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Abstract In previous work the authors defined the k-th order simplicial distance
between probability distributions which arises naturally from a measure of disper-
sion based on the squared volume of random simplices of dimension k. This theory
is embedded in the wider theory of divergences and distances between distributions
which includes Kullback-Leibler, Jensen-Shannon, Jeffreys-Bregman divergence and
Bhattacharyya distance. A general construction is given based on defining a direc-
tional derivative of a function φ from one distribution to the other whose concavity
or strict concavity influences the properties of the resulting divergence. For the nor-
mal distribution these divergences can be expressed as matrix formula for the (mul-
tivariate) means and covariances. Optimal experimental design criteria contribute a
range of functionals applied to non-negative, or positive definite, information matri-
ces. Not all can distinguish normal distributions but sufficient conditions are given.
The k-th order simplicial distance is revisited from this aspect and the results are
used to test empirically the identity of means and covariances.

Keywords Simplicial distances · Bregman divergence · optimal design criteria ·
Burbea-Rao divergence · energy statistic

Mathematics Subject Classification (2000) 62H30 · 62K05

1 Introduction

There are close connections between divergences and distances between probability
distributions, and certain Fréchet-type derivatives. Moreover, for the normal dis-
tributions and for the information matrices which dominate the theory of optimal
experimental design, the distances can be expressed in matrix form. A natural ques-
tion that the paper explores is which distance, or which type of experimental design
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criterion, is best able to distinguish between two normal distributions, in particular
when the covariance matrices are close to singularity.

Many divergences and distances between probability distributions are constructed
from concave functionals φ defined on the set of probability measures, with the sym-
metrized Kullback-Leibler divergence, the Jensen-Shannon divergence and Bhat-
tacharyya distance as typical examples; see, e.g., [2], [12]. Note that we shall call
them distances also in the case when they only define semi-metrics; that is, when
they do not satisfy the triangular inequality. Distances between two normal dis-
tributions only depend on their first two moments. One can thus derive simple
statistical criteria for testing the identity of means and covariances matrices of two
distributions based on two samples, using empirical estimates.

In the same way, design of optimal experiments relies on the maximization of
concave functions Φ of information matrices, see the abundant literature on the
subject [1], [5], [6], [7], [14], [15], [19], [24]. Such concave, sometimes strictly concave,
design criteria form natural candidates for the definition of distances between two
normal distributions. Also, in a recent paper [18] we considered simplicial distances
induced by the dispersion functionals

φk(µ) = Eµ{V 2
k (X0, . . . , Xk)} ,

where Vk(X0, X1, . . . , Xk) is the volume of the k-dimensional simplex (its length
when k = 1 and area when k = 2) formed by the k + 1 vertices X0, X1, . . . , Xk

assumed to be i.i.d. with µ in Rd. The functional φ
1/k
k is concave [17], and may thus

also be considered for the construction of distances between distributions.
The paper explores the connections between the various notions of distances

induced by these approaches. In particular, we show that the construction of φk,
based on volumes of k-dimensional simplices, makes the associated distances more
sensitive to the dimensionality of the data than other, more usual, distances be-
tween normal distributions, Bhattacharyya distance for instance. We also show that
Kiefer’s family of design criteria ϕp with p > 0, which are rather insensitive to the
presence of small eigenvalues, may conveniently be used to define distances between
normal distributions, in particular for measures concentrated in small dimension
subspaces.

2 Distances defined from concave functionals

Let φ denote a twice-continuously Fréchet-differentiable real-valued concave func-
tional defined on the set M of probability measures on Borel sets of Rd. For any
µ, ζ ∈M , denote by Fφ(µ, ζ) the directional derivative of φ at µ in the direction ζ,

Fφ(µ, ζ) = lim
α→0+

φ[(1− α)µ+ αξ]− φ(µ)

α
; (1)

that is, the Fréchet derivative of φ at µ in the direction ξ − µ, see for instance [8].
The Bregman divergence between µ and ζ associated with φ is then

Dφ,B(µ, ζ) = φ(µ) + Fφ(µ, ζ)− φ(ζ) ,

and the strict concavity of φ implies that Dφ,B(µ, ξ) ≥ 0 with Dφ,B(µ, ξ) = 0 if and
only if ζ = µ. When φ is strictly concave on M , the Jeffreys-Bregman divergence

Dφ,JB(µ, ζ) =
1

2
[Dφ,B(µ, ζ) +Dφ,B(ζ, µ)] =

1

2
[Fφ(µ, ζ) + Fφ(ζ, µ)] , (2)
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obtained by symmetrization, and the Burbea-Rao divergence

Dφ,BR(µ, ζ) = φ

(
µ+ ζ

2

)
− φ(µ) + φ(ζ)

2
, (3)

which does not require φ to be Fréchet-differentiable, define semi-metrics on M ; see
for instance [2], [12]. A classical example in the case when µ and ζ have densities
$µ and $ζ on Rd with respect to the Lebesgue measure, is given by φ equal to the
Shannon entropy H0, with

H0(µ) = −
∫

log[$µ(x)]$µ(x) dx .

The Jeffreys-Bregman divergence DH0,JB is then simply the symmetrized Kullback-
Leibler divergence

DKL(µ, ζ) =
1

2
[KL(µ‖ζ) +KL(ζ‖µ)] ,

and DH0,BR(µ, ζ) coincides with the Jensen-Shannon divergence,

DJS(µ, ζ) =
1

2

{
KL

[
µ‖
(
µ+ ζ

2

)]
+KL

[
ζ‖
(
µ+ ζ

2

)]}
,

where KL(µ‖ζ) =
∫

log[$µ(x)/$ζ(x)]$µ(x) dx. More generally, one can define
KL(µ‖ζ) =

∫
log[dµ/dζ](x) dµ(x) if µ� ζ (i.e., if ζ dominates µ) and KL(µ‖ζ) =

+∞ otherwise; see [23, Sect. III.9]. Also, the Hellinger integral H(µ, ζ) is defined
by

H(µ, ζ) =

∫ √
dµ

dν
(x)

dζ

dν
(x) dν(x) ,

with ν denoting any dominating measure for µ and ζ, and ρ(µ, ζ) =
√

1−H(µ, ζ)
defining a metric on M . The Bhattacharyya distance DB(µ, ζ) = − logH(µ, ζ)
defines a semi-metric on M ; see [3], [23, Sect. III.9].

When µ and ζ correspond to normal distributions, the distances defined above
only depend on their respective means aµ and aζ and covariances Σµ and Σζ (we
assume that Σµ and Σζ have full rank d). In particular, DKL, DJS and DB take
simple expressions:

DKL(µ, ζ) =
1

4

[
trace(Σ−1µ Σζ) + trace(Σ−1ζ Σµ)

]
+

1

4
(aζ − aµ)>(Σ−1µ +Σ−1ζ )(aζ − aµ)− d

2
, (4)

DJS(µ, ζ) =
1

2
log

 det
(
Σµ+Σζ

2

)
√

det(Σµ) det(Σζ)


+

1

2
log

[
1 +

1

2
(aµ − aζ)>(Σµ +Σζ)

−1(aµ − aζ)
]
, (5)

DB(µ, ζ) =
1

2
log

 det
(
Σµ+Σζ

2

)
√

det(Σµ) det(Σζ)


+

1

4
(aµ − aζ)>(Σµ +Σζ)

−1(aµ − aζ) . (6)

Note that DB(µ, ζ) ≥ DJS(µ, ζ), with equality when aζ = aµ, and that DKL, DJS

and DB satisfy the following invariance property

D(µ, ζ) = D(µ0, ζ[µ]) , (7)
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where µ0 has zero mean and covariance Id, the d-dimensional identity matrix, and

ζ[µ] has mean Σ
−1/2
µ (aζ−aµ) and covariance Σ

−1/2
µ ΣζΣ

−1/2
µ . One may refer to [13]

for more detailed developments on connections between Bhattacharyya distance and
other divergence measures.

For each of these distances, DKL(µ, ζ), DJS(µ, ζ) and DB(µ, ζ), equality to zero
is obtained if and only if aζ = aµ and Σζ = Σµ. When a distance D satisfies this
property, we shall say that D distinguishes normal distributions.

3 Distances based on optimal design criteria

Optimal design of experiments rely on the maximization of a concave functional Φ
of the information matrix. Below we show that some classical optimality criteria,
such as A- and D-optimality, yield distance measures that are able to distinguish
normal distributions, but that the usual notion of strict concavity used in optimal
design theory is not enough to obtain this property.

3.1 Construction

Denote by M> (respectively, M≥) the set of d × d symmetric positive definite (re-
spectively, non-negative definite) matrices. In Section 4 we shall consider functions
Φ whose properties depend on the rank of the matrices involved; M∗ will denote a
general matrix cone included in M≥ such that M1 + M2 ∈ M∗ for any M1 ∈ M∗
and M2 ∈ M≥. We shall consider two particular cases: M∗ = M>, and M∗ = Mr,
the subset of M≥ containing matrices of rank at least r ≤ d. We denote by M ∗ the
subset of M containing distributions with finite covariances in M∗, with M> and
M r as particular cases associated with M∗ = M> and M∗ = Mr.

Let Φ be a function defined on M≥, isotonic on M∗ relative to the Loewner
ordering (Φ(M1) ≥ Φ(M2) when M2 ∈M∗ and M1−M2 ∈M≥) and concave on M∗
(Φ[(1 − α)M1 + αM2] ≥ (1 − α)Φ(M1) + αΦ(M2) for all α ∈ (0, 1) and M1 ∈ M∗,
M2 ∈ M≥). Consider two probability measures µ and ζ with respective means aµ
and aζ and covariances Σµ = var(µ) and Σζ = var(ζ), with Σµ, Σζ ∈M∗. Following
(3), the Burbea-Rao divergence DΦ,BR(µ, ζ) associated with Φ is defined by

DΦ,BR(µ, ζ) = Φ

[
var

(
µ+ ζ

2

)]
− Φ(Σµ) + Φ(Σζ)

2
.

Direct calculation gives

var[(µ+ ζ)/2] =
1

2
(Σµ +Σζ) +

1

4
(aζ − aµ)(aζ − aµ)> ,

so that

DΦ,BR(µ, ζ) = Φ

[
1

2
(Σµ +Σζ) +

1

4
(aζ − aµ)(aζ − aµ)>

]
− Φ(Σµ) + Φ(Σζ)

2
, (8)

with DΦ,BR(µ, ζ) ≥ 0 from the isotonicity and concavity of Φ on M∗.
Denote now

FΦ(µ, ζ) = lim
α→0+

Φ{var[(1− α)µ+ αξ]} − Φ[var(µ)]

α
,

see (1). For α ∈ [0, 1], define µx,α = (1−α)µ+αδx, with δx the Dirac delta measure
at x. Straightforward calculation gives

∂var[µx,α]

∂α

∣∣∣∣
α=0

= (x− aµ)(a− aµ)> −Σµ ,



Bregman divergences and simplicial measures of dispersion 5

so that, when Φ is differentiable at Σµ, with gradient ∇Φ(Σµ),

FΦ(µ, ζ) =

∫
FΦ(µ, δx) dζ(x) =

∫
trace

[
∇Φ(Σµ)

∂var[µx,α]

∂α

∣∣∣∣
α=0

]
dζ(x)

= trace[∇Φ(Σµ)(Σζ −Σµ)] + (aζ − aµ)>∇Φ(Σµ)(aζ − aµ) . (9)

Similarly to (2), the Jeffreys-Bregman divergence DΦ,JB(µ, ζ) associated with Φ is
then defined as

DΦ,JB(µ, ζ) =
1

2
[FΦ(µ, ζ) + FΦ(ζ, µ)]

=
1

2
[trace{[∇Φ(Σµ)−∇Φ(Σζ)](Σζ −Σµ)}

+ (aζ − aµ)>[∇Φ(Σµ) +∇Φ(Σζ)](aζ − aµ)
]
. (10)

For any z ∈ Rd with ‖z‖ = 1, we have Φ(Σµ + zz>) ≤ Φ(Σµ) + z>∇Φ(Σµ)z
from the concavity of Φ on M∗ and Φ(Σµ + zz>) ≥ Φ(Σµ) from its isotonicity.
Therefore, z>∇Φ(Σµ)z ≥ 0, and ∇Φ(Σµ) ∈M≥. Similarly, ∇Φ(Σζ) ∈M≥, showing
that the second term in (10) is non-negative. Concavity on M∗ also implies Φ(Σζ) ≤
Φ(Σµ) + trace[∇Φ(Σµ)(Σζ −Σµ)] and Φ(Σµ) ≤ Φ(Σζ) + trace[∇Φ(Σζ)(Σµ −Σζ)],
which gives trace{[∇Φ(Σµ)−∇Φ(Σζ)](Σζ −Σµ)} ≥ 0. Therefore, DΦ,JB(µ, ζ) ≥ 0.

Below we investigate which additional conditions must be imposed on Φ to ensure
that DΦ,BR (8) and DΦ,JB (10) distinguish normal distributions in M ∗.

3.2 Sufficient conditions for distinguishability

We say that Φ is positively homogeneous when

Φ(αM) = αΦ(M) for any α > 0 and M ∈M≥ ,

and we shall say that Φ is strictly isotonic on M∗ when

Φ(M1) > Φ(M2) for any M1,M2 such that M1 −M2 ∈M≥, M2 ∈M∗, M2 6= M1 .

In optimal design of experiments, a function Φ is said to be strictly concave on the
cone M∗ ⊂M≥ when

Φ[(1− α)M1 + αM2] > (1− α)Φ(M1) + αΦ(M2)

for all α ∈ (0, 1) , M1 ∈M∗ and M2 ∈M≥ (11)

with M2 6= 0 and M2 not proportional to M1 .

When M∗ = M>, this definition coincides with that in [19, Sect. 5.2]. The usual
definition in convex analysis is stronger and requires the inequality to be valid for a
wider class of matrices M2. We shall call strongly strictly concave on M∗ a function
Φ such that

Φ[(1− α)M1 + αM2] > (1− α)Φ(M1) + αΦ(M2)

for all α ∈ (0, 1) , M1 ∈M∗ and M2 ∈M≥ (12)

with M2 6= 0 and M2 6= M1 .

The following property shows that DΦ,BR (8) and DΦ,JB (10) distinguish normal
distributions in M ∗ when Φ is strictly isotonic and strongly strictly concave on M∗.
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Lemma 1 Let Φ be a strictly isotonic and strongly strictly concave function on M∗.
Then, for µ and ζ two probability measures with respective means aµ and aζ and
covariances Σµ = var(µ) and Σζ = var(ζ), Σµ, Σζ ∈M∗, we have

DΦ,BR(µ, ζ) = 0⇒ aµ = aζ and Σµ = Σζ , (13)

with DΦ,BR given by (8), and, when Φ is differentiable at Σµ and Σζ ,

DΦ,JB(µ, ζ) = 0⇒ aµ = aζ and Σµ = Σζ , (14)

where DΦ,JB is defined by (10).

Proof We first prove that DΦ,BR(µ, ζ) = 0, or DΦ,JB(µ, ζ) = 0, implies aµ = aζ .
Suppose that aµ 6= aζ . The strict isotonicity of Φ on M∗ implies Φ[(Σµ+Σζ)/2+(aζ−
aµ)(aζ − aµ)>/4] > Φ[(Σµ +Σζ)/2], and therefore DΦ,BR(µ, ζ) > 0 from concavity.
Take any z ∈ Rd with ‖z‖ = 1. We have Φ(Σµ + zz>) ≤ Φ(Σµ) + z>∇Φ(Σµ)z from
the concavity of Φ and Φ(Σµ + zz>) > Φ(Σµ) from its strict isotonicity. Therefore,
z>∇Φ(Σµ)z > 0, and ∇Φ(Σµ) ∈ M>. Similarly, ∇Φ(Σζ) ∈ M>, showing that
(aζ − aµ)>[∇Φ(Σµ) +∇Φ(Σζ)](aζ − aµ) in (10) is strictly positive.

We consider now two distributions such that aµ = aζ and Σµ 6= Σζ . Since
Φ is strongly strictly concave on M∗, Φ[(Σµ + Σζ)/2] > [Φ(Σµ) + Φ(Σζ)]/2 for
Σζ 6= Σµ, which concludes the proof of (13). Also, for Σζ 6= Σµ we have Φ(Σζ) <
Φ(Σµ) + trace[∇Φ(Σµ)(Σζ −Σµ)] and Φ(Σµ) < Φ(Σζ) + trace[∇Φ(Σζ)(Σµ −Σζ)],
so that trace{[∇Φ(Σµ) − ∇Φ(Σζ)](Σζ − Σµ)} > 0 and DΦ,JB(µ, ζ) > 0, which
proves (14).

A positively homogeneous function Φ is not strongly strictly concave. Indeed,
take M2 = βM1, with M1 ∈M∗, β > 0 and β 6= 1. We have Φ[(1−α)M1 +αM2] =
Φ[(1−α+αβ)M1] = (1−α+αβ)Φ(M1) = (1−α)Φ(M1) +αΦ(M2). An important
consequence is that the Burbea-Rao and Jeffreys-Bregman divergences associated
with a strictly concave (in the sense of (11)) and positively homogeneous function Φ
are unable to distinguish normal distributions. Take µ and ζ such that aµ = aζ and
Σζ = β Σµ, β > 0 and β 6= 1. One can readily check that DΦ,BR = 0, see (8). Also,
when Φ is differentiable at Σµ, then ∇Φ(Σµ) = ∇Φ(Σζ) and DΦ,JB = 0, see (10).
In contrast, the following property shows that DΦ,BR and DΦ,JB do distinguish
normal distributions when using logΦ instead of Φ.

Lemma 2 Let Φ be a function positively homogeneous, non identically zero, strictly
isotonic on M>, and strictly concave in the sense of (11). Then, for µ and ζ two
probability measures with respective means aµ and aζ and covariances Σµ = var(µ)
and Σζ = var(ζ), Σµ, Σζ ∈M>, we have

DlogΦ,BR(µ, ζ) = 0⇒ aµ = aζ and Σµ = Σζ ,

and when Φ is differentiable at Σµ and Σζ ,

DlogΦ,JB(µ, ζ) = 0⇒ aµ = aζ and Σµ = Σζ .

Proof First note that Φ(Σµ) > 0 and Φ(Σζ) > 0 since Σµ, Σζ ∈ M>, see [19,
Chap. 5], so that logΦ(Σµ) and logΦ(Σζ) are well defined. Also, when Φ is differ-
entiable at Σ, logΦ is differentiable too, with ∇logΦ(Σ) = ∇Φ(Σ)/Φ(Σ).

Using Lemma 1, we only need to show that logΦ is a strictly isotonic and strongly
strictly concave function on M>. Strict isotonicity follows from the fact that the
logarithm is increasing. Consider now (12). Take any M1 ∈ M> and M2 ∈ M≥,
M2 6= 0, and any α ∈ (0, 1). We can write

logΦ[(1− α)M1 + αM2] ≥ log[(1− α)Φ(M1) + αΦ(M2)]

≥ (1− α) logΦ(M1) + α logΦ(M2) , (15)
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where the first inequality follows from the concavity of Φ and the second from the
concavity of logarithm. From the monotonicity of logarithm and the strict concavity
of Φ in the sense of (11), equality between the two extreme terms implies M2 = βM1

for some β > 0. Since Φ is positively homogeneous, logΦ[(1 − α)M1 + αM2] =
(1− α) logΦ(M1) + α logΦ(M2) then gives f(β) = log(1− α+ αβ)− α log(β) = 0.
Direct calculation gives df(β)/dβ = α[1/(1−α+αβ)− 1/β], showing that, for any
α ∈ (0, 1), f(β) has a unique minimum at β = β∗ = 1, with f(β∗) = 0. Equality in
(15) thus implies M2 = β∗M1 = M1, which proves (12).

3.3 Optimal-design criteria

Consider Kiefer’s [9] ϕp-class of functions, p ∈ R ∪ {−∞,+∞}, which defines a
family of design criteria widely used in optimal design. For any M ∈M≥, ϕp(M) is
defined by

ϕp(M) =


λmax(M) for p =∞ ,[
1
d trace(Mp)

]1/p
for p 6= 0 and p 6= ±∞ ,

det1/d(M) for p = 0 ,
λmin(M) for p = −∞ ,

with ϕp(M) = 0 if M is singular when p ≤ 0. A-optimal design corresponds to
p = −1, D-optimal design to p = 0 and E-optimal design to p = −∞; ϕp(Id) = 1 for
all p. All ϕp are positively homogeneous; for p ∈ (−∞, 1), ϕp is differentiable and
strictly isotonic on M>, and strictly concave in the sense of (11), see [19, Sect. 6.13].
Lemma 2 applies, and the Burbea-Rao and Jeffreys-Bregman divergences associated
with logϕp, p ∈ (−∞, 1), distinguish normal distributions in M>. However, as
Section 5 will illustrate, distances associated with negative p are very sensitive to
the presence of small eigenvalues in the spectrum of covariances matrices, and are
therefore not recommended. In contrast, the presence of zero eigenvalues λi(M) has
little influence when p > 0 as ϕp(M) = [(1/d)

∑
i:λi(M)>0 λ

p
i (M)]1/p.

The ϕp are information functions and therefore satisfy trace
[
∇ϕp(M)M

]
=

ϕp(M) for M ∈M>, see [19, p. 168], and we obtain

Dlogϕp,JB(µ, ζ) =
1

2

{
trace

[∇ϕp(Σµ)

ϕp(Σµ)
Σζ

]
+ trace

[∇ϕp(Σζ)

ϕp(Σζ)
Σµ

]}
+

1

2

{
(aζ − aµ)>

[∇ϕp(Σµ)

ϕp(Σµ)
+
∇ϕp(Σζ)

ϕp(Σζ)

]
(aζ − aµ)

}
− 1 .

For p 6= 0, we get

Dlogϕp,JB(µ, ζ) =
1

2

[
trace(Σp−1

µ Σζ)

trace(Σp
µ)

+
trace(Σp−1

ζ Σµ)

trace(Σp
ζ )

]

+
1

2
(aζ − aµ)>

(
Σp−1
µ

trace(Σp
µ)

+
Σp−1
ζ

trace(Σp
ζ )

)
(aζ − aµ)− 1 . (16)

This expression is also valid when p = 0 with the convention trace(M0) = d. In
general, (8) does not yield a simple expression for Dlogϕp,BR(µ, ζ). For p = 0,

ϕ0(Σ) = det1/d(Σ) is directly related to the Shannon entropy H0 of a normal
distribution with covariance Σ, and we have

Dlogϕ0,JB(µ, ζ) =
2

d
DKL(µ, ζ) and Dlogϕ0,BR(µ, ζ) =

2

d
DJS(µ, ζ) ,

with DKL and DJS respectively given by (4) and (5). In general, Dlogϕp,JB and
Dlogϕp,BR with p 6= 0 do not satisfy the invariance property (7).
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4 k-th order simplicial distances

4.1 Squared volumes of k-dimensional simplices

In a recent paper [18], we considered simplicial distances induced by the dispersion
functionals

φk(µ) = Eµ{V 2
k (X0, . . . , Xk)} , (17)

where Vk(X0, X1, . . . , Xk) is the volume of the k-dimensional simplex (its length
when k = 1 and area when k = 2) formed by the k + 1 vertices X0, X1, . . . , Xk

assumed to be i.i.d. with µ in Rd. In particular, for k = 1 we have

φ1(µ) =

∫ ∫
‖x1 − x2‖2 µ(dx1)µ(dx2) = 2 trace[Σµ] ,

twice the trace of the covariance matrix of µ. As shown below, when k = d we get
φd(µ) = (d+1)/d! det(Σµ), which is proportional to the generalised variance widely
used in multivariate statistics.

For any M ∈M≥, define

Φk(M) =
k + 1

k!
ek[Λ(M)] (18)

with Λ(M) the set of eigenvalues of M and ek the elementary symmetric function
of degree k (with e0 = 1). The following theorem is proved in [17].

Theorem 1 For any k ∈ {1, . . . , d} and µ ∈ M , we have φk(µ) = Φk[var(µ)].

Moreover, the functional φ
1/k
k is concave on M .

The Φ
1/k
k , k ∈ {1, . . . , d}, form a family of criteria between ϕ1 = Φ1/(2d) and

ϕ0 = [d!/(d+ 1)]1/d Φ
1/d
d . On the one hand, similarly to ϕp with positive p, Φk(M)

with k small enough is relatively insensitive to the presence of small eigenvalues in
Λ(M). On the other hand, Φk(M) > 0 if and only if M ∈ Mk (i.e., rank(M) ≥ k),
which makes the Φk more sensitive to the true dimensionality of the data than the
ϕp for p ∈ [0, 1].

The expressions of Φk(M) and its gradient ∇Φk(M) at M ∈M≥ are given by

Φk(M) =
k + 1

k k!

k−1∑
i=0

(−1)i−1 ek−i[Λ(M)] trace(M i) ,

∇Φk(M) =
k + 1

k!

k−1∑
i=0

(−1)i ek−i−1[Λ(M)]M i ,

see [10], [20]. In [17], we show that the directional derivative of φk at µ in the direc-
tion ζ is given by (9), with the additional property trace[∇Φk(M)M ] = k Φk(M),
M ∈M≥, which gives

FΦk(µ, ζ) = trace[∇Φk(Σµ)Σζ ] + (aζ − aµ)>∇Φk(Σµ)(aζ − aµ)− k Φk(Σµ) . (19)

One can readily check that Φ
1/k
k is positively homogeneous, it is therefore not

strongly strictly concave, see Section 3. However, Φ
1/k
k is strictly isotonic on Mk

[18, Lemma 3] and strictly concave in the sense of (11) for k ≥ 2 [18, Lemma 6].
Arguments similar to those in the proof of Lemma 2 indicate that logΦk is strictly
isotonic and strongly strictly concave on Mk for k ≥ 2. The following property is
then a consequence of Lemma 1.
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Theorem 2 Let µ and ζ be two probability measures with respective means aµ and
aζ and covariances Σµ = var(µ) and Σζ = var(ζ), Σµ, Σζ ∈Mk. Then,

DlogΦk,BR(µ, ζ) = 0⇒ aµ = aζ and Σµ = Σζ ,

DlogΦk,JB(µ, ζ) = 0⇒ aµ = aζ and Σµ = Σζ .

Using (19), we obtain that DlogΦk,JB(µ, ζ) corresponds to the simplicial distance
between µ and ζ introduced in [18],

DlogΦk,JB(µ, ζ) =
1

2

{
trace

[
∇Φk(Σµ)

Φk(Σµ)
Σζ

]
+ trace

[
∇Φk(Σζ)

Φk(Σζ)
Σµ

]}
+

1

2

{
(aζ − aµ)>

[
∇Φk(Σµ)

Φk(Σµ)
+
∇Φk(Σζ)

Φk(Σζ)

]
(aζ − aµ)

}
− k . (20)

When k = d, we have DlogΦd,JB(µ, ζ) = dDlogϕ0,JB(µ, ζ) and DlogΦd,BR(µ, ζ) =
dDlogϕ0,BR(µ, ζ), see Section 3. In general, DlogΦk,JB and DlogΦk,BR with k 6= d
do not satisfy the invariance property (7). In [18], we show that the gradient matrix
∇Φk(M) is non-negative definite for any M ∈ M≥ and any k ∈ {1, . . . , d}, and is
positive definite when M ∈ Mk . Moreover, ∇Φk(M)/Φk(M) is the inverse of M
when rank(M) = k = d and is a generalized inverse of M when rank(M) = k < d.
If we write the characteristic polynomial of M as

det(λId −M) = c1 λ
d + c2 λ

d−1 + · · ·+ cd λ+ cd+1 ,

with c1 = 1, then

Φk(M) = (−1)k
k + 1

k!
ck+1 ,

∇Φk(M) = (−1)k−1
k + 1

k!
(Mk−1 + c2M

k−2 + · · ·+ ck Id) .

4.2 Other simplicial functionals

By considering other powers than 2 in (17), we can obtain simplicial functionals
that depend on the full measure µ and not only on its covariance matrix Σµ. In
particular, we may obtain divergence measures that define semi-metrics, i.e., that
satisfy

for any µ, ζ ∈M , D(µ, ζ) = 0⇔ µ = ζ . (21)

Consider in particular the dispersion measure

φ1,δ(µ) = Eµ{V δ
1 (X0, X1)} =

∫ ∫
‖x0 − x1‖δ µ(dx0)µ(dx1) ,

see [4], [16]. Direct calculation shows that its directional derivative Fφ1,δ
(µ, ζ) is

Fφ1,δ
(µ, ζ) = 2

∫ ∫
‖x0 − x1‖δ (ξ − µ)(dx0)µ(dx1)

= 2

[∫ ∫
‖x0 − x1‖δ ξ(dx0)µ(dx1)− φ1,δ(µ)

]
,

where the first term on the right-hand side,
∫ ∫
‖x0−x1‖δ ξ(dx0)µ(dx1), corresponds

to  Lukaszyk-Karmowski metric, see [11]. The corresponding Jeffreys-Bregman di-
vergence is

Dφ1,δ,JB(µ, ζ) = −
∫ ∫

‖x0 − x1‖δ (ζ − µ)(dx0)(ζ − µ)(dx1) .
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It is called energy distance for δ = 1 and generalized energy distance [26] for δ ∈
(0, 2]. The functional φ1,δ is concave for δ ∈ (0, 2], strictly concave for δ ∈ (0, 2),
and the kernel K(x0, x1) = −‖x0 − x1‖δ is conditionally integrally strictly positive
definite for δ ∈ (0, 2); see [21], [25]. Then, Dφ1,δ,JB(µ, ζ) > 0 for two probability

measures µ 6= ζ having finite energy, i.e., such that
∫ ∫
−‖x0−x1‖δ µ(dx0)µ(dx1) <

+∞ and
∫ ∫
−‖x0 − x1‖δ ζ(dx0)ζ(dx1) < +∞.

Other conditionally integrally strictly positive definite kernelsK(·, ·) yield strictly
concave measures of dispersion φK(µ) =

∫ ∫
−K(x0, x1)µ(dx0)µ(dx1) for probabil-

ity measures, and the associated Jeffreys-Bregman divergence is

DφK ,JB(µ, ζ) =

∫ ∫
K(x0, x1) (ζ − µ)(dx0)(ζ − µ)(dx1) ,

which corresponds to the (squared) maximum mean discrepancy between ζ and
µ, as defined in [22]. Uniformly bounded kernels are characteristic, i.e., are such
that DφK ,JB satisfies (21), if and only if they are conditionally integrally strictly
positive definite; see [25]. The question of whether simplicial dispersion functionals
φk,δ(µ) = Eµ{V δ

k (X0, . . . , Xk)} with k ≥ 2 and δ ∈ (0, 2) may define characteristic
kernels remains an open issue.

5 Application: testing the equality between means and covariances

We illustrate the behaviour of the distances presented in previous sections by con-
sidering the situation where one wishes to test whether two distributions µ and ζ
have the same mean and covariance, using empirical data. We denote

â(i)µ,n =
1

n

n∑
k=1

X
(i)
k and Σ̂(i)

µ,n =
1

n− 1

n∑
k=1

(X
(i)
k − a

(i)
µ,n)(X

(i)
k − a

(i)
µ,n)>

the sample mean and covariance matrix for a sample X
(i)
n = {X1, . . . , Xn} of n inde-

pendent d-dimensional vectors distributed with µ, and similarly â
(i)
ζ,m and Σ̂

(i)
ζ,m for a

sample Y
(i)
m of m independent vectors distributed with ζ. We denote by D(µ̂

(i)
n , ζ̂

(i)
m )

the distance D computed with the empirical values â
(i)
µ,n, Σ̂

(i)
µ,n, â

(i)
ζ,m and Σ̂

(i)
ζ,m.

5.1 ROC curves

Suppose we have N pairs of independent samples X
(i)
n and Y

(i)
m , i = 1, 2, . . . , N ,

respectively distributed N (aµ, Σµ) and N (aζ , Σζ). Each pair (X
(i)
n ,Y

(i)
m ) yields an

empirical distance D(µ̂
(i)
n , ζ̂

(i)
m ), with D one of the distances considered above, and

the N pairs give an empirical estimate of the c.d.f. F1 of D(µ̂n, ζ̂m). Similarly, pairs

(X
(i)
n ,X

(j)
n ) yield an empirical estimate of the c.d.f. F0 of D(µ̂n, µ̂n).

Denote by H0 the hypothesis that two given samples Xn and Ym have the same
mean and covariance and H1 the hypothesis that they have different means and/or
covariances. A standard statistical test based on D would compare the distance
calculated for the empirical estimates âµ,n, Σ̂µ,n, âζ,m and Σ̂ζ,m to some critical
value τ . A plot of 1−F1 against 1−F0 gives the Receiver Operating Characteristic
(ROC) curve for the test. It shows the value of the true positive rate against the
false positive rate at various threshold settings τ , and the power of the test as a
function of the type-1 error of the decision rule. The Area Under the ROC Curve
(AUC) gives a scalar figure of merit for the performance of the test considered.
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Example 1 We use pairs of samples with equal size n = m = 200 in dimension
d = 20. Detection of different means is far easier than detection of slightly different
covariances, and we take aµ = aζ = (1, . . . , 1)>. The covariances are

Σµ =

(
A 0
0 10−3 Id−2

)
and Σζ =

(
αA 0
0 10−3 Id−2

)
, (22)

with A =

(
2 −1
−1 2

)
and Id−2 the (d−2)-dimensional identity matrix. The empirical

estimates of the c.d.f. F0 and F1 are built from N = 1, 000 pairs of normal samples.
The left panel of Figure 1 presents the ROC curve obtained when α = 1.4 in

(22), for Bhattacharyya distance DB (6) (dashed line, bottom), Dlogϕp,JB (16) with
p = 1/2 (dotted line) and DlogΦk,JB (20) with k = 3 (solid line). The right panel of
Figure 1 shows the AUC as α varies between 1 and 2 for these three distances. The
curves obtained with Burbea-Rao divergence DlogΦ3,BR cannot be visually distin-
guished from those obtained with DlogΦ3,JB . Note the similar behaviours observed
for Dlogϕ1/2,JB and DlogΦ3,JB on this example, both performing much better than
DB . The curves obtained with Dlogϕ0,JB or DlogΦd,JB (not shown) are hardly dis-
tinguishable form those with DB ; distances Dlogϕp,JB with p < 0 perform very
poorly due to the high sensitivity to the presence of small eigenvalues in the spectra
of Σµ and Σζ . �

Fig. 1 Left: ROC curve for Bhattacharyya distance DB (6) (dashed line, bottom), Dlogϕ1/2,JB

(16) (dotted line) and DlogΦ3,JB (20) (solid line) when α = 1.4 in (22). Right: Area Under the
ROC Curve as a function of α.

As the next example illustrate, the ranking of the different methods is not always
the same as in Example 1.

Example 2 We slightly modify the setting of Example 1, and consider now covari-
ances given by

Σµ =

(
A 0
0 Id−2

)
and Σζ =

(
RθAR

>
θ 0

0 Id−2

)
, (23)

with A as in (22) and Rθ the rotation matrix

Rθ =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

We still have aµ = aζ = (1, . . . , 1)>, n = m = 200 and d = 20. The left panel of Fig-
ure 2 presents the ROC curve obtained when θ = π/16 in (23), for Bhattacharyya
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distance DB , Dlogϕ1/2,JB and DlogΦ3,JB , with the same colour code as in Figure 1.
The right panel of Figure 2 shows the AUC as θ varies between 0 and π/4 for these
three distances. Again, the curves obtained with Burbea-Rao divergence DlogΦ3,BR

cannot be visually distinguished from those obtained with DlogΦ3,JB , and the curves
obtained with Dlogϕ0,JB (or DlogΦd,JB) are hardly distinguishable form those with
DB . The three distances DB , Dlogϕ1/2,JB and DlogΦ3,JB yield now different per-
formances, with DB performing best, notably better than DlogΦ3,JB in particular.

�

Examples 1 and 2 show the importance of being able to choose a suitable k in
{2, . . . , d} for logΦk, or a suitable p in [0, 1) for logϕp. This is considered in the
next section.

Fig. 2 Left: ROC curve for Bhattacharyya distance DB (6) (dashed line, top), Dlogϕ1/2,JB
(16)

(dotted line, middle) and DlogΦ3,JB (20) (solid line, bottom) when θ = π/16 ≈ 0.196 in (23).
Right: Area Under the ROC Curve as a function of θ ∈ [0, π/4].

5.2 Choosing k in logΦk and p in logϕp

Ideally, for testing identity between means and covariance matrices of two distribu-
tions from one sample of each, Xn and Ym say, one may use different distances and
combine the test statistics obtained, p-values for instance. Here, we shall consider a
naive approach where we first select a value k∗ for k for distances based on logΦk,
or p∗ for p for distances based on logϕp, and then use the corresponding k∗, or p∗,
in the testing procedure. A consequence of using such a simple approach is that we
shall have little control of the type-I error. However, the implementation of a more
precise and rigorous method would require sophisticated developments out of the
scope of this paper.

When only one pair of samples, Xn and Ym, is available, we can nevertheless
generate N pairs of pseudo samples from (Xn,Ym) and use the approach of Sec-
tion 5.1 to evaluate the AUC under the ROC curve for each distance considered, for
several choices of k and p. For a distance based on logΦk (respectively, logϕp), the
value k∗ (respectively, p∗) that yields the largest AUC is then selected for testing
the identity between the distributions that generated the two samples Xn and Ym.

For instance, we may generate pairs of pseudo samples by bootstrap. For the

estimation of F1, each X
(i,1)
n (respectively, Y

(i,1)
m ) is obtained by sampling with

replacement within Xn (respectively, Ym). For the estimation of F0, for each i we
first merge Xn and Yn into Zn = {Xn,Yn}, then we randomly select n points from

Zn, within which we sample with replacement to obtain X
(i,0)
n and sample with
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replacement within the m other points of Zn to obtain Y
(i,0)
m . This construction

ensures that there is no intersection between X
(i,0)
n and Y

(i,0)
m , so that the pairs

(X
(i,0)
n ,Y

(i,0)
n ) do not look artificially too similar compared to the (X

(i,1)
n ,Y

(i,1)
n ).

We experimentally found that sampling without replacement, as described here-
after, gives better results. Take n′ = n − r and m′ = m − r, with r sufficiently
large to induce enough variability among pseudo samples. For the estimation of F1,

each X
(i,1)
n′ (respectively, Y

(i,1)
m′ ) is given by n′ points randomly selected within Xn

(respectively, of m′ points selected within Ym). For the estimation of F0, we first
merge Xn and Yn into Zn = {Xn,Yn}; then we randomly select n′ points from Zn
to form X

(i,0)
n′ and select m′ points from the remaining n+m− n′ points of Zn to

form Y
(i,0)
m′ . This construction ensures that there are no repetitions of points within

X
(i,0)
n′ and Y

(i,0)
m′ and no intersection between them. The value of r does not need

to be large: with n = 100, r = 5 already gives more that 75× 106 different choices

for X
(i,0)
n′ .

Examples 1 and 2 (continued) We consider again the situation of Example 1, and
draw two samples Xn and Yn from N (aµ, Σµ) and N (aζ , Σζ), respectively, with
n = 200 and α = 1.4 in (22). The left panel of Figure 3 shows the AUC under the
ROC curve for DlogΦk,BR as a function of k, constructed according to the procedure
above with N = n and r = 5. The optimal k is here k∗ = 5; the value of k∗ fluctuates
depending on the random samples Xn and Yn that are drawn, with k∗ ≤ 6 in about
90% of the cases. The right panel of Figure 3 shows the AUC under the ROC curve
for Dlogϕp,BR as a function of p. The optimal p∗ varies with Xn and Yn but remains
larger than 1/2 in about 90% of the cases. These observations suggest that in this
example distances based on logΦk (respectively, based on logϕp) perform better
with small k than with large k (respectively, with large p than with small p), which
is confirmed by Figure 1.

Fig. 3 AUC under the ROC curve for DlogΦk,BR as a function of k (Left) and for Dlogϕp,BR as
a function of p (Right) in the situation of Example 1 with α = 1.4. We used N = n = m = 200
pseudo samples of size n− 5 = 195.

We repeat now the same exercice for the situation of Example 2, with θ = π/16.
The left panel of Figure 4 shows the AUC under the ROC curve for DlogΦk,BR

as a function of k, and the right panel shows the AUC under the ROC curve for
Dlogϕp,BR as a function of p. We obtain k∗ = d and p∗ = 0, with DlogΦk∗ ,BR

and
Dlogϕp∗ ,BR

being equivalent to DJS , see (5), which coincides with Bhattacharyya
distance DB when the distributions have the same mean. Figure 2 confirms that
DB is indeed a good choice in this example. �
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Fig. 4 AUC under the ROC curve for DlogΦk,BR as a function of k (Left) and for Dlogϕp,BR

as a function of p (Right) in the situation of Example 2 with θ = π/16. N = n = m = 200,
n′ = m′ = 195.

Example 1 Example 2
FP TP FP TP

DB 4.5 13.6 4.5 33.0
Dlogϕp,BR 12.0 79.9 9.7 35.3

DlogΦk,BR 12.1 77.6 9.9 34.9

Table 1 Percentage of false positive FP (type-I error) and true positive TP obtained in 1000
repetitions for a targeted significance level of 5%.

5.3 Adjusting the critical value τ

We consider a simple (and incorrect) approach, where the N pairs (X
(i,0)
n′ ,Y

(i,0)
m′ ) of

pseudo samples generated to select k or p, see Section 5.2, are also used to adjust
the critical value τ of the threshold for the test statistic. Since pseudo samples have
sizes n′ = n− r and m′ = m− r respectively, and distances are not invariant with
respect to the sample size, we shall discard (randomly) r points from Xn and Ym

to compute the test statistic D(µ̂n′ , ζ̂m′).

Generation of bootstrap samples can be considered too. In that case, we first
merge Xn and Yn into Zn = {Xn,Yn}, then sample with replacement within Zn,

the first n points give X
(i,0)
n , the m next points give Y

(i,0)
m and we do not need to

discard any data from from Xn and Ym (the test statistic is D(µ̂n, ζ̂m)).

Examples 1 and 2 (continued) Empirical results (false positive FP and true positive
TP) for the situation in Example 1 are given in the left part of Table 1. For H0,
Xn and Yn are normal samples generated with µ; for H1, Xn is generated with
µ and Yn with ζ. The experiment is repeated 1000 times, the significance level
is set at 5%. The value of k∗ is searched within {1, . . . , d} and that of p∗ within
{0, 0.01, . . . , 0.99}. Results for Example 2 are indicated in the right part of the table.

In both examples, the percentage of false positive is notably larger than the
targeted significance level of 5%, pointing out the weakness of the naive plug-in
approach based on a selection of the best values k∗ and p∗ for k and p. Nevertheless,
the percentage of true positives with a distance based on logϕp or log φk is much
higher than for Bhattacharyya distance in Example 1 and is similar to the one with
Bhattacharyya distance in Example 2. These promising results confirm what can
be observed in Figures 1 and 2. �
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5.4 Example 3: comparison of means and covariances for the Wine Recognition
Data

We consider the wine data-set of the machine-learning repository, see www.mlr.cs.

umass.edu/ml/datasets/Wine, widely used in particular as a test-bed for compar-
ing classifiers. Here we simply consider the three classes of the data-set as three
different data-sets X, Y and Z and wish to test whether they significantly differ in
their means and/or covariances. The data have dimension d = 14 and the sample
sizes are 59, 71 and 48. The empirical covariances have very large leading eigenvalues
(larger than 104) but also several eigenvalues smaller than one.

The left panel of Figure 5 shows the value of distance DlogΦk,BR computed for
the empirical measures associated with the second and third data sets, Y and Z
as a function of k ∈ {2, . . . , d}. The curve in solid line (bottom) is when all data
points are used, the one in dashed line (top) is when r points are removed from
each sample, see Section 5.3; we use r = 5. The right panel of Figure 5 shows
(a kernel approximation of) the pdf of DlogΦ10,BR obtained from 1000 bootstrap
samples under H0, see Section 5.3; the observed distance (corresponding to the value
for k = 10 on the curve in solid line on the left panel) is indicated by a vertical
dashed line. The hypothesis H0 that both samples come from distributions having
the same mean and covariance is clearly rejected. The figure obtained is similar
when using sampling without replacement with r = 5, see Section 5.2. Similarly,
H0 is also rejected for all other k ∈ {2, . . . , d}, and when using Dlogϕp,BR for
all p = 0, 0.01, . . . , 0.99. The same conclusions are obtained when comparing the
distributions of X and Y, and X and Z. They also remain unchanged when the
three samples are first centered, indicating that they all have different covariances.

Fig. 5 Left: DlogΦk,BR for the empirical measures associated with Y and Z as a function of k;
solid line (bottom) when all data points are used, dashed line (top) when n2− r and n3− r points
are used (r = 5). Right: kernel approximation of the pdf of DlogΦ10,BR using 1000 bootstrap
samples under H0 and observed value of DlogΦ10,BR (vertical dashed line).

Since the data-sets X, Y and Z have different sizes, in the calculation ofDlogΦk,BR

we may exploit the fact that

(Φ̂k)n =
(n− k − 1)!(n− 1)k

(n− 1)!
Φk(Σ̂µ,n)

forms an unbiased estimator of Φk(Σµ) with minimum variance among all unbi-
ased estimators, see Theorem 3.2 in [17]. This modification does not change the
conclusions above for this example.
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