies, algorithms
and tools for integrating, deploying and executing a service composition for
programing data management functions. Data services composition must respect
quality of service criteria (e.g., security, reliability, fault tolerance, evolution and
dynamic adaptability) and behaviour properties (e.g., transactional execution)
adapted to applications requirements. She conducts fundamental and applied
research activities for addressing these challenges.

4 K. Belhajjame et al.

José-Luis Zechinelli-Martini is titular professor of the Department of
Computing, Electronics and Mecatronics at the Universidad de las AmÃl’ricas
Puebla (UDLAP) since 2002 and he is currently senior researcher at LAFMIA.
He is head of the Data and Knowledge Management Group (DBKM) of
LAFMIA. In 2001 he obtained his Ph.D. in Computer Science and in 1997 he
obtained his Master Degree in Computer Science at University Joseph Fourier,
Grenoble, France. In 1993 he obtained his diploma on Computer Systems
Engineering at UDLAP. Between 2003 and 2006 he was director of the CENTIA
and head of the PhD program on Computer Science. His research project
concerns on the integration of Big Data collections on different infrastructures
and the specification of spatio-temporal and visualization query languages for
retrieving multimedia and multiform data from distributed services.

This paper is a revised and expanded version of a paper entitled “Supporting
Non-functional Requirements in Services Software Development Process: An
MDD Approach” presented at SOFSEM 2014, Nový Smokovec, High Tatras,
Slovakia, January 25-30, 2014 ?.

1 Introduction

In Service-Oriented Computing ?, pre-existing services are combined to build an
application business logic. The selection of services is usually guided by the functionala

requirements of the application being developed ???. An important challenge of service-
oriented development is to ensure the alignment between the functional requirements
imposed by the business logic and the functions actually being developed.

Functional properties are not the only aspect to be considered in the software
development process. Non-functional properties, such as data privacy, exception handling,
atomicity and, data persistence, need to be addressed to fit in the application. Ideally,
Non-Functional Requirements (NFR) should be considered in every phase of the
software development. Yet, they are partially or rarely methodologically derived from the
specification, being usually added once the code has been implemented. In the context
of service oriented computing, the late consideration of non-functional requirements in
the development process does not fully preserve the compliance and reuse expectations
promoted by the service oriented paradigm.

The literature emphasizes the need for methodologies and techniques for service
oriented analysis and design ?. Existing approaches note that the convergence of model-
driven software development, service orientation and business processes improvement are
key for developing quality software ?. Model Driven Development (MDD) for software
systems is mainly characterized by the use of models as a product ?. These models are
successively refined from abstract specifications into actual computer programs. A recent
literature review concludes that current MDD approaches rarely deal with NFRs ?b.

aFunctional properties of a computer system are characterized by the effects they produce in the behavior of
the system given a specific input.

bThe study shows that only 48 of the 129 papers considered in their systematic mapping deal with NFR.
Moreover, most of them consider just specific aspects of NFR, while only 5 papers (out of 129) propose a more
general approach.

πSOD-M: Building SOC Applications in the Presence of NFRs 5

Our work introduces π-Service Oriented Development Method (πSOD-M) to support
the specification of non-functional aspects of service-oriented applications, taking
into account both functional and non-functional requirements, early in the software
development processc Our proposal follows the MDD guidelines and proposes models,
practices and techniques for the development of service-based applications. πSOD-M
proposes the use of models to specify a software system at different levels of abstraction.
Models are organized according to the guidelines of the Model Driven Architecture
(MDA) ?. The goals of πSOD-M are:

i. To improve the development process by providing an abstract view of the application
and helping to ensure the conformance to its specification.

ii. To reduce the programming effort through the semi-automatic generation of models
for the application, to produce concrete implementations from higher-level models.

iii. To provide a general way of describing non-functional requirements.
The applicability of our proposal was tested with an industrial case study concerning

risk assessment for financial companies as implemented by the ORCA Systemd. In this
work we show the application of our method πSOD-M to develop a service based
application called FlyingPig that provides risk assessment as a service. The models
presented here were generated as a result of interacting with software developers at GCP
Global and trying to fulfill all the non-functional requirements present in the application.

This paper is organized as follows. Section ?? summarizes the general principles
of existing works for addressing NFP and associating them to service compositions.
Sections ?? and ?? introduce respectively the meta-models and transformation rules of
πSOD-M. Section ?? describes the FlyingPig case study that we develop for validating our
method and discusses lessons learned. Finally, Section ?? concludes the paper and gives
research perspectives.

2 Related Work

While Functional Requirements establish what is computed by an application, Non-
Functional Requirements (NFRs) are concerned with how the task is performed. NFRs
include aspects such as performance, authentication and quality constraints. These
requirements are usually specified by conditions, called non-functional properties. Non-
functional properties are also referred to as constraints, quality attributes, quality goals,
quality of service requirements and non-behavioral requirements ???. Most research on
NFRs focus on the evaluation of compliance by the software system as a whole. In service-
based applications, NFRs are related to the application itself as well as to its component
services.

In ?? non-functional properties of web services are classified according to three
perspectives: service, system and business levels. In ? authors use the terms non-functional
attributes, composition model entity and model entity to classify different concepts related
to NFRs. The notion of non-functional attribute is used to describe NFRs of the abstract
process model. In the lower level, the composition is annotated with non-functional
attributes.

cThe letter π of the name of the method comes from Policy which is a central notion to represent NFR’s and
the way they are enforced at runtime. π stands of the pronunciation of the first letter of the word “policy” which
is /p/.

dThe ORCA System is a trademark of GCP Global (www.gcpglobal.com).

6 K. Belhajjame et al.

D’Ambrogio ? uses the term quality category to group similar quality characteristics.
Quality dimensions are used to quantify an individual characteristic. For instance, the
quality category performance groups characteristics such as latency and throughput. The
development process is based on MDA and the authors also present a WSDL extension
for describing the QoS of web services. A catalog of QoS characteristics is provided for
the web service domain, including properties such as availability, reliability and access
control.

Schmeling et al. ? present an approach and a toolkit for specifying and implementing
web service compositions with support to several NFRs. Their approach defines abstraction
levels, where the terms Non-Functional Concerns, Non-Functional Attributes and Non-
Functional Actions are used at each level (in decreasing order of abstraction). A non-
functional concern is a general term used to describe NFRs, such as security, reliability
or transactional behavior. Each concern is refined into a set of non-functional attri-
butes, where a non-functional attribute represents some behavior, to be refined into non-
functional actions. For instance, encryption is a non-functional action which provides the
implementation of the non-functional attribute confidentiality, which is part of the security
non-functional concern.

Pastrana et al. ? use a traditional design-by-contract approach ?. The authors use the
term contract to describe non-functional requirements. Contracts may present pre-condi-
tions, post-conditions and invariants. Also, a contract may define assertions associated with
quality properties. Each service may have as many associated contracts as needed.

Chollet et al. ? associate (non-functional) quality properties to (functional) activities.
They present a security meta-model that takes into account web service compositions.
In this work the non-functional requirements considered are authentication, integrity and
confidentiality. Each NFR is associated with a service activity.

The authors in ?? use formal methods to define a service-based development process
that takes NFRs into account. In ?? ontologies are used to define and model NFRs, as in ??
Business Process Modeling is used for system specification, including NFRs. In the method
defined in ?, each task and data item of the application can be annotated with functional
as well as non-functional attributes (NFAs). Functional and non-functional attributes are
independently defined. They are attached to specific tasks later in the development of the
application. NFAs for data considers value and range, whereas NFAs for tasks include cost,
time, resources and expressions.

The proposal in ? presents steps to select services by taking QoS information
into account: (i) identification of relevant QoS information; (ii) identification of basic
composition patterns and QoS aggregation rules for these patterns; and (iii) definition of a
selection mechanism of services. The authors consider performance, cost, reliability and
availability.

Karunamurthy et al. ? define NFRs, such as cost, response time, availability, security,
reliability and reputation, as non-function parameters. The Non-Functional Specification
Language is proposed as a domain specific language to express non-function parameters.

Liu et al. ? use the term QoS parameter to describe NFRs such as cost, execution
duration, accuracy, security, integrity, availability and reliability. In the same way, Tran et
al. ? use the term QoS policies to classify similar non-functional requirements.

Li et al. ? associate dimensions to QoS parameters to classify NFRs. For instance, the
time dimension is associated to the execution time and communication time parameters;
the spatial dimension is associated to the storage capacity and message length parameters;
the reliability dimension is associated to the availability and reliability parameters and the

πSOD-M: Building SOC Applications in the Presence of NFRs 7

cost dimension is associated to the service cost parameter. Rumpel et al. ? associate quality
requirements to quality properties. Quality requirements are to be specified as constraints.

Ceri et al.? use the notions of policy, rule, condition and action model to specify
NFRs. Agarwal et al. ? associate service policies to services. Each service may also have
properties, such as security and reliability. Ovaska et al. ? use the terms quality attribute,
category, conceptual layer and importance to organize and classify NFRs. Other authors do
not define specific terms to refer to NFRs; they use terms such as attribute ???, property ?,
factor ??, characteristic ?, quality level ?, and value ??.

Despite the different notations found in the literature for classifying NFRs, some
NFRs are frequently considered, such as security, performance, reliability, usability, and
availability. However, distinct hierarchies and models are proposed for NFRs, according to
different perspectives. We have identified a number of approaches ?????? that use MDD
(Model Driven Development) for designing and developing applications.

Besides the existence of these works, it is important to remark that authors continue
emphasizing the limited attention of the model-driven proposals for service development
to NFRs ??.As Ameller et al. notes in a recently published literature review, there are “Not
many papers that presented a generic approach to deal with NFRs". Those authors also
remark the lack of industrial use cases ?.

To the best of our knowledge, and based on the related work analysis, there
are no proposals that define a service-oriented approach for the whole development
process of systems, considering non-functional requirements. Despite the efforts made
to support the new technological proposals for the Web, such as web services, these
development approaches address their development processes according to traditional
software engineering, with emphasis on the functional aspect of the application.

Our method for developing service-oriented applications aims to overcome limitations
of existing proposals by dealing with NFRs. Our approach targets the characteristics of 3
areas1 to propose a method for developing service-oriented applications considering non-
functional aspects. The motivation of our method is to target the specification of non-
functional aspects in the early stages of development of service-oriented applications. Our
approach specifies policies for modeling the non-functional requirements of a service. It
separates the specification of non-functional requirements from the main functionalities of
the application. This is interesting because once the policies for a given application have
been defined they can be reused and/or specialized for another application with similar
requirements. In order to show these characteristics this paper introduces a validation use
case, which correponds to a service based application provided by the company ORCA.
The application is related to the risk assessment industry.

3 Modeling Reliable Service Compositions with πSOD-M

In this section we present πSOD-M, an MDD-based method for building service
compositions with NFRs. Our work provides meta-models for modeling functional and
non-functional requirements organized in three levels (Figure ??): CIM (Computational
Independent Models), PIM (Platform Independent Models) and PSM (Platform Specific
Models). Given high-level models specified at the CIM level, πSOD-M proposes the semi-
automatic refinement of these models, for the generation of a set of models at the other
levels of abstraction. The refinement process is driven by transformation rules specified

8 K. Belhajjame et al.

between the meta-models. The purpose of this section is to present the πSOD-M meta-
models, from higher to lower level of abstraction, along with a running example. The
transformations between models are presented next, in section ??.

	

πSOD-­‐M	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

π-­‐ServiceProcess	
 	

Meta-­‐Model	

π-­‐ServiceComposition	
 	

Meta-­‐Model	

π-­‐UseCase	
 	

Meta-­‐Model	

Computation	

Independent	

Model	
 (CIM)	

Platform	

Independent	

Model	
 (PIM)	

Platform	
 Specific	

Model	
 (PSM)	

<<
	
 P
IM

-­‐t
o-­‐
PI
M
	
 M

ap
pi
ng
	
 >
>	

<<
	
 C
IM

-­‐t
o-­‐
PI
M
	
 	

M
ap
pi
ng
	
 >
>	

<<
	
 P
IM

-­‐t
o-­‐
PS
M
	
 	

M
ap
pi
ng
	
 >
>	

π-­‐PEWS	
 Meta-­‐Model	

π-­‐ServiceProcess	
 	

Model	

π-­‐ServiceComposition	
 	

Model	

π-­‐UseCase	
 	

Model	

π-­‐PEWS	
 Model	

instan4ate	

instan4ate	

instan4ate	

instan4ate	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Code	

ATL	

ATL	

ATL	

Acceleo	

π-­‐PEWS	
 Specification	
 <<
	
 P
SM

-­‐t
o-­‐
Te
xt
	
 	

M
ap
pi
ng
	
 >
>	

BPMN	

Meta-­‐Model	

E3value	

Meta-­‐Model	

BPMN	

Model	

E3value	

Model	
 instan4ate	

Manual	

Figure 1 πSOD-M Overview.

3.1 Computation Independent Models

This level focuses on the highest-level view of the system, including its business and
requirement specifications. At this stage of the development, the structure and system
processing details are still unknown or undetermined. πSOD-M uses the e3value ? and
BPMN ? meta-models for this purpose.

3.1.1 E3value Meta-Model

The e3value model identifies the value/information exchange between system components
(see Figure ??). This model represents a business case graphically as a set of value
exchanges (∇ 4) and value activities (rounded boxes)e performed by business actors
(squared boxes). The model is well suited to enhance the understanding of the environment
in which an application is being developed. It defines dependency paths, showing the value
exchange between providers and end users when they ask for a service. A dependency path
has a direction and consists of a sequence of linked dependency nodes. It starts with a start

eAccording to ?, a value activity is defined as an activity expected to be profitable to one or more actors.

πSOD-M: Building SOC Applications in the Presence of NFRs 9

stimulus node and ends with an end stimulus node. Dependency paths may also contain
OR and AND elements (both for initiate and join alternative and parallel paths).

[…]

Actor
 Value

Interface

Value

Port

Value

Exchange

AND

Element

OR

Element

Market

Segment
 Activity
 Start

Stimulus

Connection

Element

END

Stimulus

Value

Object

Legend!

Figure 2 e3value model for “To Publish Music”.

Example 1 (To Publish Music) Let us consider the scenario “To Publish Music”, used
as a running example in this section: An organization wants to provide the service based
application “To Publish Music” that monitors the music listened by a user during some
periods of time and sends the song title to this person’s Twitter and Facebook accounts. In
this way, the user will have her status synchronized in Twitter and Facebook (i.e., either the
same title is published in both accounts or it is not updated) with the title of the music she
is listening in Spotify. The application is based on three external actors (Spotify, Twitter
and Facebook). The following (external) services will be used by the application:
• The service Spotify exports a method for obtaining information about the music a

given user is listening: get-Last-Song (userid): String;
• The services Facebook and Twitter export methods for updating the status of a given

user: update-Status (userid, new-status): String;
The e3value model for “To Publish Music” is shown in Figure ??. The e3value model

shows Spotify and a private application (which is also a service) that provide services
for listening and publishing information about music being listened by users. The private

10 K. Belhajjame et al.

application interacts with Spotify for obtaining information about the flow of music being
listened by a user in return of a fee for a premium subscription. Finally, the private
application interacts with Facebook and Twitter for updating the user’s status. We can see
this interaction as non material benefit sharing (as users subscribe to their networks and
are active on them thanks to the private application).

The e3value model is used to model the (economic) value exchange among the actors
involved in an application. However, the e3value model does not help to understand the
business process of the application nor the conditions in which the different steps of this
process are executed. In order to face this shortcoming, our method proposes the use of the
BPMN meta-model as a tool for modeling this aspect of the application.

3.1.2 BPMN Meta-Model

BPMN ? is a graphical representation that establishes the business process of the
application through a high-level workflowf. The next example illustrates the use of this
meta-model.

Example 2 (To Publish Music (cont)) Figure ?? shows the BPMN model of the scenario.
It starts by contacting the music service Spotify for retrieving the user’s musical status
(activity Get Song). Twitter and Facebook services are then contacted in parallel for
updating the user’s status with the corresponding song title (activities Update Twitter and
Update Facebook).

Get	
 	

Song	

Update	

Twi0er	

Update	

Facebook	

Figure 3 BPMN model for “To Publish Music”.

CIM level models are the basis for the development of the application. The information
presented at this level is (manually) refined into PIM-level models of πSOD-M, as
described next. Notice that the models are (informally) used to describe both functional
and non-functional requirements.

3.2 Platform Independent Models

This level focuses on the system functionality, abstracting the details of any particular
platform. The specification defines those parts of the system that do not change from one
platform to another. Our method defines three PIM-level meta-models: π-UseCase, π-Ser-
viceProcess and π-ServiceComposition.

fDetails on BPMN (Business Process Management Notation) can be found in http://www.bpmn.org/

πSOD-M: Building SOC Applications in the Presence of NFRs 11

3.2.1 π-UseCase Meta-Model

Figure ?? shows the π-UseCase meta-model. This model is used to give the first
representation of the application in terms of functionality, and of its non-function-
al requirements. The notion of policy is used to describe NFRs. Figure ?? highlights
the concepts related to NFRs. The π-UseCase meta-model extends the UML Use
Case meta-model to describe NFRs with the following concepts: BUSINESS SERVICEg,
END CONSUMER, REQUIREMENT, USE CASE, COMPOSITE USE CASE, NON-FUNC-
TIONAL REQUIREMENT, NON-FUNCTIONAL ATTRIBUTE and CONSTRAINT. An END
CONSUMER is represented by an ACTOR. An ACTOR is related to USE CASES (from the
original UML definition), as a COMPOSITE USE CASE is a set of actions performed by the
system which can be broken into different USE CASES. BUSINESS SERVICE aggregates
several USE CASES, a service can be expressed by one or more use cases. The BUSINESS
COLLABORATOR concept is represented by PACKAGES. A BUSINESS COLLABORATOR
denotes an external service or a system that interacts with the application that is being
modelled. Each BUSINESS COLLABORATOR combines the features described in each
PACKAGE.

Figure 4 π-UseCase Meta-Model.

The NON-FUNCTIONAL REQUIREMENT and NON-FUNCTIONAL ATTRIBUTE
concepts are represented by USE CASES and CONSTRAINTS. A USE CASE may have
several CONSTRAINTS. Each CONSTRAINT has a name, description, and a flag to indicate
that it has to be dynamically checked. Each CONSTRAINT is represented as a stereotyped
(constraint)h use case.

gWe use the SMALL CAPS font for referring to classes of a meta-model.
hWe use the sans serif font for referring to classes defined using a meta-model.

12 K. Belhajjame et al.

There are three kinds of constraints: (i) A data pair (VALUE CONSTRAINT),
represented as the stereotype “value”; (ii) Business rules (BUSINESS CONSTRAINT),
represented as the stereotype “business”; and (iii) An EXCEPTIONAL BEHAVIOUR
constraint, represented by the stereotype “exceptional_behavior”. The use of these
constraints is shown in the next example.

Example 3 (To Publish Music (cont)) Figure ?? shows a π-UseCase model for our
example. We consider that, besides the service composition for implementing the
application, it is necessary to model other requirements that represent the (i) conditions
imposed by service usage – for example, the fact that both Facebook and Twitter require
authentication in order to call their methods for updating the wall; (ii) conditions stemming
from the business rules of the application logic, (e.g., the fact that the walls in Facebook
and Twitter must show the same song title and if this is not possible then none of them is
updated).

app

app.bank

pay by cardpay by paypal

pay

<<extend>>
<<extend>>

app.spotify

listen music

download music

buy music

<<include>>

<<include>>

user

have/create a Spotify account

<<constraint>>
<<value>>

!privacy and confident - the user may
have the privacy informations preserved.

DESCRIPTION - The user must provide
a Spotivy @login and @password.

security http

<<constraint>>
<<business>>

security transaction

<<constraint>>
<<value>>

!transaction! - the payment must be in a
security transaction;

DESCRIPTION - The minimum
@payment_value is 2 euros. It needs the
@card or @paypal @user_data, so that the
payment is made.

$buy music$ - The user have to pay before
download the music;

#security# - The system must to provide
security connection for payment;

%payment%

!connection! - For buy a music, the
system must provide a security connection;

DESCRIPTION - It is necessary send a
notification to the user if something
wrong happened, after the execution;

$listen music$ - The user can listen
music;

#performance# - The system
must to provide a good performance;

%listen music%

$buy music$ - The user ha to buy the music
before download it;

#reliability and security# - The system must to
provide reliability and user privacy data;

%payment%

$download$ - The user can download a
music if he wants;

#reliability and security# - The system
must to provide reliability and user privacy
data;

%download%

iality!

s

to

Figure 5 π-UseCase model for “To Publish Music”.

The “To Publish Music” Business Service expects the Facebook or Twitter user status
to be changed every time a user starts listening a new song. Therefore, it is necessary to
perform a social network authentication with the users data. Each social network uses
different services and different forms of authentication. The authentication constraint is
required to update a music status. The restriction is stereotyped as a value constraint,

πSOD-M: Building SOC Applications in the Presence of NFRs 13

because the user id and password are verified. Figure ?? shows the buy music, download
music, listen music and pay use cases. The process of buying a song requires the user
private data for a Spotify account, and also a secure connection, represented as value and
business constraint, respectively. For payment, the user must provide the data of payment
card or PayPal account login and password, represented by a value stereotype. Minimum
payment value is 2 euros.

3.2.2 π-ServiceProcess Meta-Model

The π-ServiceProcess meta-model extends the UML activity diagram with the concept
of contract to represent constraints over data and actions. This concept is used to model
groups of constraints in the π-UseCase. In Figure ??, the concepts of the π-ServiceProcess
meta-model are: CONTRACT, ASSERTION, EXCEPTIONAL BEHAVIOR, ACTIVITY, SER-
VICE ACTIVITY, ACTION and CONSTRAINT. The dotted part of the figure defines those
concepts related to the representation of NFRs.

Figure 6 π-Service Process Meta-Model.

This model shows the set of logically related activities to be performed in a service-
based application. The activities of this model represent a behavior that can implement
the business logic of the application. A π-ServiceProcess model contains three main
elements: (i) service process, (ii) service activity and (iii) activity contract. A service
activity represents an operation that is part of the execution flow, and it is modeled as an
ACTION. An activity contract represents the NON-FUNCTIONAL REQUIREMENT that is
also part of the execution flow of a service, identified as a stereotyped activity (assertion).
The ASSERTIONs associated to an ACTION compose a CONTRACT. Using the concepts
CONTRACT and ASSERTION it is possible to specify each activity service, by defining its
pre- and post-conditions. The service that fulfills the CONTRACT and its ASSERTIONS will

14 K. Belhajjame et al.

be chosen and used in the execution flow. This part of the process requires the verification
of some logic conditions. In the present version of the tool, this step requires human
intervention.

Example 4 (To Publish Music (cont)) Considering the example scenario, the contract
based process of activities is shown in Figure ??. The buy music and publish music services
(update Twitter and Facebook) have pre- and post-conditions assertions that are composed
into a contract for each service. The buy music pre-conditions consist in verifying: (i)
if the User data are correct; (ii) if the User is already logged in Spotify; (iii) if bank
account information is correct and; (iv) if there are enough funds in the bank account
to cover the payment. A post-condition ensures the complete transaction and verifies if a
notification about the payment authorization was sent both to the user and to Spotify. There
are four assertions for the buy music action, and each assertion has been detailed with
the assertion property and predicate that must be verified. To update services, depending
on each service, there may be different restrictions. As an example, a new verification of
user data and message format is appropriate (maximum 140 characters), in the case of
Twitter. In the case of Facebook, it is required that the user is already logged in Spotify
and these data are the same as Facebook. As post-condition, the application ensures that
the Facebook service sends a notification of success. To update Twitter a pre-condition
is required, while to update Facebook it is necessary to check a pre-condition and a
confirmation notice (modeled as post-condition). As a pre-condition for “twitter update”
it is necessary that (i) the music format is correct and (ii) the twitter login and password
are correct for the update.

3.2.3 π-ServiceComposition Meta-Model

In Figure ??, the π-ServiceComposition meta-model provides meta-classes to represent
workflowsthat model business processes. The π-ServiceComposition meta-model extends
the UML activity meta-model with the concept of A-Policy to group contracts with
similar non-functional requirements. For instance, security and privacy restrictions may be
grouped into a single policy. This meta-model defines:
• A BUSINESS COLLABORATOR meta-class, to represent the classes of entities that

collaborate in business processes by performing some action. An instance of this
meta-class is graphically a partition in the activity diagram. A collaborator can be
either internal or external to the system. When the collaborator of the business is
external to the system, the attribute IsExternal of the collaborator is set to true.
• ACTIONs, a kind of EXECUTABLENODE, are represented as a class activity instance

of the meta-class ACTION. A class action represents some type of transformation or
processing. There are two types of actions: (i) a WebService (attribute Type is WS);
and (ii) a simple operation called an ACTIVITYOPERATION (attribute Type is AOP).
• The SERVICEACTIVITY meta-class represents classes of composite activity types that

must be carried out as part of a business service, composed of executable nodes.
• In order to represent constraint types associated to service compositions, we defined

the meta- classes RULE and A-POLICY (see blue meta-classes in the π-Service-
Composition meta-model in Figure ??). We model non-functional constraints by
using the notion of A-policy ??. An A-policy is defined by attributes and rules. The
conditions of each rule are evaluated. In case of failure, the actions of the rule will be
performed. The meta-class RULE represents event-condition-action rules where the

πSOD-M: Building SOC Applications in the Presence of NFRs 15

Figure 7 π-ServiceProcess model for “To Publish Music”.

EVENT part represents the moment in which a constraint is evaluated. An A-policy
defines variables and operations that can be shared by the rules and that can be used
for expressing their Event and Condition parts.

Example 5 (To Publish Music (cont)) To illustrate the use of the π-Service Composition
meta-model, we define a model for the “To Publish Music” scenario (Figure ??). We
model a business process with three service activities: Listen Music, Publish Music and
Confirmation. The Publish Music activity calls the Facebook and Twitter services. Both
Facebook and Twitter require authentication. Two authentication policies are required,
one for Twitter and another for Facebook. In this model, there are three external business
collaborators (Spotify, Twitter and Facebook). The model also shows the business process
of the application that consists of three service activities: Listen Music, Publish Music
and Confirmation. Note that the activity Publish Music calls the actions of two service
collaborators namely Facebook and Twitter. Both Facebook and Twitter services require
authentication in order to execute methods that read and update the user data. In
the example, we associate two authentication policies, one for the open authentication

16 K. Belhajjame et al.

Service Activity

Action

1..*

Policy

name : String

Non-Functional Requirement

name : String
description : String

Event Type

PRE : Integer
POST : Integer
TIME : Integer

Rule

name : String
condition : String
action : Action
event : Event Type

Variable

name : String
type : String

1
0..*

1..*

0..*1..*

Activity Activity Node0..*

1

0..1

1..*

Activity Edge
1
source

1..*
outcoming

1

1..*

Control Flow Object Flow

Executable Node Object Node Control Node

Initial Node Final Node Fork Node Join Node

Activity Final Node

1
target 1..*

incoming

Action Type

WS : Integer
AOP : Integer

hasAssociated

1

0..*

Action Partition Redifined Element

1

1..*

1

1..* 0..*

1..*

from Kernel
(stereotype)

Business Collaborator

performs

1

0..*

name : String

name : String

Figure 8 π-Service Composition Meta-model.

protocol, represented by the class OAuthPolicy at Twitter, associated to the activity
UpdateTwitter (see Figure ??). In the same way, the Facebook class HTTPAuthPolicy, for the
http authentication protocol is associated to the activity UpdateFacebook. The A-policy
OAuthPolicy has a variable Token, used to store the authentication token provided by the
service. This variable is imported through the library OAuthPolicy.Token. The A-policy
OAuthPolicy defines two rules, both can be triggered by events of type ActivityPrepared:
(R1): If no token has been associated to the variable token, then a token is obtained ; and
(R2): if the token has expired, then it is renewed. Notice that the code in the actions profits
from the imported OAuthPolicy.Token for transparently obtaining or renewing a token from
a third party. HTTPAuthPolicy implements the HTTP-Auth protocol. The A-policy imports
an http protocol library and it has two variables username and password. The event of
type ActivityPrepared is the triggering event of the rule R1. On the notification of an event
of that type, a credential is obtained using the username and password.

Once the π-Service Composition Model is defined, it can be transformed into a lower
level model (in our case, π-PEWS) to support code generation as described in the next
section.

3.3 Platform Specific Models

This level focuses on the functionality, in the context of a particular implementation
platform. Models at this level put together the platform-independent view with the specific

πSOD-M: Building SOC Applications in the Presence of NFRs 17

listen music

publish facebook

publish twitter

buy music

download music

search music select music

buy? yes

buy? no

<<assertion>>
verify user data

<<assertion>>
verify payment data

and check value

<<assertion>>
payment confirmation

<<assertion>>
authorization to

download

<<assertion>>
check user and

password

<<assertion>>
verify song data

format

<<assertion>>
check spotify

user data

<<assertion>>
send notification

publish? yes, facebook

publish? yes, twitter

<<External false>>
Application

<<External true>>
Bank <<service>>

pay
<<service>>

send confirmation

<<External true>>
Spotify

<<service>>
listen song

<<External true>>
Twitter

<<service>>
publish message

<<External true>>
Facebook

<<service>>
update status

<<Policy>>
$httpAuthPolicy$
% Performance, Security#
Rule R1{
@PRE@

event.activityName ==
scope.name#

! Scope.httpRequest.Credentials =
newNetworkCredential(username,
password)!

} Rule R2{
@POST@

!sendNotification('song published')!
}

<<Policy>>
$authPolicy$
%Security%
Rule R1{
@PRE@

event.activityName == scope.name
AND token == null;#

!token = getToken()!

} Rule R2{
@ PRE;

event.activityName == scope.name
AND token != null AND
token.isExpired() == true#

!token = renewToken()!
}

<<service>>
music search

<<Policy>>
$trasactionPolicy$
% Security %

Rule R1{
@PRE@

event.activityName == scope.name AND
userName == ?? AND passW == ?? AND
valuePayment < userBalance#

! Scope.httpRequest.Credentials =
newNetworkCredential(username,
password) AND
Scope.httpRequest.Payment =
newNetworkPay(cardName, cardNumber, value)!
} Rule R2{
@POST@

! sendNotification('payment ok') AND
sendNotification('download authorized')!
}

publish? no

Figure 9 π-ServiceComposition Model for the “To publish music” business service.

aspects of the platform to implement the system. These models can be automatically
translated into actual computer programs. We have defined one meta-model at this level.

π-PEWS provides concepts for modelling service compositions. Instances of this meta-
model are textual descriptions of service compositions that can be translated into any
service composition language, such as BPEL ??.PEWS ?is a notation to express service
compositions. The language is based on the notion of Path Expressions ? and can easily be
translated into any actual composition language, such as BPEL ?. Figure ?? presents the
π-PEWS meta-model, where we identify classes to describe:
• Service compositions: NAMESPACE represents the interface exported by a service,

OPERATION represents a call to a service method, COMPOSITEOPERATION,
OPERATOR and PATH denote service compositions. A PATH can be an OPERATION
or a COMPOUND OPERATION. A COMPOUND OPERATION is defined using an
OPERATOR. The language defines operators to denote guarded operations ([C]S);
sequential (.), parallel (‖) and alternative (+) compositions; as well as sequential
(∗) repetition.
• A-Policies that can be associated to service compositions: A-POLICY, RULE, EVENT,

CONDITION, ACTION, STATE, and SCOPE.
Figure ?? shows that each A-POLICY is associated to a SCOPE that can be either an

OPERATION (e.g., an authentication protocol associated to a method exported by a service),
an OPERATOR (e.g., a temporal constraint associated to a sequence of operators) or a PATH.
Each A-POLICY groups a set of ECA rules with a classic semantics, i.e, when an event of
type E occurs, if condition C is verified then execute the action A. In this way, an A-policy
represents a set of reactions to be possibly executed when one or several events are notified.

Example 6 (To Publish Music (cont)) Figure ?? shows the π-PEWS code resulting from
the π-service composition model of our example. The code contains namespaces and
definitions (obtained from the business collaborators of the π-SCM model), a workflow
expression (Path) containing operation calls and contracts (derived from the A-Policies).

18 K. Belhajjame et al.

Path Operator

nameOperator : Operator Type

PEWSpec

name : String

Namespace

name : String
WSDLAddress : String

Operation

alias : String

Type Operation

Operator Type

<<enumeration>>

SEQUENCE : Integer
PARALLEL : Integer
CHOICE : Integer
LOOP : Integer

Variable

name : String
value : Object

Composite Operation

State Type

<<enumeration>>

REQ : Integer
ACT : Integer
TERM : Integer

APolicy

name : String

Action

act : String
Scope

Event Type

<<enumeration>>

ActivityPrepered : Integer
TermActivity : Integer
Activity : Integer

Rule
Event

type : Event Type

State

type : State Type

Condition

expression : StringPre-condition Post-condition Time Restriction

1 1..*

1

1..*

1

1..*

1

0..*

1

0..*

1

0..*

leftOp

1

0..1

rightOp

1

0..11

1..*

0..*

1

0..1

1

Figure 10 π-PEWS Meta-model.

4 Transformation Rules

πSOD-M proposes intra-level transformation rules from π-use case to π-service process
models, π-service process to π-service composition models, as well as inter-level
transformation rules from π-service composition to π-PEWS models.

These rules were implemented into a semi-automatic tool, the π-SOD-M plug in
for Eclipse. At each stage of transformation it is possible to include new constraints.
Transformation in the more abstract stages is completely automatic (i.e., from π-UseCase
to π-ServiceProcess, and from π-ServiceProcess to π-ServiceComposition). In contrast,
the transformation to specific platforms (i.e. from π-ServiceComposition to π-PEWS), the
analyst must intervene and check the generation of the specification code because there are
programming details that can be interpreted in different manners depending on the target
platform. In this sense, the method is more appropriate for those who have background

πSOD-M: Building SOC Applications in the Presence of NFRs 19

Figure 11 π-PEWS Specific and Policy Representation.

knowledge in Information Technology. The transformations from CIM to PIM level models
are not automatized, due to the informal nature of the CIM level.

4.1 From π-UseCase to π-ServiceProcess

The refinement of a (composite) π-Use Case model into a π-Service Process model is
driven by the principle of expressing a set of π-use cases (i.e., use cases with constraints)
in terms of a business process. The resulting model consists of actions related by a control
flow and contracts specifying NFPs.

As defined by the π-ServiceProcess meta-model (Figure ??) an ACTIVITY SERVICE
consists of a composition of entities of type ACTION. Thus, every π-use case is
transformed into an Action of the target π-Service Process model. Every Extend
relationship identified in a π-Use Case model is transformed into a Fork node ?.If the
Extend relationship concerns just one use case, it is transformed into an Action inside

20 K. Belhajjame et al.

one flow of the fork node. Otherwise, several use cases are transformed into different
Actions that belong to different flows departing from the fork node.

A Constraint associated to a Use Case is transformed into an Assertion. The set of
resulting assertions are grouped into a Contract. Constraints are transformed according
to their type: BUSINESS constraints and VALUE constraints with the isException-
alBehaviour attribute set to false are transformed into Assertions; VALUE constraints
with the isExceptionalBehaviour attribute set to true are transformed into Exceptional
behaviors.

In order to transform constraints of type Value Constraint, the designer specifies
thresholds to be associated to the assertions of a contract. By default, value constraints
are transformed into pre-conditions and business constraints are transformed into post-
conditions.

The relationships of type EXTEND and INCLUDE determine the way the business
process is expressed as a workflow. The generated workflow is composed of Fork and Join
nodes, CONTROL FLOW constructors, as well as entities of type ACTION.

Include use case entities are transformed into an Action sequence. A USE CASE
element is transformed into an Action. A set of n USE CASES is transformed into an n− 1
Object flow elements.

Example 7 (To Publish Music (cont)) The transformation rules have been applied to the
model in Figure ?? to obtain the π-Service Process model for our example (Figure ??).

The “listen music” use case is transformed into a Service Action that represents a
Spotify function to be invoked to play music. For the “publish music” use case, constraints
are transformed into a set of assertions that are grouped into a Contract (“publishMus-
icContract”) associated to the Action “publishMusic”. The use case “download music”
includes the payment process to buy the music. Thus, these use cases are transformed into
Actions, and a Service Activity that aggregates these Actions. This Service Activity is
transformed into a sequence flow on the π-service process model. The same rule is applied
to the “publish music” use case, which has two extended use cases, to publish on Twitter
and Facebook.

4.2 From π-ServiceProcess to π-ServiceComposition

The transformation of a π-Service Process model into a π-Service Composition model
groups Contracts into A-Policies and Actions into Service Activities. Each Assertion
of a Contract is transformed into a Rule. Rules concerning the same NFP are grouped
into A-Policies. Each Assertion of a Contract is transformed into a Rule:Condition
attribute. If the Assertion has a value type, the name and the attributes are transformed
into Variables in the target model. The Assertion: aProperty attribute can have different
transformations, according to: (i) a Precondition is transformed into Pre; (ii) a Post-
Condition is transformed into a Post; (iii) a TimeRestriction is transformed into Time.

Some elements of the π-service composition model are obtained from the π-UseCase
model: A Package in the π-use case model is transformed into a Business Collaborator;
Non-Functional Attributes of the π-use case model are grouped into Non-Functional
requirements of the π-ServiceComposition model. These requirements are associated to
a Policy (from the π-ServiceProcess model).

Actions and Service activity of a π-Service Process model are transformed into their
homonym concepts of the π-Service Composition model. Finally, Actions are grouped into
a Business collaborator.

πSOD-M: Building SOC Applications in the Presence of NFRs 21

Example 8 (To Publish Music (cont)) Considering the example scenario, the model in
Figure ?? was obtained by applying the rules above to the model depicted by Figure ??.
The “securityLoginPolicy” consists of a set of Rules that were transformed from the
Assertions in π-service process model. The information about Facebook and Spotify (both
of them Business Collaborators) come from entity of type PACKAGE in the π-use case
model.

4.3 From π-ServiceComposition to π-PEWS

This section describes the PIM to PSM transformations from a π-Service composition
model to a π-PEWS model. We distinguish two groups of rules: (i) those transforming
service composition entities into workflows; and (ii) those transforming A-Policies into
Contracts.

Single actions (Action and Action:name) are transformed into individual
service Operations. Complex actions (represented by ServiceActivity and
ServiceActivity:name) are transformed into (named) composite operations that define
a (named) workflow of the application. Composition patterns expressed using merge,
decision, fork and join are transformed into their corresponding workflows of the π-PEWS
model.

A-Policies defined for the entities of a π-service composition model generate A-policy
entities, named according to the names expressed in the source model. The transformation
of the rules expressed in a π-service composition is guided by the event types associated to
these rules. The variables associated to an A-Policy expressed in a π-service composition
model as <Variable:name, Variable:type> are transformed into Variable, with Name
and Type attributes specified from the elements Variable: name and Variable:type of a
π-service composition model. Events of type Pre, Post and Time generate, respectively,
Pre-conditions, Post-condition and TimeRestrictions.

Example 9 (To Publish Music (cont)) Figure ?? shows the π-PEWS code resulting from
the π- service composition model (Figure ??) of our scenario example.

4.4 Implementation

We have developed tools for aiding the user to define and transform the models for all the
levels, except for the CIM into PIM level, which should be manually performed. Our tool
is implemented as a series of Eclipse plug-ins:
• We used the Eclipse Modeling Framework (EMF)i to implement the π-Service

Composition and π-PEWS meta-models. From these meta-models, we developed
plug-ins to support their graphical representation.
• We used ATLj for implementing the mappings between models.
• We used Acceleok to implement the code generation plug-in to generate executable

code. It takes a π-PEWS model and generates the code to be executed by the A-Policy
based service composition execution environment.

iThe EMF project is a modeling framework and code generation facility for building tools and other
applications based on a structured data model.

jhttp://eclipse.org/atl/. An ATL program is basically a set of rules that define how source model elements are
matched and navigated to create and initialize the elements of the target models.

khttp://www.acceleo.org/pages/home/en

22 K. Belhajjame et al.

5 Applying πSOD-M: The FlyingPig Case Study

To validate the applicability of our method we have developed a case study concerning
risk assessment for financial companies as implemented by the ORCA Systeml.Risk
assessment is implemented by an interactive business process based on the exchange of
questionnaires used to evaluate the risks implied by the client business practice. Examples
of business practices are: the conditions and protocols used to perform confidential
transactions, the physical security to access reserved areas (such as computing server
installations). The information gathered by the questionnaires is used to evaluate whether
there are risky practices within the business processes, as well as to propose amendments
to these practices. The ultimate goal of the risk assessment is to determine a degree of
compliance to existing standards. By analyzing the questionnaires, ORCA detects risky
practices, proposes solutions and triggers further assessment processes to ensure that the
solutions have been implemented.

Our goal is to model a service based application (FlyingPig), for providing risk
assessment as a service. In order to provide this functionality, FlyingPig benefits from
ORCA’s legacy services providing storage, assessment and data visualization functions.
In the next sections we apply πSOD-M to develop the FlyingPig risk assessment system.
The models presented were generated as a result of interacting with software developers at
GCP Global.

5.1 Computation-Independent Models (CIM)

Figure ?? shows the value model for the FlyingPig application. It is a business model
that graphically represents a business case as a set of value exchanges (. and /) and
value activities (rounded boxes) performed by business actors (squared boxes). We identify
two business actors: ORCA and Broker. Brokers emit requests for risk assessment for
one or more companies. ORCA has two value activities which are services that provide
an economical benefit: Identify Amendments and Assess Risk Situation. The values
exchanged between ORCA and the brokers are: (i) Questionnaire and Evidence filled with
information about the client company; (ii) Amendments which are ORCA’s recommenda-
tions, based on the data provided by the answers to questionnaires; (iii) Evaluation Reports
for the client companies; and (iv) the risk assessment fee. The dependency path in Figure ??
initiates with the need of assessment emitted by a particular company. Once this need
has been declared, the value exchanges between ORCA and Broker are triggered. The
client company provides ORCA with information (answers to a questionnaire), evidence
(to support the information) and a fee (monetary value). In the next step, ORCA suggests
amendments (recommendations to change practices) and provides an evaluation report.

Figure ?? shows the BPMN model for the FlyingPig scenario. This model is partitioned
for better understanding the value exchanging process. The model includes two pools
representing the ORCA system and the Brokers. Brokers have two lanes, the client
Company and a User. The user is a contact member of the company, who coordinates the
assessment process. This process involves other members of the company as well. The risk
assessment process starts after a request from a company. This corresponds to the value
model, in which the start stimulus triggers the whole process. The request leads to the
definition of a group of users that will answer questionnaires to evaluate risk. Other tasks

lThe ORCA System is a trademark of GCP Global (www.gcpglobal.com).

πSOD-M: Building SOC Applications in the Presence of NFRs 23

Figure 12 E3value model for FlyingPig .

include amending a “risky situation” as well as producing evidence to show that a specific
risk has been eliminatedm.

O
rc
a

Br
ok

er

U
se

r

C

om
pa

ny

Request
Assessment

Assign
Responsible

Perform Task

Register
Questionnaire or

Task

Answer Questionnaire

and Add Evidence

Create Company
Space

Generate Task or
Questionnaire

Analyze and
Assess Risk

Calls for
Amendments

Create Evaluation
Report

Figure 13 BPMN model for FlyingPig .

mRisky situations include material facts such as not facilitating access to physically disabled people in a bank
agency or having an unsecured access to the premises of the company. They can be also immaterial restrictions
such as the protocol used for accessing data on the company’s computer server.

24 K. Belhajjame et al.

Once tasks have been completed, they are stored and analyzed to generate a list of non-
compliant situations, associated to their corresponding calls for amendment (if needed) or
a report specifying a compliance level, incidents and a risk map. During the process of
analyzing a questionnaire, the answers to some questions may trigger the generation of
additional questionnaires or amendments, that will be scheduled as new tasks. Business
processes also have rules and constraints to define their non-functional requirements
(NFR):

1. An acknowledgement is due in less than 30 seconds after registering a task or demand
for assessment.

2. The system should be able to deal with, at least, 200 users.
3. If the number of requests exceeds 200, FlyingPig should implement a load balance

strategy for processing the requests.
4. The privileges of the Channel-Broker must be verified before the execution of the

actions associated to the designate user in charge π-use case.
5. The privileges of users must be verified before the execution of the actions associated

to the answer questionnaire and add evidence π-use case.
6. All questionnaires need to be fully answered in order to consider a task as completed.
7. There is a time limit (in days) for amendments required by the system.

5.2 Platform-Independent Models (PIM)

The πSOD-M models of the PIM level for the FlyingPig scenario are presented next. These
models were manually obtained from the CIM level models.

5.2.1 π-UseCase Model for FlyingPig

The π-UseCase model shown in Figure ?? describes the features and constraints of the
FlyingPig application. In this model, three actors are identified: Company, User and Broker
represented as stick figures. Company is the actor requesting a risk evaluation as a Broker
is responsible for coordinating the evaluation process, assigning users to tasks as well as
delegating tasks. A User is an actor who answers questionnaires according to the current
situation of the Company. The User also produces evidence to support facts and performs
the necessary amendments to improve the results of the risk assessment. Each actor is
associated to π-UseCases (white ovals in Fig. ??) that describe the main functionality of
the system. The π-UseCase model for FlyingPig defines six π-UseCases. Each π-UseCase
may be associated to (non-functional) constraints (coloured ovals in Fig. ??).Three types of
constraints are defined: value, business or exceptional behavior. Constraints are identified
by the word <<constraint>> followed by its type.

5.2.2 π-ServiceProcess Model for FlyingPig

The π-ServiceProcess model presents the workflow for FlyingPig (Figure ??). Actions in
this model were obtained by applying the π-use case transformation rules. The Company,
Broker-Channel and User actors are transformed into lanes that represent the business
collaborators. Use cases are transformed into actions and are represented by white boxes.
The restrictions associated to π-use cases are transformed into assertions (represented
by colored boxes) and may be decorated with pre- and post-conditions. We can see that
this model refines the concepts defined in the π-UseCase model. The assertions specify
those non-functional requirements, as they are seen by the actors. The next step in the
development is to add these assertions to the models that specify the FlyingPig system.

πSOD-M: Building SOC Applications in the Presence of NFRs 25

Figure 14 π-UseCase model for FlyingPig .

Figure 15 π-ServiceProcess model for FlyingPig .

5.2.3 π-ServiceComposition Model for FlyingPig

The model in Figure ?? shows the services that provide the functions of FlyingPig . The
assertions in Figure ?? are implemented as policies. These policies express the pre- and
post-conditions of the previous model, being associated to the actions of the system.

26 K. Belhajjame et al.

Figure 16 π-ServiceComposition model for FlyingPig .

5.2.4 π-PEWS Model for FlyingPig

The PSM of our case study is given in Figure ??. This model is obtained by transforming
the π-service composition model into a workflow. Note that this workflow is implemented
by using BPEL constructors ? and policy notions.

//Namespaces specify service URI
namespace orca = www.orca.mx/service.wsdl
//Operations
alias createCompanySpace = portType/createCompanySpace in orca
alias generateQuestionnaire = portType/generateQuestionnaire in orca
alias analizeAnswer = portType/analizeAnswer in orca
alias storeData = portType/storeData in orca
alias createReport = portType/createReport in orca
alias callForAmendments = portType/callForAmendments in orca
//Services
service receiveRequest(R, Id) = createCompanySpace(R, Id)
service generateNewInterface(Id, NULL) = ...
service createQuestionnaire(Id, Q) = generateQuestionnaire(Id, Q)
service notifyResponsable((Id, Q); NULL) = ...
service receiveAnswers((Id, T); P) =
analizeAnswer((Id, T), NULL) . storeData((Id, T), NULL) .
((createReport(Id, P) . return(P)) + (callForAmendments(Id,T) . return(NULL)))
//Workflow
receiveRequest(R, Id)
|| (generateNewInterface(Id, NULL)
. createQuestionnaire(Id, Q) . notifyResponsable((Id, Q); NULL))
|| (receiveAnswers((Id, T); P) . [P != NULL] STOP)*

Figure 17 π-PEWS Model for FlyingPig .

πSOD-M: Building SOC Applications in the Presence of NFRs 27

5.3 Lessons Learned

Through the example we underlined that every application implements functional aspects
that describe its application logic. Recall that an application logic refers to routines that
perform the activities to reach the application objective. Also there are non-functional
properties derived from NFR. They refer to strategies to be considered for the application
execution such as security, isolation, adaptability, atomicity, and more. These non-
functional properties must be ensured at execution time.

In the context of service-oriented applications, ensuring non-functional properties is
challenging due to the nature of their components. Those components are defined by APIs
which do not necessarily export information about their internals.

Given a set of services with their exported methods, building service-based applications
may consist on expressing an application logic as a service composition. During this task,
we must ensure the compliance between the specification and the resulting application.
Software engineering methods (e.g., ???) can help to ensure this compliance, particularly
when information systems include several sometimes complex business processes calling
Web services or legacy applications exported as services.

As WS-* and similar approaches, our work enables the specification and programming
of crosscutting aspects (i.e., atomicity, security, exception handling, persistence). In
contrast to these approaches, we specify policies for a service composition in an orthogonal
way. Besides, these approaches suppose that non-functional properties are implemented
according to the knowledge that a programmer has of a specific application requirements
but they are not derived in a methodological way, leading to ad-hoc solutions that can be
difficult to reuse. In our approach, the policies defined for a given application can be reused
and/or specialized for another one with the same requirements or that uses services that
impose the same constraints.

Wrapping up, the industrial use case presented here provided a real validation context
for testing the usability of our method πSOD-M. The software units acting as services
provide specific functions and constraints that were combined to build the business logic of
the FlyingPig application. This application is representative of the kind of target systems
of πSOD-M. The different types of business rules could be modelled as first class citizens
and clearly associated to the business logic of the system. Thereby, we could show how
non-functional properties can be associated both to the components (i.e., services) and to
the global business logic of the system. πSOD-M allowed to derive these non-functional
properties thanks to the specialization and transformation of the different meta-models.

We learned and showed that decoupling the description (specification) of non
functional properties from the functional aspects, allows developers to focus on the logic of
their application, isolating them from the non-functional aspects. Furthermore, it improves
modularity by allowing the same application to be run under different non-functional
settings, if needed. This can be interesting if business rules change or if constraints
associated to services evolve.

Finally, the system FlyingPig had been incrementally built using classic software
engineering techniques before applying πSOD-M. It is difficult to compare the initial time
to market versus the time to market using our method. The company could not estimate a
realistic value of this measure for the first version of the application. We intend to evaluate
the quality of experience of programmers, when they will have to build a new version of
FlyingPig. The quality of experience related to πSOD-M will be given by measuring (i)
time to market when a new module will be designed and implemented in the system (ii)

28 K. Belhajjame et al.

maintainability of the new module having a separated and clear vision of business logic
and non-functional properties. Both two measures are important to the company.

6 Conclusions and Future Work

We presented πSOD-M, a model-driven method for designing and developing reliable
service-based applications. πSOD-M extends a previously defined method (called SOD-
M) to include Non-Functional Requirements. These requirements are taken into account
from the early stages of the software development process. Non-functional constraints
are related to business rules associated to the behavior of the application and, in the
case of service-based applications, they are also concerned with constraints imposed by
the services. Our method includes two CIM-level models, three PIM-level models and
one PSM-level model. We implemented the meta-models on the Eclipse platform and we
validated the approach by using an industrially inspired use case.

Our case study was developed together with our industrial partner GCP Global to
demonstrate the applicability of πSOD-M. The Company is using πSOD-M for the
development of their product. The case study presented is a simplified version of their
application.

In the future, we expect to: (i) select metrics for assessing the efficacy of πSOD-M;
(ii) use the feedback provided by our industrial partner to improve the methodology; (iii)
assess the use of πSOD-M in other contexts, in order to investigate the generality of the
approach.

Acknowledgements

This research has been partially financed by the Government of the Autonomous
Community of Madrid under the SICOMORo-CM project (S2013/ICE-3006), and by
the ELASTIC project (TIN2014-52938-C2-1-R), financed by the Spanish Governments
Ministry of Science and Innovation. This work is partially supported by INES, grant
CNPq/465614/2014-0 (Brazil).

