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Multiphase mean curvature flows with high mobility contrasts:
a phase-field approach, with applications to nanowires

Elie Bretin∗ Alexandre Danescu† José Penuelas† Simon Masnou‡

September 15, 2017

Abstract
The structure of many multiphase systems is governed by an energy that penalizes the area

of interfaces between phases weighted by surface tension coefficients. However, interface evolution
laws depend also on interface mobility coefficients. Having in mind some applications where highly
contrasted or even degenerate mobilities are involved, for which classical phase field models are inap-
plicable, we propose a new effective phase field approach to approximate multiphase mean curvature
flows with mobilities. The key aspect of our model is to incorporate the mobilities not in the phase
field energy (which is conventionally the case) but in the metric which determines the gradient flow.
We show the consistency of such approach by a formal analysis of the sharp interface limit. We also
propose an efficient numerical scheme which allows us to illustrate the advantages of the model on
various examples, as the wetting of droplets on solid surfaces or the simulation of nanowires growth
generated by the so-called vapor-liquid-solid method.

Keywords: Multiphase systems; mean curvature flow; surface tensions; mobilities; phase field; droplets
wetting; nanowires

1 Introduction
Many physical systems involve a collection of interfaces whose positions and shapes are constrained so as
to minimize their total area, e.g., soap foams, immiscible fluids, polycrystalline materials, etc. A typical
expression of the total area is ∑

i 6=j

σijArea(Γij),

where {Γij}i6=j denote the interfaces, and {σij}i,j are the so-called surface tensions. Depending on the
context, the area energy may be either isotropic (like for soap foams) or anisotropic (as for polycrys-
talline materials). Starting from a given interfacial configuration, the energy gradient flow toward a
minimizingconfiguration follows two rules [40] :

• Every interface evolves by mean curvature flow, i.e., at every point x ∈ Γij which is not a junction
point between three of more interfaces, the normal velocity Vij of the interface Γij is proportional
to its mean curvature, further denoted as Hij :

1

mij
Vij = σijHij ,

wheremij is called the mobility of interface Γij – hereafter, without explicit mention, no summation
over repeated subscripts i, j (Einstein rule) is assumed. Such proportionality between the normal
velocity and the mean curvature is a straightforward consequence of (a localized version of) the
Clausius-Duhem inequality as derived in sharp interface theory, see [39, 33, 46, 19].
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• The Herring’s angle condition holds at every triple junction, i.e. if x is a triple junction between
phases i, j, and k then

σijnij + σjknjk + σkinki = 0,

where nij denotes the unit normal at x to Γij , pointing from Ωi to Ωj . Here, we denote by {Ωi}i
the collection of relatively closed sets which form the phase partition, so that Γij = Ωi ∩ Ωj .
The physical meaning of Herring’s condition is the equilibrium of the triple point due to force
balance. This condition holds if, and only if, the surface tensions satisfy the triangle inequality
σik ≤ σij + σjk, ∀i, j, k.

It is important to notice that surface tensions appear both in the geometric energy and in the gradient
flow, whereas mobilities play a role only in the gradient flow. This observation is a key to the approach
that we shall propose in this paper.

There is a vast literature on numerical methods for the approximation of mean curvature flows.
Methods can be roughly classified into the following four categories (some of them are exhaustively
reviewed and compared in [28]):

(i) parametric methods [29, 5];

(ii) level set methods [58, 56, 57, 31, 26];

(iii) convolution/thresholding type algorithms [13, 44, 63, 30];

(iv) phase field approaches [54, 25, 34, 35, 17].

In this paper, we focus on phase field methods, which can be used in many various physical situations,
and offer both nice theoretical properties and numerical efficiency. A phase field model able to approx-
imate a multiphase mean curvature flow with mobilities, as above, has been proposed already in [35].
However, as we shall see later, this model is not well suited from a numerical viewpoint for handling
highly contrasted or degenerate mobilities. We will propose in this paper a new method which is more
adapted, and both efficient and numerically accurate. Our motivation for this work comes from a real
example where high contrast of mobilities can be observed: the growth of nanowires by the so-called
vapor-liquid-solid method. We will discuss a model for simulating a simplified approximation of such
growth.

1.1 Nanowires grown by the VLS method
Nanowires represent the classical prototype of one-dimensional nanostructures and offer unique mechan-
ical [72], electronic, and optical properties [50, 22, 62]. Thanks to these properties, nanowires have been
used as elementary building blocks for the realization of nanoscale devices [42, 49] and in fundamental
condensed matter physics [55]. Among the various fabrication techniques, the vapor-liquid-solid growth
method (further denoted VLS) is the most widespread [70]. Roughly speaking, the VLS method uses
liquid nano-droplets catalysts on crystalline surfaces (as Au droplets for Si nanowires growth [69] or
3rd group elements droplets for III-V nanowires [43]) and controlled external flux of atoms in a vacuum
chamber, so that, at a certain concentration inside the droplets, solid phase nucleates at the liquid/solid
interface. Repeated nucleation generates nanostructures headed by nano-droplets. Even if the basic
bricks of the growth process are well-understood (see [37, 38, 67, 45]), a unified model able to simulate
the entire growth process at realistic time and length scales is still missing.

The basic physical phenomena involved in the VLS growth are: (a) superficial diffusion of adatoms at
the free-substrate surface (b) incorporation of adatoms either by direct flux, (i.e. across the droplet free-
surface) or by surface diffusion (i.e. across the boundary of the interface between the liquid droplet and
the solid substrate), (c) diffusion of adatoms in the liquid droplet and (d) solidification at the liquid-solid
interface. Clearly, (a), (b), and (d) are surface phenomena.

In the specific context of crystalline phenomena, either binary (two phases) or multiphase (more than
two phases) phase field models have been proposed and studied for instance in [19, 9, 47, 33, 39, 46, 10, 35].
A phase field model was successfully used to describe solidification and growth of binary and/or ternary
alloys (see recent results in [14, 61, 41, 48]) as it allows for morphology changes, overlap of diffusion
fields and particle coalescence or splitting [24]. To the best of our knowledge, the challenge of a unified
model able to describe nanowires growth by VLS has been only partially adressed in [71, 65, 73]. We
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will propose and study in this paper an isotropic quasi-static Allen-Cahn multiphase field model as a
rough approximation of the real anisotropic case. This is a first important step because, in contrast with
the binary case where the phase field theory is well-understood, the multiphase case remains an active
research topic.

We consider the VLS catalytic-growth process in the generic situation of steady growth conditions
under constant isotropic external flux of adatoms, fixed substrate temperature, and for low density of
nanowires. The shape of the nanowire and its near environnement can be modelled by using a partition
of an open box Q = ΩV ∪ΩL ∪ΩS ⊂ Rd where ΩV , ΩL, and ΩS are relatively closed subsets of Q which
represent the vapor, liquid and solid phases, and satisfy for all i, j ∈ {V,L, S}, i 6= j:

Γij = Ωi ∩ Ωj = ∂Ωi ∩ ∂Ωj ∩Q,

with the convention Γii = ∅. In Figure 1 we illustrate the sets ΩV , ΩL, ΩS and the interfaces Γij
by using an isolated nanowire obtained by the VLS catalytic-growth method. We notice the almost
spherical shape of the catalytic droplet, which is a result of the minimization of the surface energy at
the LV interface, and we also notice the decrease of nanowire’s radius in the first stages of the growth
(see nanowire’s foot).

Figure 1: Scanning electron microscopy image of an isolated nanowire on a cristalline substrate. The
nanowire is made of GaAs which appears to be facetted, while the catalyst droplet is made of Ga and
exhibits a spherical shape. The sample was grown on a Si(111) substrate by molecular beam epitaxy [12].
Left image includes an isolated nanowire (inset) and also several droplets (spherical caps) with crystalline
material attached to it (left upper corner). This morphology is also a common situation in VLS growth.
The right picture is a zoom of the inset in the left picture where we illustrate the domains ΩS , ΩL
and ΩV . In the actual (oblique) perspective the planar substrate, which is also a part of ΩS , covers the
background of the image.

Evolution of the nanowire shape is driven by the total interfacial energy

J(ΩV ,ΩL,ΩS) = σV LHd−1(ΓV L) + σLSHd−1(ΓLS) + σSVHd−1(ΓSV ),

whereHd−1 is the (d−1)–dimensional Hausdorff measure [3], and σLS , σV L and σSV represent the surface
tension coefficients between the liquid-solid, the vapor-liquid and the solid-vapor phases, respectively.

As the L2-gradient flow of the multiphase perimeter functional J tends to minimize the surface energy,
some additional constraints have to be imposed in order to include the essential qualitative features of
the physical problem. Given an evolving partition t 7→ (ΩL(t),ΩS(t),ΩV (t)) we shall assume that:
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• The liquid phase volume is conserved, i.e.

Vol(ΩL)′(t) = 0

which is indeed the case when the catalyser does not spread into the solid phase. This is the
classical case of Au-catalysed growth of Si (or Ge) nanowires although some studies have reported
on the dissolution of the Au catalyst in the Si nanowires [69] but not that of III-V semiconductors
self-catalysed nanowires1.

• The velocity of the nanowire growth is proportional to the area of the solid-liquid interface, i.e.

Vol(ΩS)′(t) = cSHd−1(ΓSL), Vol(ΩV )′(t) = −cSHd−1(ΓSL).

Apparently restrictive, the first part of this assumption covers both the cases of nanowire size-
dependent growth velocity valid for small nanowire radius and the case of size-dependent growth
velocity valid for large nanowire radius (which is obviously covered by taking cS = 0). For theo-
retical models predicting these two regimes, the reader is referred to [38]. The second part of the
above assumptions is motivated by the physical realistic requirement that, since the liquid phase
is conserved, the solid phase grows at the expense of the vapor phase.

By using classical Lagrange multipliers which account for both the partition and volume constraints,
we obtain the following system

1
mLS

vLS(x, t) = σLSHLS(x) + µL(t) + µS(t) + λ(x, t),
1

mV L
vV L(x, t) = σV LHV L(x) + µL(t) + µV (t) + λ(x, t),

1
mSV

vSV (x, t) = σSVHSV (x) + λ(x, t),

wherem·· andH·· denote the mobilities and the mean curvature vectors at interfaces. As the solidification
is located only at the solid-liquid interface ΓLS , the mobilities mSV and mV L should be chosen to be
several orders of magnitude lower thanmLS . This physical requirement is particularly difficult to account
for within classical phase field models.

1.2 Classical phase field approximation (without mobilities)
1.2.1 Perimeter gradient flow and Allen-Cahn equation

We start with the case of a single set Ω ⊂ Rd which evolves following the normal velocity law

Vn = mH.

By a simple time rescaling, we can assume without loss of generality that m = 1. As above, H denotes
the mean curvature of ∂Ω and the evolution equation coincides with the L2-gradient flow of the perimeter
functional

P (Ω) = Hd−1(∂Ω).

We recall that the basic principle of the phase field method is to replace the discontinuous characteristic
function 1Ω by a smooth approximation u, and the singular perimeter energy by the smooth Van der
Waals-Cahn-Hilliard functional [21]

Pε(u) =

∫
Q

(
ε
|∇u|2

2
+

1

ε
W (u)

)
dx,

where ε is a small parameter and W is a suitable double-well potential, e.g. W (s) = 1
2s

2(1− s)2. In this
framework Modica and Mortola [54] proved that Pε tends to cWP in the sense of Γ-convergence for the
L1 topology, where cW =

∫ 1

0

√
2W (s)ds and

P (u) =

{
|Du|(Q) if u ∈ BV(Q, {0, 1}),
+∞ otherwise.

1The case of self-catalysed nanowire growth will be discussed in a future work.
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Here, BV denotes the space of functions with bounded variation in Q ⊂ Rd, see [3], and BV(Q, {0, 1}) is
the set of BV functions which take values in {0, 1}. For u ∈ BV(Q), |Du|(Q) denotes the total variation
of u in Q, defined as

|Du|(Q) =

∫
Q

|Du| = sup

{∫
Ω

udiv gdx, g ∈ C1
0 (Q,Rd), |g| ≤ 1

}
.

In particular, when Ω is a set with finite perimeter P (Ω) in Q [3, 52], the characteristic function 1Ω of
Ω satisfies P (1Ω) = P (Ω). Modica and Mortola showed that 1Ω can be approximated by the smooth
functions uε(x) = q

(
dist(x,Ω)

ε

)
which satisfy limε→0 Pε(u

ε) = cWP (Ω) (as usual in the theory of Γ-
convergence, ε → 0 must be intended in the sequential sense, i.e. it is related to a sequence (εn)n such
that lim

n→∞
εn = 0). In the definition of uε, dist(x,Ω) denotes the signed distance function to Ω and q is

the so-called optimal profile associated with the potential W , defined by

q = argmin
p

{∫
R

√
W (p(s))|p′(s)|ds, p(−∞) = 1, p(0) = 1/2, p(+∞) = 0

}
,

where p ranges over all Lipschitz continuous functions p : R → R. A simple derivation of the Euler
equation associated with this minimization problem shows that

q′(s) = −
√

2W (q(s)) and q′′(s) = W ′(q(s)), for all s ∈ R, (1)

which implies that q(s) = (1 − tanh(s))/2 in the case of the standard double well potential W (s) =
1
2s

2(1− s)2 considered above.

The classical Allen-Cahn equation [1] is obtained as the L2-gradient flow of the Van der Waals–Cahn–
Hilliard energy Pε, and up to time-rescaling reads as

ut = ∆u− 1

ε2
W ′(u).

For this equation, existence and uniqueness of a solution are well-known, as well as a comparison principle,
see for example [2, Chap 14, 15]. A smooth set Ω evolving by mean curvature flow can be approximated
by

Ωε(t) =

{
x ∈ Rd, uε(x, t) ≥ 1

2

}
,

where uε solves the Allen-Cahn equation with initial condition

uε(x, 0) = q

(
dist(x,Ω(0))

ε

)
.

A formal asymptotic expansion of uε near the interfaces [6] shows that, at least formally, uε is quadrat-
ically close to the optimal profile, i.e.

uε(x, t) = q

(
dist(x,Ωε(t))

ε

)
+O(ε2),

with associated normal velocity V ε satisfying

V ε = H +O(ε2).

More rigorously, the convergence of ∂Ωε(t) to ∂Ω(t) has been proved for smooth motions by [25, 27, 7]
with a quasi-optimal convergence order O(ε2| log ε|2).

1.2.2 Multiphase field approximation in the additive case

Using the inclusion-exclusion principle for a three-phase material, the nanowire surface energy can be
expressed as

J(ΩV ,ΩL,ΩS) = σLSHd−1(ΓLS) + σSVHd−1(ΓSV ) + σV LHd−1(ΓV L),

= σVHd−1(∂ΩV ) + σLHd−1(∂ΩL) + σSHd−1(∂ΩS),
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where σS = 1
2 (σSV + σLS − σV L), σL = 1

2 (σLS + σV L − σSV ) and σV = 1
2 (σV L + σSV − σLS) are

non-negative numbers due to the triangle inequality. This reformulation is important because it replaces
interfacial areas by the area of volume boundaries, which opens the way to a phase-field approximation
(recall that a phase field approximates characteristic functions of volume sets). The same principle
applies for the general N -phase case when the surface tensions are additive, i.e., there exist nonnegative
numbers {σi}i such that σij = σi + σj for any i 6= j (when N ≤ 3, any collection of surface tensions
satisfying the triangle inequality is additive). In this very case, the N -phase perimeter functional can be
written as

P (Ω1,Ω2, · · · ,ΩN ) =
1

2

∑
1≤i<j≤N

σijHd−1(Γij) =

N∑
i

σiHd−1(∂Ωi).

It appears immediately that P can be approximated by the multiphase Cahn-Hilliard energy defined
for all u = (u1, u2, . . . , uN ) by

Pε(u) =


1
2

N∑
i=1

∫
Q

σi

(
ε
|∇ui|2

2
+

1

ε
W (ui)

)
dx, if

∑N
i=1 ui = 1,

+∞ otherwise.

If uε is such that lim inf Pε(u
ε) < ∞ then, by Modica-Mortola’s Theorem [54], up to a subsequence,

uε → u = (1Ω1
,1Ω2

, . . . ,1ΩN ) and the constraint
∑N
i=1 ui = 1 ensures that Ω = {Ω1,Ω2, . . . ,ΩN} is a

partition of Q.

The Γ-convergence of Pε to cWP is was established in [59] for the particular case where σi = 1, ∀i.
More general Γ-convergence results were obtained in [4, 17] for inhomogeneous surface tensions σij , while
multiphase field models in the context of anisotropic surface tensions were introduced and analyzed in
[35, 34].

The L2-gradient flow of Pε leads to the following Allen-Cahn system

∂tu
ε
k = σk

[
∆uεk −

1

ε2
W ′(uεk)

]
+ λε, ∀k = 1, . . . , N , (2)

where the Lagrange multiplier field λε encodes the partition constraint
∑N
k=1 u

ε
k = 1.

By using the method of matched asymptotic expansions developed in [18, 60, 8, 51, 34], we will prove
in this paper the folllowing result:

Claim 1.1. Denoting Ωεi =
{
x ∈ Q;ui(x, t) ≥ 1

2

}
, the solution uε of (2) expands formally near the

interface Γij as 
uεi = q

(
dist(x,Ωεi )

ε

)
+O(ε),

uεj = 1− q
(
dist(x,Ωεi )

ε

)
+O(ε),

uεk = O(ε), for k ∈ {1, 2, . . . , N} \ {i, j}.

Moreover, the associated normal velocity satisfies V εij = 1
2σijHij +O(ε).

These formal results indicate that the phase-field model (2) is consistent but its solutions converge
not faster than a linear order in ε.

In order to improve the convergence order we consider the slightly modified phase field system

∂tu
ε
k = σk

[
∆uεk −

1

ε2
W ′(uεk)

]
+ λε

√
2W (uk) ∀k = 1, . . . , N, (3)

where, again, the Lagrange multiplier field λε encodes the partition constraint
∑N
k=1 u

ε
k = 1. The idea to

localize the Lagrange multiplier λ near the diffuse interface has been recently proposed in [16] in order
to improve the accuracy of the two-phases model. In our case, we will show that, at least formally,
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Claim 1.2. Near Γij , the solution uε of (3) expands formally as
uεi = q

(
dist(x,Ωεi )

ε

)
+O(ε2),

uεj = 1− q
(
dist(x,Ωεi )

ε

)
+O(ε2),

uεk = O(ε2), for k ∈ {1, 2, . . . , N} \ {i, j},

with V εij = 1
2σijHij +O(ε).

Therefore, solutions to the new model (3), converges quadratically (at least formally) to the optimal
profiles.

1.3 Incorporation of mobilities
1.3.1 The energetic viewpoint

It was proposed in [35] to incorporate the mobilities mij directly in the Cahn-Hilliard energy by consid-
ering a model of the form

Pε(u) =

∫
Q

εf(u,∇u) +
1

ε
W (u)dx,

where f(u,∇u) =
∑
i<jmijσij |ui∇uj − uj∇ui|2 and the multi-well potential W is defined by

W (u) = 9

N∑
i,j=1,i<j

σij
mij

u2
iu

2
j +

∑
i<j<k

σijku
2
iu

2
ju

2
k.

The term
∑
i<j<k σijku

2
iu

2
ju

2
k can be regarded as a penalization, with the coefficient σijk being chosen

sufficiently large to ensure the convergence of Pε to the multiphase field perimeter P . As the mobility
appears in the energy (and not only in the flow of Pε), it can be expected that the size of the diffuse
interface Γij depends on the mobility mij . This can be easily seen already for the two-phases case. Take
indeed the modified Cahn-Hilliard energy

Pmε (u) = Pmε(u) =

∫
Q

(
mε
|∇u|2

2
+

1

mε
W (u)

)
dx,

for which the classical L2-gradient flow reads as (up to time rescaling):

ut = m∆u− 1

mε2
W ′(u).

The matched asymptotic expansion method [18, 60, 8] applied to this equation gives a solution of the
form:

u(x, t) = q

(
dist(x,Ωε)

εm

)
.

with the associated velocity law:
V ε = mH +O(ε2).

Obviously, the mobility plays a role in the size of the interface. Generalizing to the multiphase case,
each mobility mij will impact explicitly the size of the diffuse interface associated with Γij . From the
numerical point of view, this approach raises a significant limitation for high contrast mobilities and, in
particular, it cannot be used for degenerate, i.e., vanishing mobilities.

Another issue with this model is related to the difference of nature between surface tensions and
mobilities: whereas surface tensions are geometric parameters which appear in the sharp energy, mobil-
ities are typically evolution parameters which play a role out of equilibrium. This is why we propose to
incorporate mobilities not in the geometric energy but rather in the metric used for defining the gradient
flow.
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1.3.2 A new approach: the metric viewpoint

We propose a novel approach to incorporate the mobility so as to handle the special case of degenerate
mobilities. The idea is to introduce the gradient flow of Pε with respect to a weighted scalar product

〈u,v〉L2
A(Q,RN ) =

∫
Q

(Au) · vdx

where the matrix A depends on the mobilities mij . The advantage of such approach can be easily seen
in the binary case: defining the new scalar product

〈u, v〉L2
m(Q) =

∫
Q

1

m
uvdx,

the L2
m-gradient flow of the classical Cahn-Hilliard energy is

ut = m(∆u− 1

ε2
W ′(u)).

whose associated optimal profile is

u(x, t) = q

(
dist(x,Ωε)

ε

)
.

with the evolution law
V ε = mH +O(ε2).

Of course, the new metric cannot be explicitly defined for vanishing mobilities. However, because the
size of the interface does not depend on m, arbitrary small values of m can be used without any loss
in numerical efficiency. We shall now explain how, in the multiphase case, A can be first easily defined
for a specific class of mobilities (which will be called harmonically additive), and then for more general
mobilities.

Harmonically additive mobilities
Let us first assume an additivity property for the mobility coefficients, i.e, there exist some non negative
coefficients mi such that

1

mij
=

1

mi
+

1

mj
.

This assumption has no clear physical justification, yet, it makes sense in a few situations. For instance,
in the case of three phases, if the mobility coefficients satisfy the harmonic triangle inequality, i.e.

1
mij
≤ 1

mik
+ 1
mkj

, then the addivity property is satisfied. From the modeling viewpoint, such assumption
has a clear consequence: it yields a second order approximation for a suitable choice of the metric, namely
A = M−1 with M given by

Mij =

{
mi if i = j

0 otherwise

The associated L2
A-gradient flow gives the following Allen-Cahn system:

∂tu
ε
k = mk

[
σk

(
∆uεk −

1

ε2
W ′(uεk)

)
+ λε

√
2W (uk)

]
, ∀k ∈ {1, 2, · · · , N} (4)

where the Lagrange multiplier field λε is again associated to the constraint
∑
uεi = 1.

For this particular category of mobilities, we will derive formally the following result:

Claim 1.3. Around the interface Γij, the solution uε to (4) has the following form (at least formally):
uεi = q

(
dist(x,Ωεi )

ε

)
+O(ε2),

uεj = 1− q
(
dist(x,Ωεi )

ε

)
+O(ε2),

uεk = O(ε2), for k ∈ {1, 2, . . . , N} \ {i, j},

with 1
mij

V εij = σijHij +O(ε).

Therefore, this multiphase field model with harmonically additive mobilities has quadratic conver-
gence in ε.
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General mobilities
The above additivity assumption is clearly not always satisfied, for instance m12 = 1, m13 = 1, and
m23 < 0.5 is a natural choice of mobility coefficients for which the harmonic inequality fails. However,
even for general mobilities, one can still prove a convergent property, yet less optimal, i.e. of order one
rather than two. Define indeed

Aij =

{
− 1
mij

if i 6= j

0 if i = j.

whose associated L2-gradient flow is

A∂tu
ε = σ∆uε − 1

ε2
W ′(uε) + λε

√
2W (uε), (5)

where, for all k ∈ {1, 2, · · · , N},

(σ∆u)k = σk∆uk, W ′(u)k = W ′(uk), and (
√

2W (u))k =
√

2W (uk).

The Allen-Cahn system (5) is well-posed as soon as A is semi-definite positive on (1, 1, · · · , 1)⊥, which
in turn imposes some restriction on the choice of the mobility mij (see [17] for a similar discussion about
surface tensions).

We will show, at least formally, that the solution uε to (5) has the following form.

Claim 1.4. Around the interface Γij, the solution uε to (5) is, at least formally, of the form
uεi = q

(
dist(x,Ωεi )

ε

)
+O(ε),

uεj = 1− q
(
dist(x,Ωεi )

ε

)
+O(ε),

uεk = O(ε2), for k ∈ {1, 2, . . . , N} \ {i, j},

with
1

mij
V εij = σijHij +O(ε).

We conclude that this multiphase field model is of order one only. In practice, of course, as soon as
the harmonic additivity is satisfied, we shall opt for the model described in the previous section.

1.3.3 Application to the modeling of nanowire growth

We recall that the nanowire growth can be modeled as the evolution of a partition Ω = (ΩL,ΩS ,ΩV )
with the folllowing velocities at boundaries:

1
mLS

vLS = σLSH + µL(t) + µS(t) + λ,
1

mV L
vV L = σV LH + µL(t) + µV (t) + λ,

1
mSV

vSV = σSVH + λ.

where λ(x, t), µL(t), µV (t) and µS(t) correspond to the Lagrange multipliers associated to the partition
constraint and to the volume constraint, respectively. We further assume that the mobility coefficients
satisfy

mLS =
δ

1 + δ
, mV L =

1

2
, and mSV =

δ

1 + δ

with δ � 1. This choice is motivated by interfaces LS and SV having much smaller mobilities than the
V L interface. Moreover, it corresponds to the harmonically additive case withmS = δ andmL = mV = 1.

The phase field approximation of this model is given by the M−1 L2-gradient flow of the multiphase
Cahn Hilliard energy

Pε(u) = σLPε(uL) + σV Pε(uV ) + σSPε(uS), with u = (uL, uS , uV ),
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i.e. 
1
mL

∂tuL(x, t) = σL
[
∆uL − 1

ε2W
′(uL)

]
+ λ
√

2W (uL) + µL
√

2W (uL)
1
mS

∂tuS(x, t) = σS
[
∆uS − 1

ε2W
′(uS)

]
+ λ
√

2W (uS) + µSuLuS
1
mV

∂tuV (x, t) = σS
[
∆uV − 1

ε2W
′(uV )

]
+ λ

√
2W (uV ) + µV uLuV

where λ(x, t), µL(t), µV (t), and µS(t) encode both the partition constraint

uL + uS + uV = 1,

and the volume constraints :∫
Q

∂tuL(x, t)dx = 0, and
∫
Q

∂tuS(x, t)dx = −
∫
Q

∂tuV (x, t)dx =
cS
ε

∫
Q

uL(x, t)uS(x, t)dx.

1.4 Outline of the paper
The paper is organized as follows: Claims 1-4 are proven in Section 2 using the method of matched
asymptotic expansions. We describe in Section 3 a numerical method to approximate the solutions of a
multiphase mean curvature flows with mobilities and possible additional volume constraints. We provide
various examples of such multiphase flows in order to illustrate the influence of mobility. We show in
particular, with several examples of a droplet wetting on a solid surface, that our method is well-suited
numerically for handling degenerate or highly contrasted mobilities. Finally, we apply our method to
simulate an isotropic approximation of a nanowire grown by the VLS method. Our numerical results
related to nanowires are confirmed by a theoretically derived optimal profile, whose derivation is new to
the best of our knowledge.

2 Asymptotic expansion of solutions to the Allen-Cahn systems
This section is devoted to the (formal) identification of sharp interface limits of solutions uε = (uε1, . . . , u

ε
N )

to the Allen-Cahn systems (2), (3), (4), and (5). To this aim, we use the formal method of matched
asymptotic expansions proposed in [18, 60, 8, 51], which we apply around each interface Γij .

2.1 Preliminaries
Outer expansion far from Γij: We assume that the outer expansion of uεk, i.e., the expansion far
from the front Γij has the form:

uεk(x, t) = u0
k(x, t) + εu1

k(x, t) +O(ε2), for all k ∈ {1, 2, · · · , N}.

In particular and analogously to [51], it is not difficult to see that if Ei(t) = {x ∈ Ω, uεi ≥ 1
2}, then

u0
i (x, t) =

{
1 if x ∈ Ei(t)
0 otherwise

, u0
j (x, t) =

{
0 if x ∈ Ei(t)
1 otherwise

and u1
i = u1

j = 0, u0
k = u1

k = 0 for all k ∈ {1, 2, · · ·N} \ {i, j}.

Inner expansions around Γij: In a small neighborhood of Γij , we define the stretched normal distance
to the front as z = 1

εdi(x, t), where di(x, t) denotes the signed distance to Ei(t) such that di(x, t) < 0 in
Ei(t). The inner expansions of uεk(x, t) and λε(x, t), i.e. expansions close to the front, are assumed of
the form

uεk(x, t) = Uεk(z, x, t) = U0
k (z, x, t) + εU1

k (z, x, t) +O(ε2), for all k ∈ {1, 2, · · · , N},

and
λε(x, t) = Λε(z, x, t) = ε−2Λ−2(z, x, t) + ε−1Λ−1(z, x, t) +O(1).
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Moreover, if n denotes the unit normal to Γij and V εij the normal velocity to the front, for x ∈ Γij

V εij = ∂tdi(x, t) = V 0
ij + εV 1

ij +O(ε2), n = ∇di(x, t).

where ∇ refers to the spatial derivative only.
Following [60, 51] we assume that U εk(z, x, t) does not change when x varies normal to Γij with z held

fixed, or equivalently (∇U εk)z=const. · n = 0. This amounts to requiring that the blow-up with respect to
the parameter ε is coherent with the flow.

Following [60, 51], it is easily seen that
∇uk = ∇xUk + ε−1n∂zUk,

∆uk = ∆xUk + ε−1∆di ∂zUk + ε−2∂2
zzUk,

∂tuk = ∂tUk − ε−1V εij∂zUk.

Recall also that in a sufficiently small neighborhood of Γij , according to Lemma 14.17 in [36], we have

∆di(x, t) =

d−1∑
k=1

κk(π(x))

1 + κk(π(x))di(x, t)
=

d−1∑
k=1

κk(π(x))

1 + κk(π(x))εz
,

where π(x) is the projection of x on Γij and κk are the principal curvatures on Γij . In particular this
implies that

∆di(x, t) = Hij − εz‖Aij‖2 +O(ε2),

where Hij and ‖Aij‖2 denote, respectively, the mean curvature and the squared 2-norm of the second
fundamental form on Γij at π(x).

Matching conditions between outer and inner expansions: The matching conditions (see [51]
for more details) can be written as:

lim
z→+∞

U0
i (z, x, t) = 0, lim

z→−∞
U0
i (z, x, t) = 1, lim

z→±∞
U1
i (z, x, t) = 0,

lim
z→+∞

U0
j (z, x, t) = 1, lim

z→−∞
U0
j (z, x, t) = 0, lim

z→±∞
U1
j (z, x, t) = 0,

and
lim

z→±∞
U0
k (z, x, t) = lim

z→±∞
U1
k (z, x, t) = 0, for all k ∈ {1, 2, · · ·N} \ {i, j}.

2.2 Analysis of the classical additive Allen-Cahn system (no mobilities)
We first consider the classical additive Allen-Cahn system (2), i.e. the set of equations

∂tu
ε
k = σk

(
∆uεk −

1

ε2
W ′(uεk)

)
+ λε

where the Lagrange multiplier field λε encoding the pointwise constraint
∑N
j=1 uj = 1 can be explicitly

computed as

λε = − 1

N

N∑
j=1

σj

(
∆uεj −

1

ε2
W ′(uεj)

)
. (6)

We focus first on inner expansions of uεk(x, t) and λε(x, t), i.e. expansions close to the front Γij . Injecting
into (2) and (6) the following expressions:

uεk(x, t) = Uεk(z, x, t) = U0
k (z, x, t) + εU1

k (z, x, t) +O(ε2), for all k ∈ {1, 2, · · · , N},

and
λε(x, t) = Λε(z, x, t) = ε−2Λ−2(z, x, t) + ε−1Λ−1(z, x, t) +O(1).

leads to the following terms at various orders.
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Order ε−2 : Identifying the terms of order ε−2 in (2) and (6) gives

σk
(
∂2
zzU

0
k −W ′(U0

k )
)

+ Λ−2 = 0, for all k ∈ {1, 2, · · ·N},

and

Λ−2 = − 1

N

N∑
k=1

(
∂2
zzU

0
k −W ′(U0

k )
)
.

Moreover, the boundary conditions obtained from the matching conditions and the equality U0
i (0, x, t) =

1
2 give (recall that q is the optimal profile defined as the solution to (1)):

U0
i (z, x, t) = q(z),

U0
j (z, x, t) = q(−z) = 1− q(z),

U0
k (z, x, t) = 0, for all k ∈ {1, 2, · · · , N} \ {i, j}

Λ−2 = 0.

Order ε−1: Matching the terms of order ε−1 in (2) and (6) gives

Vij∂zU
0
k = σk

[
∂2
zzU

1
k −W ′′(U0

k )U1
k +Hij∂zU

0
k

]
+ Λ−1,

and

Λ−1 = − 1

N

N∑
k=1

σk
[
∂2
zzU

1
k −W ′′(U0

k )U1
k +Hij∂zU

0
k

]
.

In particular, for k = i and k = j we obtain respectively

V 0
ijq
′(z) = σi

(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
+ σiq

′(z)Hij + Λ−1,

−V 0
ijq
′(z) = σj

(
∂2
zzU

1
j −W ′′(q(z))U1

j

)
− σjq′(z)Hij + Λ−1,

so that

2V 0
ijq
′(z) = σi

(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
− σj

(
∂2
zzU

1
j −W ′′(q(z))U1

j

)
+ (σi + σj)q

′(z)Hij .

Multiplying this equation by q′, integrating over R and taking into account the matching conditions we
obtain

V 0
ij =

1

2
(σi + σj)Hij =

1

2
σijHij ,

which shows that the first order term of the interface velocity matches with the expected velocity law.
Moreover, the Lagrange multiplier Λ−1 satisfies∫

R
Λ−1(z, x, t)q′(z)dz =

cW
2

(σj − σi)Hij(x, t),

where cW =
∫
R(q′(s))2ds =

∫ 1

0

√
2W (s)ds. This shows that Λ−1 is expected of the form

Λ−1(z, x, t) =
1

2
[σj − σi]Hij(x, t) η(z).

For each k ∈ {1, 2, . . . , N} \ {i, j}, the functions U1
k are defined as the solutions to

σi
(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
= 1

2 [σj − σi]Hij(x, t) (q′(z)− η(z)) ,

σj
(
∂2
zzU

1
j −W ′′(q(z))U1

j

)
= 1

2 [σj − σi]Hij(x, t) (q′(z)− η(z)) ,

σk
(
∂2
zzU

1
k −W ′′(0)U1

k

)
= 1

2 [σj − σi]Hij(x, t)η(z).

with additional Dirichlet limit conditions at z = ±∞. The profile η can be also obtained by imposing
the additional constraint

∑N
k=1 U

1
k = 0. Finally, the asymptotic expansion shows that the second term

U1
k does not vanish in general as soon as σi 6= σj which proves Claim 1.1.
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2.3 Analysis of the modified additive Allen-Cahn system (no mobilities)
We now analyze the modified additive Allen-Cahn system (3), i.e. the system

∂tu
ε
k = σk

(
∆uεk −

1

ε2
W ′(uεk)

)
+ λε

√
2W (uεk)

with λε defined as

λε =

∑N
j=1

(
σj
(
∆uεj − 1

ε2W
′(uεj)

))
∑N
j=1

√
2W (uεj)

. (7)

Order ε−2 : The first order equations (3) and (7) read now respectively as

σk
(
∂2
zzU

0
k −W ′(U0

k )
)

+ Λ−2
√

2W (U0
k ) = 0, for all k ∈ {1, 2, · · ·N},

so that

Λ−2
N∑
k=1

√
2W (U0

k ) = −
N∑
k=1

σk
(
∂2
zzU

0
k −W ′(U0

k )
)
.

As previously, from the boundary conditions we obtain U0
i (z, x, t) = q(z), U0

j (z, x, t) = 1 − q(z),

U0
k (z, x, t) = 0 and Λ−2 = 0.

Order ε−1: Matching terms of order ε−1 gives

Vij∂zU
0
k = σk

[
∂2
zzU

1
k −W ′′(U0

k )U1
k +Hij∂zU

0
k

]
+ Λ−1

√
2W (U0

k ), for all k ∈ {1, 2, · · ·N}

and
N∑
k=1

√
2W (U0

k )Λ−1 = −
N∑
k=1

σk
[
∂2
zzU

1
k −W ′′(U0

k )U1
k +Hij∂zU

0
k

]
.

In particular, for all k ∈ {1, 2, · · ·N} \ {i, j}, we have σk
(
∂2
zzU

1
k −W ′′(0)U1

k

)
= 0 which proves, by using

the additional boundary conditions, that U1
k = 0. Moreover, as

√
2W (q) = −q′, the equations for k = i

and k = j read{
Vijq

′(z) = σi
(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
+ σiq

′(z)Hij − Λ−1(z, x, t)q′(z),

−Vijq′(z) = σj
(
∂2
zzU

1
j −W ′′(q(z))U1

j

)
− σjq′(z)Hij − Λ−1(z, x, t)q′(z),

while (7) gives

2q′(z)Λ−1(z, x, t) = σi
(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
+ σiq

′(z)Hij + +σj
(
∂2
zzU

1
j −W ′′(q(z))U1

j

)
− σjq′(z)Hij .

As a consequence we obtain

Vijq
′(z) =

1

2
(σi + σj)q

′(z)Hij +
1

2
σi
(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
− 1

2
σj
(
∂2
zzU

1
j −W ′′(q(z))U1

j

)
.

Finally, multiplying this last equation by q′ and integrating over R leads to the interface law Vij =
1
2 (σi+σj)Hij . From the Fredholm alternative we deduce that U1

i = U1
j = 0 and Λ−1(z, x, t) = 1

2 (σi − σj)
so that Claim 1.2 is proved.

2.4 Analysis of the Allen-Cahn system with harmonically additive mobilities
We assume in this section that mobility coefficients are harmonically additive, i.e., there exist coefficients
mi > 0 such that

1

mij
=

1

mi
+

1

mj
,
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and we consider the Allen-Cahn system

1

mk
∂tu

ε
k = σk

(
∆uεk −

1

ε2
W ′(uεk)

)
+ λε

√
2W (uεk), for all k ∈ {1, 2, · · · , N},

where

λε =

∑
k

(
mkσk

(
∆uεk(x, t)− 1

ε2W
′(uεk(x, t))

))∑
kmk

√
2W (uk)

is the Lagrange multiplier field associated to the pointwise constraint
∑N
k=1 uk = 1. The analysis below

follows closely the matching conditions already used in both previous subsections:

Order ε−2: Identifying the terms of order ε−2 gives for all k ∈ {1, · · · , N}:

σk
(
∂2
zzU

0
k −W ′(U0

k )
)

+ Λ−2
√

2W (U0
k ) = 0,

and [
mk

N∑
k=1

√
2W (U0

k )

]
Λ−2 = −

N∑
k=1

mkσk
(
∂2
zzU

0
k −W ′(U0

k )
)
.

and leads to U0
i (z, x, t) = q(z), U0

j (z, x, t) = q(−z), U0
k (z, x, t) = 0 and Λ−2 = 0.

Order ε−1: Matching the next order terms shows that

1

mk
Vij∂zU

0
k = σk

[
∂2
zzU

1
k −W ′′(U0

k )U1
k +Hij∂zU

0
k

]
+ Λ−1

√
2W (U0

k )

and [
mk

N∑
k=1

√
2W (U0

k )

]
Λ−1 = −

N∑
k=1

mkσk
[
∂2
zzU

1
k −W ′′(U0

k )U1
k +Hij∂zU

0
k

]
.

Notice that for all k ∈ {1, 2, · · ·N} \ {i, j}, we have mkσk
(
∂2
zzU

1
k −W ′′(0)U1

k

)
= 0 from which, by using

matching boundary conditions, we deduce that U1
k = 0. Moreover, as

√
2W (q) = −q′, equations for U1

i

and U1
j become{

1
mi
Vijq

′(z) = σi
(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
+ σiq

′(z)Hij − Λ−1(z, x, t)q′(z),
1
mj
Vijq

′(z) = σj
(
∂2
zzU

1
j −W ′′(q(z))U1

j

)
− σjq′(z)Hij − Λ−1(z, x, t)q′(z)

(8)

and

(mi +mj) q
′(z)Λ−1(z, x, t) = miσi

(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
+miσiq

′(z)Hij+

+mjσj
(
∂2
zzU

1
j −W ′′(q(z))U1

j

)
−mjσjq

′(z)Hij .
(9)

Combining (8) and (9) we obtain(
1

mi
+

1

mj

)
Vijq

′(z) = (σi + σj)q
′(z)Hij + σi

(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
− σj

(
∂2
zzU

1
j −W ′′(q(z))U1

j

)
.

Multiplying this equation by q′ and integrating over R leads to the interface evolution(
1

mi
+

1

mj

)
Vij = (σi + σj)Hij

or, equivalently 1
mij

Vij = σijHij . Additionally, it appears that U1
i = U1

j = 0, and Λ−1 = 1
2 (σi − σj) ,

which finally proves Claim 1.3.
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2.5 Analysis of the Allen-Cahn system with general mobilities
We now consider the more general situation described by the Allen-Cahn system (5):

−M∂tu
ε = σ∆uε − 1

ε2
W ′(uε) + λ

√
2W (uε),

where Mij = 1
mij

for 1 ≤ i 6= j ≤ N, Mii = 0 for i ∈ {1, 2, · · ·N}, with Lagrange multiplier

λε(x, t) =

∑N
k=1

(
M−1

(
σ∆uε − 1

ε2W
′(uε)

))
k∑N

k=1

(
M−1

√
2W (uε)

)
k

.

Order ε−2: For all k ∈ {1, 2, · · · , N} we obtain σk
(
∂2
zzU

0
k −W ′(U0

k )
)

+ Λ−2
√

2W (U0
k ) = 0, and[

N∑
l=1

N∑
k=1

M−1
lk

√
2W (U0

k )

]
Λ−2 = −

N∑
l=1

N∑
k=1

M−1
lk σk

(
∂2
zzU

0
k −W ′(U0

k )
)
.

Again, we can deduce that U0
i (z, x, t) = q(z) U0

j (z, x, t) = 1− q(z), U0
k (z, x, t) = 0 and Λ−2 = 0.

Order ε−1: Matching the next order terms shows that, for all k ∈ {1, · · · , N},

−Vij
N∑
l=1

Mk,l∂zU
0
l = σk

[
∂2
zzU

1
k −W ′′(U0

k )U1
k +Hij∂zU

0
k

]
+ Λ−1

√
2W (U0

k ).

In particular, if k = i and k = j we obtain{
Vij

1
mij

q′(z) = σi
[
∂2
zzU

1
i −W ′′(q)U1

i +Hijq
′(z)
]
− Λ−1(z, x, t)q′(z),

−Vij 1
mij

q′(z) = σj
[
∂2
zzU

1
j −W ′′(q)U1

j −Hijq
′(z)
]
− Λ−1(z, x, t)q′(z),

(10)

while for all k ∈ {1, 2 · · ·N} \ {i, j}

Vij

(
1

mkj
− 1

mki

)
q′(z) = σk

[
∂2
zzU

1
k −W ′′(0)U1

k

]
. (11)

From (10) and (11) we deduce that

2
1

mij
Vijq

′(z) = σi
[
∂2
zzU

1
i −W ′′(q)U1

i +Hijq
′(z)
]

−σj
[
∂2
zzU

1
j −W ′′(q)U1

j −Hijq
′(z)
]

+Hij(σi + σj)q
′(z).

Again, multiplying the expression above by q′, integrating over R and taking into account the conditions
at z → ±∞ leads to the interface evolution

1

mij
Vij =

1

2
Hij(σi + σj) =

1

2
σijHij .

Finally, we notice that as soon as mki 6= mkj , U
1
k can not vanish, since

Vij

(
1

mkj
− 1

mki

)
q′(z) = σk

[
∂2
zzU

1
k −W ′′(0)U1

k

]
.

Thus, Claim 1.4 is proved.
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3 Numerical scheme and simulations
We introduce in this section a numerical scheme to approximate solutions to the following systems:

• the Allen-Cahn system with mobilities but without volume constraints :

∂tu
ε
k = mk

[
σk

(
∆uεk −

1

ε2
W ′(uεk)

)
+ λε

√
2W (uk)

]
,

with
∑N
k=1 uk = 1.

• the Allen-Cahn system with mobilities and volume contraints :

∂tu
ε
k = mk

[
σk

(
∆uεk −

1

ε2
W ′(uεk)

)
+ λε

√
2W (uk) + µk(t)Gk(u)

]
,

with
∑N
k=1 uk = 1 and

∫
Q
ukdx = Volk(t).

The multiphase field model for VLS growth can be regarded as an Allen-Cahn system with additional
volume contraints for the three phases u = (uS , uL, uV ). In this special case the potentials Gk are defined
by

GL(u) =
√

2W (uL), GS(u) = uSuL, and GV (u) = uV uL.

We consider the solution to the Allen-Cahn system for times t ∈ [0, T ], in a computation box Q with
periodic boundary conditions and with the initial condition u(x, 0) = u0. We also assume that u0

satisfies the partition constraint
∑N
k=1 u

0
k = 1.

We propose a standard Fourier spectral splitting scheme [23] to compute numerically the solution to
the above Allen-Cahn systems. We recall that the Fourier K-approximation of a function u defined in a
box Q = [0, L1]× · · · × [0, Ld] is given by

uK(x) =
∑

k∈J−K2 ,
K
2 −1Kd

cke
2iπξk·x,

where k = (k1, . . . , kd) and ξk = (k1/L1, . . . , kd/Ld). In this formula, ck runs over the Kd first discrete
Fourier coefficients of u. The inverse discrete Fourier transform of ck leads to uKk = IFFT[ck] where
uKk denotes the value of u at the points xk = (k1h1, · · · , kdhd) where hα = Lα/K for α ∈ {1, · · · , d}.
Conversely, ck can be computed as the discrete Fourier transform of uKk , i.e., ck = FFT[uKk ].

3.1 Scheme overview
We now introduce a time discrete sequence un for the approximation of u at times nδt. This sequence
is defined as follows for each problem under study:

Allen-Cahn system without volume constraints:

Step 1: L2-gradient flow of the Cahn-Hilliard energy without constraints: let un+1/2 be an approximation
of v(δt) where v = (v1, . . . , vN ) is the solution to:{

∂tvk(x, t) = mkσk
[
∆vk(x, t)− 1

ε2W
′(vk(x, t))

]
∀(x, t) ∈ Q× [0, δt],

v(x, 0) = un(x), ∀x ∈ Q with periodic boundary conditions.

Step 2: Projection onto the partition constraint: for all k ∈ {1, 2, . . . , N} define un+1
k by

un+1
k = u

n+1/2
k +mkλ

n+1

√
2W (u

n+1/2
k )

where

λn+1 =
1−

∑
k u

n+1/2
k∑

kmk

√
2W (u

n+1/2
k )
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Allen-Cahn system with volume constraints:

Step 1: L2-gradient flow of the Cahn-Hilliard energy without constraint: let un+1/2 be an approximation
of v(δt) where v = (v1, v2, . . . , vN ) is the solution of{

∂tvk(x, t) = mkσk
[
∆vk(x, t)− 1

ε2W
′(vk(x, t))

]
∀(x, t) ∈ Q× [0, δt],

v(x, 0) = un(x), ∀x ∈ Q with periodic boundary conditions.

Step 2: Projection onto both the partition and volume constraints: for all k ∈ {1, 2, . . . , N} define un+1
k as

un+1
k = u

n+1/2
k +mkλ

n+1

√
2W (u

n+1/2
k ) +mkµ

n+1
k Gk(un+1/2),

where λn+1 and µn+1
i encode the discrete constraints

∑N
k=1 u

n+1
k = 1 and

∫
Q
un+1
k = V n+1

k =

Volk((n+ 1)δt).

3.2 Solving step one with a semi-implicit Fourier spectral scheme
To compute un+1/2 we use a semi-implicit numerical method. To this end, we consider the equation(

Id − δtmkσk
(
∆− α/ε2Id

))
u
n+1/2
k = unk −

δtmkσk
ε2

(W ′(unk )− αunk ) ,

where α is a positive stabilization parameter. It is known that the Cahn-Hilliard energy decreases
unconditionally [32, 66] as soon as the explicit part, i.e., s → W ′(s)− αs is the derivative of a concave
function. ForW (s) = 1

2s
2(1−s)2 this is true for α > 2.We notice also that even without the stabilization

parameter (i.e., for α = 0) the semi-implicit scheme is still stable under the classical condition δt ≤ C
ε2

where C =
∑
s∈[0,1] |W ′′(s)|. Finally, recall that the equation is computed in Q with periodic boundary

conditions, and, consequently, the inverse of the operator
(
Id −mkδkδt

(
∆− α/ε2Id

))
can be easily

computed in Fourier space [23] using Fast Fourier Transform.

3.3 Solving step two in the case of volume constraints
The case without volume constraints can be of course easily deduced from what follows. We look
for solutions λn+1 and µn+1

k such that
∑N
i=1 u

n+1
k = 1 and

∫
Q
un+1
k = V n+1

k , and where, for all i ∈
{1, 2, . . . , N},

un+1
i = u

n+1/2
i + λn+1mi

√
2W (u

n+1/2
i ) + µn+1

i miGi(u
n+1/2).

Let us introduce λ
n+1

i =
∫
Q
mi

√
2W (u

n+1/2
i )λn+1dx, and notice that integration over Q of the above

equation leads to

µn+1
i =

[
V n+1
i −

∫
Q
u
n+1/2
i dx

]
− λn+1

i∫
Q
miGi(un+1/2)dx

,

and

λn+1 =

[
1−

∑
k u

n+1/2
k

]
−
∑
k µ

n+1
k mkGk(un+1/2)∑

kmk

√
2W (u

n+1/2
k )

.
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Now, the coefficients λ
n+1

i satisfy

λ
n+1

i =

∫
Q

λn+1mi

√
2W (u

n+1/2
i )dx =

=

∫
Q

mi

√
2W (u

n+1/2
i )

[
1−

∑
k u

n+1/2
k

]
∑
kmk

√
2W (u

n+1/2
k )

dx−
∫
Q

∑
k µ

n+1
k mkGk(un+1/2)mi

√
2W (u

n+1/2
i )∑

kmk

√
2W (u

n+1/2
k )

dx =

=
∑
k

∫
Q

mimkGk(un+1/2)

√
2W (u

n+1/2
i )/

∫
Q
mkGk(un+1/2)dx∑

jmj

√
2W (u

n+1/2
j )

dx

λn+1

k =

+

∫
Q

[1−
∑
k

u
n+1/2
k

]
−
∑
k

(
V n+1
k −

∫
Q
u
n+1/2
k dx

)
mkGk(un+1/2)∫

Q
mkGk(un+1/2)dx

 mi

√
2W (u

n+1/2
i )∑N

k=1mk

√
2W (u

n+1/2
k )

 dx.

In particular, this implies that λ = (λ1, λ2, . . . , λN ) solves the linear system

(Id −A)λ = b,

where

Aik =

∫
Q

mi

√
2W (u

n+1/2
i )mkGk(un+1/2)/

∫
Q
mkGk(un+1/2)dx∑N

j=1mj

√
2W (u

n+1/2
j )

dx


and

bi =

∫
Q

[1−
∑
k

u
n+1/2
k

]
−
∑
k

(
V n+1
k −

∫
Q
u
n+1/2
k dx

)
mkGk(un+1/2)∫

Q
mkGk(un+1/2)dx

 mi

√
2W (u

n+1/2
i )∑N

k=1mk

√
2W (u

n+1/2
k )

 dx.

Notice that since
∑
iAki = 1 and the matrix (Id− A) is not invertible. Otherwise, it is not difficult to

see that
∑
bi = 0 as

∑
mn+1
i = |Q|. This means that the linear system (Id − A)λ = b admits at least

one solution and, for stability reasons, we assume in addition that
∑
i λi = 0.

3.4 Validation of the approach for highly contrasted mobilities
Experimental consistency
Figure (2) illustrates numerical results obtained with different sets of surface tension coefficients σ =
(σ12, σ13, σ23) and mobility m = (m12,m13,m23) :

σ1 = (1, 1, 1),σ2 = (0.1, 1, 1),m1 = (1, 1, 1) and m2 = (0.1, 0.1, 1).

The phases Ω1, Ω2 and Ω3 are represented in blue, red and green colors, respectively. All numerical
experiments have been performed with the following numerical parameters: N = 28, ε = 1/N , δt = 1/N2

and L1 = L2 = 1. In particular, we can notice on this simple example the influence of the surface
tensions σ on the evolution of the triple points (so as to satisfy Herring’s condition) and the influence of
the mobilities only on the velocity of each interface. Another important remark is that the width of the
diffuse interface depends only on ε; it does not depend neither on the surface tensions σ nor on mobilities
m. We believe that this is a major advantage of our approach.

Simulation of wetting phenomena
Our phase field model can also handle the case of the evolution of a liquid phase on a fixed solid surface
by simply imposing a null mobility of the SV and SL interfaces:

mLS = mSV = 0.
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Figure 2: Examples of multiphase mean curvature flows for different choices of surface tensions and
mobility coefficients. Columns from left to right are screenshots of solutions at times t = 0, t = 0.05,
t = 0.1 and t = 0.15, respectively. From top to bottom, we use respectively (σ1,m1), (σ1,m2), (σ2,m1),
and (σ2,m2), with σ1 = (1, 1, 1),σ2 = (0.1, 1, 1),m1 = (1, 1, 1) and m2 = (0.1, 0.1, 1).
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Two centuries ago, Young [74] established the optimal shape of a drop in equilibrium on a solid surface.
In particular, Young’s law prescribes the contact angle θ of the liquid on the solid, i.e.

cos(θ) =
σSV − σLS

σV L

which represents the horizontal component of the force balance at the triple point. The wetting phe-
nomenon was modeled by Cahn [20] in a phase-field setting. Cahn proposed to extend the Cahn-Hilliard
energy by adding a surface energy term which describes the liquid-solid interaction. This approach has
been used in [68] for numerical simulations of one droplet, but it cannot be used for angles θ ≥ π

2 . A dif-
ferent approach [75] using the smoothed boundary method proposes to compute the Allen-Cahn equation
using generalized Neumann boundary conditions in order to force the correct contact angle condition.
Note that an extension of these approaches to many droplets can be found in [11]. More recently, two of
the authors of the current paper have proposed a multiphase field model [17] which allows freezing the
solid phase to approximate droplets’ wetting. This approach is equivalent to using null mobilities, i.e.,
mSV = mLS = 0 and its main advantages are simplicity and accuracy. In particular, it does not impose
in any way the contact angle, which is instead implicitly prescribed just by energy minimization.

Figure (3) illustrates numerical results obtained with mobilities equal to

m = (m12,m13,m23) = (1, 0, 0)

and using respectively σ = (1, 1, 1), σ = (1, 0.2, 1) and σ = (1, 1, 0.2). The liquid, vapor, and solid phases
are represented in red, blue and green colors, respectively. Numerical computations were performed using
N = 28, ε = 1/N , δt = 1/N2, and L1,= L2 = 1 for each experiment. In particular, we notice the ability
of our model to treat the case of null mobilities and these experiments show the high influence of the
contact angle on the evolution of the liquid phase. We emphasize, again, that our model does not
prescribe the contact angle. Its value is rather a straightforward consequence of the multiphase interface
energy considered in each simulation.
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Figure 3: From left to right, evolution of a liquid phase on a complex solid surface. The mobility
coefficients are always defined as m = (m12,m13,m23) = (1, 0, 0). The surface tensions are defined from
top to bottom as σ = (1, 1, 1), σ = (1, 0.2, 1), and σ = (1, 1, 0.2), respectively.
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3.5 Application to nanowire growth
The explicit shape for nanowire in quasi-static growth
The first stage of nanowire growth is much less documented than the stationary growth regime, when
the nanowire length and thickness evolve at relative constant rates. This is because, in the first stages
of nanowire growth, both the surface tension at the SV interface and the liquid droplet geometry evolve
from the horizontal direction (when the liquid droplet lays between the S and V phases) to the vertical
one (when the droplet is pinned at the top of the nanowire). The following derivation (i) assumes the
isotropy of all interfaces, and thus represents only a rough approximation of the real physical situation,
and (ii) generalizes an early attempt in [64] by including the vertical component of the force balance at
the triple point.

R0

S

L

V

σSV TSV

σLV TLV

σLSTLS

θV

θS

Rπ
2

Rα

Figure 4: Left: a typical VLS configuration when the liquid droplet reacts with the substrate (as is
the case for Si-Au). In the equilibrium configuration where the balance of interfacial forces holds, the
interfaces SL and LV have constant curvatures. The dotted circles illustrate that interfaces LS and LV
are contained in curves of constant curvature. Right: During the nanowire growth the three surface
tension vectors turn from the initial position where the superficial tension vector σSV TSV is horizontal
toward the stationary regime where it is vertical. Relative positions of surface tensions (at equilibirum)
remain unchanged.

We adopt the quasi-static point of view of sharp interface theory, i.e., we assume that the time
increase rate of the nanowire volume is not comparable with the action of geometric energies toward
spatial equilibrium. In other words, all interfaces are at space equilibrium at every time. We start from
an initial configuration where the triple point is at the equilibrium illustrated in Fig 4, left. In this
configuration, both SV and VL interfaces have constant curvature. Let θV denote the angle between the
surface tension vectors σSV TSV and σV LTV L (see Fig. 4, left). From the balance of surface tensions at
the triple point we obtain

cos θV =
b2 − a2 − 1

2a
, cos θS =

a2 − b2 − 1

2b
,

where we used a = σV L
σSV

and b = σLS
σSV

. The volume in the liquid phase can be expressed as the sum of
the volumes of two spherical caps and is given by

VL(0) =
πR3

0

3
[f(θV ) + f(θS)] (12)

where f(θ) = (1+cos θ)(2−cos θ)
sin3 θ

and R0 denotes in Fig. 4, left, the half-distance between the triple points
in the initial configuration.
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In the first stages of nanowire growth, the frame consisting of the three vectors σSV TSV , σV LTV L,
and σLSTLS turns from a position where the surface tension σSV TSV is horizontal (left picture, or
equivalently right picture in Fig. 4, lower part) to a position where it is vertical (right picture in Fig. 4,
upper part). If α denotes the angle between the surface tension vector σSV TSV and the horizontal axis,
then, during the first stages of nanowire growth, the angles θS and θV become

θS → θS + α, θV → θV − α.

Assuming the liquid volume is constant, and using relation (12), one obtains for the radius of the liquid
droplet

Rα(α) = R0

[
f(θV − α) + f(θS + α)

f(θV ) + f(θS)

]1/3

, (13)

so that the radius r of the droplet in stationary regime is determined completely by the size of the initial
section containing the triple points (which can be measured experimentally) and by relative ratios a and
b. It follows that the radius of the droplet is in [Rα(π/2), R0] and, in the stationary growth regime, it is
given by (13) for α = π/2. The inverse function of Rα can be also defined for all r ∈ [Rα(π/2), Rα(0)]
by solving the equation

Rα(R−1
α (r)) = r,

which can be done in practice with a Newton-type algorithm. Moreover, if we introduce a vertical height
h measured from the initial triple point plane, the boundary of the solid phase (in green in Fig. 4) is
described by (r, h(r)). Taking the derivative with respect to r, we obtain for the tangent unit vector to
the SV interface

TSV = (− cos(α(r)), sin(α(r))) =
1√

1 + (h′(r))2
(1, h′(r)),

where α(r) = R−1
α (r). Finally, this shows that h satisfies

h′(r) = − tan
(
R−1
α (r)

)
, with h(R0) = 0, (14)

and numerical integration of this differential equation provides an approximation of the nanowire shape
r 7→ h(r) in the first stages of growth.

For both approximations, theoretical and numerical, surface tensions play a key role. In particular,
they determine fully the evolution of both the droplet radius and position during the first stages of the
nanowire growth. Table 1 below summarizes some of these values for various catalysts, adatoms, and
crystalline orientation [64]. We will use these values in our simulations of nanowire growth to compare
the theoretical profile r 7→ h(r) with the shape provided numerically by our phase field model.

σLS(J/m2) σLV (J/m2) σSV (J/m2)

Au-Si(111) 0.62 0.85 1.24
Au-Si(100) 0.62 0.85 1.36
Au-Si(311) 0.62 0.85 1.38
Au-Si(110) 0.62 0.85 1.43
Au-Ge(111) 0.55 0.94 1.06

Table 1: Known surface tensions for various catalysts, adatoms, and crystalline orientations.

As a quantative illustration of the evolution of nanowire’s diameter in the first stages of growth,
we give in the left picture of Figure 5 numerical values obtained in an experimental situation already
presented in Figure 1, i.e. using GaAs catalyzed by Ga droplets on a Si(111) substrate covered by its
native oxide. Although the precise situation described in Figure 4 is actually typical for Au-Si droplets
on Si substrates, the discussion above remains valid for predicting the decrease of the nanowire diameter
in the first stages of the growth in the experiment shown in Figure 5. Using the length scale of the
scanning electron microscopy image and neglecting anisotropy, we can estimate in Figure 5 the initial
diameter at 415 nm, while the nanowire diameter in the stationnary growth regime is 310 nm. This
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represents a diameter reduction of 25% of the initial diameter, which has the good order of magnitude
when compared to the numerical values predicted by using values in Table 1. The right picture in Figure
5 shows the same phenomenon on several nanowires at a different picture scale, enforcing the generic
character of the diameter reduction in the first stages of nanowire growth [15, 53]. It is interesting to
compare these experimental results with the numerical simulations of the next section (see, in particular,
Figure 8): obviously, the method we propose is able to reproduce with accuracy the physical reality.

Figure 5: Left: estimates of the droplet’s and nanowire’s diameters in the stationary growth (fixed
diameter) regime for the experiment introduced in Figure 1. Right: at a larger scale, the reduction in
the nanowire diameter is typical for the first stages of the nanowires growth by VLS [12].

Phase field numerical approximation of nanowire growth
Figures (6) and (7) illustrate some numerical experiments obtained using respectively σiso = (1, 1, 1)
in the isotropic case and σAu−Si = (0.62, 0.85, 1.24) for the Au-Si-(111) case. The other parameters
are identical with those used previously, i.e., N = 28, ε = 1/N , δt = 1/N2, L1,= L2 = 1, cs = 1/4.
Mobilities are defined as

m = (mLS ,mV L,mSV ) =

(
δ

1 + δ
,

1

2
,

δ

1 + δ

)
,

with δ = 1/(2N). As already mentioned, this particular choice is physically sound, and guarantees that
mobilities are harmonically additive, see the discussion in Section 1.3.3. The evolution process is split in
two steps :

• For t ≤ Tgrowth = 0.2 the multiphase Cahn-Hilliard energy is minimized with all equal mobility
coefficients and without increase of the solid phase, i.e. cs = 0. The aim of this first part is to
recover the wetting phenomena and to approximate the optimal initial shape of the liquid phase,
as in the sharp-theorerical calculations above.

• For t ≥ Tgrowth = 0.2 the nanowire begins to grow: the multiphase Cahn-Hilliard energy func-
tional is minimized with inhomogenous mobilities (mLS ,mV L,mSV ) =

(
δ

1+δ ,
1
2 ,

δ
1+δ

)
and with

a prescribed increase rate of the solid phase cs = 0.25. In the experimental setting this rate is
provided by the external adatom flux, which in turn is fixed by the temperature of the solid source.
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Figures 6 and 7 represent the nanowire shapes at different times, for two different choices of surface
tensions, either σiso = (1, 1, 1) in Figure 6 and σAu−Si(111) = (0.62, 0.85, 1.24) in Figure 7. In each series
of images, the first one is the initial shape, and the second image shows the optimal shape at t = Tgrowth
(see above). In both experiments, the magenta curve represents the optimal nanowire shape as de-
rived in our sharp-theoretical calculations above. These two numerical simulations illustrate clearly the
ability of our numerical approach to approximate in a very realistic way the quasi-static nanowire growth.

Lastly, Figure 8 shows a full 3D numerical simulation obtained using σiso = (1, 1, 1), N = 28, ε = 1/N ,
δt = 1/N2, L1,= L2 = 1, cs = 1/4 and, again,

m = (mLS ,mV L,mSV ) =

(
δ

1 + δ
,

1

2
,

δ

1 + δ

)
,

with δ = 1/(2N).
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Figure 6: Simulation of a 2D nanowire evolution using σiso = (1, 1, 1), captured at different times (from
left to right and top to bottom). Starting from the initial configuration, the second image shows the
result of the evolution without increase of the solid phase volume and with equal mobilities. Then, the
quasi-static model with volume increase and inhomogenous mobilities is used for simulating the other
configurations. The purple line represents the theoretically expected profile obtained with the numerical
integration of ODE (14).

4 Conclusion
We showed that multiphase mean curvature flows can be approximated consistently with a phase field
method even when highly contrasted, or even degenerate mobilities are involved. The key is to incoporate
the mobilities in the metric used for computing the gradient flow of the multiphase perimeter energy. We
showed, at least formally, that the diffuse approximation obtained with our model converges to the sharp
interface solution, and the convergence has the same order, when mobilities are harmonically additive,
as the convergence of the binary phase curvature flow. We also proposed a new quasi-static isotropic
approximation of nanowires growth. Numerical simulations of both growing nanowires and droplets
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Figure 7: Simulation of a 2D nanowire evolution using σAu−Si(111) = (0.62, 0.85, 1.24), captured at
different times (from left to right and top to bottom). Starting from the initial configuration, the second
image shows the result of the evolution without increase of the solid phase volume and with equal
mobilities. Then, the quasi-static model with volume increase and inhomogenous mobilities is used for
simulating the other configurations. The purple line represents the theoretically expected profile obtained
with the numerical integration of ODE (14).

wetting on a solid surface confirm the quality of our model. Extension of our approach to the more
realistic anisotropic case is ongoing work.
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