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Existence of multi-traveling waves in capillary fluids

Corentin Audiard ∗†

September 3, 2018

Abstract

We prove the existence of multi-soliton and kink-multi-soliton solutions of the Euler-
Korteweg system in dimension one. Such solutions behaves asymptotically in time like
several traveling waves far away from each other. A kink is a traveling wave with different
limits at ±∞. The main assumption is the linear stability of the solitons, and we prove that
this assumption is satisfied at least in the transonic limit. The proof relies on a classical
approach based on energy estimates and a compactness argument.
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1 Introduction

The Euler-Korteweg model The Euler-Korteweg equations read




∂tρ+ ∂x(ρv) = 0,

∂tv + v∂xv + g′(ρ)∂xρ = ∂x

(
K(ρ)∂2

xρ+
1
2K

′(ρ)(∂xρ)
2

)
,

(x, t) ∈ R× R
+. (1.1)
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1 INTRODUCTION 2

They are a modification of the usual Euler equations that model capillary forces in non viscous
fluids. The function K(ρ) is supposed to be smooth R

+∗ → R
+∗. In some relevant cases it is

not bounded near 0, in particular for K = 1/ρ there exists a change of variable, the Madelung
transform, that converts at least formally solutions of (1.1) into solutions of the nonlinear
Schrödinger equation (for details on this interesting feature see the review article [8]).
There is a formally conserved energy

H[ρ, v] =

∫

R

1

2

(
ρv2 +K(ρ)(∂xρ)

2
)
+G(ρ)dx,

where G is a primitive of g, and under appropriate functional settings, denoting δH the vari-

ational derivative of H, V =

(
ρ
v

)
(1.1) can be viewed as a hamiltonian system

∂tV = J∂xδH[V ], with J =

(
0 −1
−1 0

)
. (1.2)

(1.1) also has a formally conserved momentum P (ρ, v) =
∫
R
ρv, whose conservation is related

to the identity δP [V ] = −JV . Although formal these identities are used at least as notations
in this article.
Due to the intricate quasilinear nature of (1.1), only local well-posedness was obtained so far
in dimension one and, even for data close to a constant state, global well-posedness is an open
problem (on well-posedness and stability in larger dimension, see also [4], [2], [11]).
It was proved in [5] by ODE technics that (1.1) admits traveling waves as solutions, namely
solutions of the form (ρ, v)(x − ct). There exists two classes of traveling waves: those such
that lim

+∞
(ρ, v)(z) 6= lim

−∞
(ρ, v)(z) are labelled as kinks, while solitons satisfy lim

+∞
(ρ, v)(z) =

lim
−∞

(ρ, v)(z). No quantity is assumed to be zero at infinity.

Both types of traveling waves are physically relevant, especially kinks are supposed to model
phase transition in capillary fluid (e.g. liquid to vapor). While kinks are known to be always
stable, solitons are not and a (conditional) stability criterion in the spirit of [12] was derived
in [5].
This article is devoted to a related, yet different issue : the existence of multi-traveling waves,
i.e. solutions that decouple as t → +∞ to a sum of traveling waves.

Multi-traveling waves in the litterature The existence of multiple traveling waves is
now a classical topic. While the first examples came from the field of integrable equations (for
example, see the pioneering work of Zakharov-Shabat [18]), flexible and powerful methods have
since been developed to tackle non-integrable equation. In particular considerable progress was
achieved for the KdV and nonlinear Schrödinger equations over the last twenty years.
In the framework of the nonlinear Schrödinger equation we refer to the work of Martel, Merle
and coauthors [15, 10], in particular based the use of modulation parameters and a compactness
argument, see also Le Coz and Tsai [13] for an approach based on dispersive estimates. To the
best of our knowledge, the inclusion of a kink in the asymptotic profile is a rather rare feature
in the field of multiple traveling waves, to the noticeable exception of the work of Le Coz-Tsai
[13], see also [14] in higher dimension.
All those results share the fact that they are more conveniently applied to equations that have



1 INTRODUCTION 3

a “good” well-posedness theory available (existence of global solutions in not too restrictive
spaces). As such, their adaptation to quasilinear systems like the Euler-Korteweg system raises
some difficulties. To explain it roughly, a key step of the compactness argument of Martel-
Merle requires the existence of solutions for t ∈ R

+, while the well-posedness theory for the
Euler-Korteweg system only allows existence in finite time.
In the context of the water waves, this difficulty was overcome by Ming-Rousset-Tzvetkov [16]
with the construction of global approximate solutions with some fast decay in time on the
approximation error. This is also, to some extent, the approach that we follow here.

The traveling waves A short description of the construction of traveling waves is provided
in the appendix, for more details we refer to [5]. Their main features are the following:

• A traveling wave is a solution of (1.1) of the form V (x− ct), c is its speed.

• All the traveling waves that we consider are smooth and bounded. Their derivatives are
exponentially decreasing at ±∞. Consequently all traveling waves have limits at ±∞.

• Kinks are travelling waves that have different endstates at ±∞, say (ρ±, u±). The func-
tion ρ is monotonous.

• Solitons are traveling waves with same endstates at ±∞. ρ changes monotony only once,
when it reaches its unique extremum. In the appendix we only deal with the case where
this extremum is a minimum. By analogy with the Schrödinger equation (see e.g. [3]), we
label such solutions bubbles (note that for fluids such solutions correspond to a negative
bump in the density, therefore the word bubble is consistent).

• For a fixed endstate solitons can be smoothly parametrized by their speed.

Main result Let (V cj)1≤j≤n be travelling waves with ordered speeds cj < cj+1. We assume
that all V cj are stable, and we consider one of the following two cases:

• V c1 is a kink, and V cj are solitons with ∀ j ≥ 2, lim
±∞

V cj = lim
+∞

V c1 .

• V cj are all solitons with the same endstate.

For V c a soliton, we denote U c = V c −
(
ρ+
v+

)
, and define the rescaled momentum

P (V c) = P (ρc, vc) =

∫

R

(ρc − ρ+)(v
c − v+)dx. (1.3)

We assume that the solitons are stable in the following sense

Stability condition:
d

dc

∫
(ρc − ρ+)(v

c − v+)dx < 0.

We refer to the appendix A for the proof that our conditions can be met, where we also show
that this stability criterion coincides with the one derived in [5].
We define the multi-soliton

S(x, t) = V c1(x− c1t) +
n∑

k=2

U ck(x− ckt−
k∑

j=2

Aj),
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Aj ≥ A a large constant to choose later. Our main result is that there exists a solution which
converges to S as t → ∞ (see section 2 for the definition of Hn).

Theorem 1.1. For A0 large enough, A ≥ A0, and n ≥ 3, there exists a global solution of (1.1)
such that V − S ∈ C(R+,H2n) and

lim
t→∞

‖V (t)− S(t)‖H2n → 0.

Remark 1. It may be tempting to think that theorem 1.1 hints towards the stability of multi-
solitons. This is not correct as the solution constructed is quite peculiar: it is a pure soliton
solution with no dispersive part. For NLS multi-solitons have been constructed in cases where
each soliton is unstable[10, 9].
Note however that in the case of the Gross-Pitaevskii equation, whose hydrodynamics formu-
lation is a special case of (1.1) with K = 1/ρ, g = ρ − 1, nonlinear stability of multi-solitons
was obtained by Béthuel-Gravejat-Smets [7]. It is expectable that a similar result holds (at
least in some regime) for (1.1), however, due to the lack of global well-posedness, going beyond
conditional stability, that is stability until blow-up, requires significant new ideas.

Remark 2. It is apparent from the proof that multiple traveling waves can be constructed in
more complicated configurations, such as kink-soliton-kink, soliton-kink-kink etc. We chose
not to aim at such results to keep a reasonably simple proof, and because configurations with
multiple kinks and stable solitons might require very exotic presssure laws to exist.

Scheme of proof The key is to construct an approximate solution V a to (1.1) that satisfies

∂tV
a − J∂xδH[V a] = fa,

which is defined globally, converges as t → ∞ to the multi-soliton, and such that the error
term fa decays rapidly in time. Once V a is constructed, we use the local well-posedness theory
with some improved energy estimates to construct a sequence of exact solutions V k close to
V a, defined on [0, k] with V k(k) = Ua(k). A compactness argument then provides a global
solution of the Euler-Korteweg system which converges at t → ∞ to the multi-soliton.
The construction of V a is quite intricate, it requires fine estimates on the flow generated by
the linearized operator J∂xδ

2H[S], building upon a spectral decomposition of δ2H[V cj ]−cjδ
P .

Once these estimates are proved, the approximate solution is constructed by a Newton iteration
method applied to the problem ∂tV − J∂xδH[V ] = 0.

Plan of the article In section 2 we define some notations and functional settings. The
energy estimate for (1.1) are proved in section 3.
Section 4 is the core of the article. We first give a convenient spectral decomposition of the
operator δ2E[V cj ] − cjδ

2P . We deduce some estimates on the flow of J∂xδ
2H that are not

useful for this paper, but contain most of the ideas for the much more technical estimates on
the flow of J∂xδ

2H[S].
With these estimates at hand we construct in section 5 an approximate solution by following
Newton’s iteration method. The compactness argument that provides the multi-soliton solution
is detailed in section 6.
Finally, as the existence of a “kink-stable solitons” configuration is not obvious, we prove it
in the appendix. The appendix is also used to recall how kinks and solitons for (1.1) are
constructed.
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2 Notations, functional spaces

Reference state of a solution Any solution V of (1.1) that we consider is of the form

V = Vref + U, (2.1)

where U vanishes at infinity, Vref is a reference state which is a smooth function with finite
limit at ±∞, and for any k + j ≥ 1, ∂k

x∂
j
t Vref decays exponentially at ±∞.

The notation V = Vref +U will be used without explanation when the context is clear, in par-
ticular for a soliton of endstate (ρ+, v+) we always take Vref = (ρ+, v+)

t. If any sub/superscript
is present we denote V a = V a

ref + Ua, Vj = Vref,j + Uj etc.

We always denote V =

(
ρ
v

)
, U =

(
r
u

)
, and similarly for V a, Ua...

Symbols and conventions of computation The constant C in inequalities A ≤ CB
changes from line to line. Depending on the context, they are allowed to depend on some
quantities, but for conciseness this dependency is not explicited. For example when proving
A ≤ C(‖u‖∞)B, we write freely |uv| ≤ C|v|.
The inequality A . B means A ≤ CB for some constant C > 0, where the previous rule
applies to C.
The L2 scalar product for real vector valued functions is denoted 〈 ·, ·〉.

Sobolev spaces Even for functions of one variable, we use the notation u′ = ∂xu. H
n is the

usual L2 based Sobolev space

Hn = {u ∈ S ′ : ∀ 0 ≤ k ≤ n, ∂k
xu ∈ L2}, ‖u‖2Hn =

n∑

0

‖∂k
xu‖2L2 .

We denote Cn
b the set of n times differentiable functions that are bounded as well as their

derivatives. For a vector valued distribution U =

(
r
u

)
, we also define

‖U‖2Hn = ‖r‖2Hn+1 + ‖u‖2Hn , and ‖U‖Xn = ‖U‖Hn+1 + ‖∂tU‖Hn .

We have the interpolation property

∀ 0 ≤ k ≤ n, ‖u‖Hk ≤ ‖u‖1−k/n
L2 ‖u‖k/nHn ,

the continuous embedding Hn ⊂ Cn−1
b . For n ≥ 1, Hn is a Banach algebra.

The following composition composition rules hold for a ∈ Cn
b +Hn, u ∈ Hn and F smooth on

Im(a), Im(a+ u):

‖F (a + u)− F (a)‖Hn ≤ C(‖a‖Cn
b +Hn + ‖u‖Hn)‖u‖Hn , (2.2)

in particular if F (0) = 0, ‖F (u)‖Hn ≤ C(‖u‖Hn)‖u‖Hn .
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A similar second order rule holds

‖F (a+ u)− F (a)− uF ′(a)‖Hn ≤ C(‖a‖Cn
b +Hn + ‖u‖Hn)‖u‖2Hn . (2.3)

Both are consequences of a combination of the Faa Di Bruno formula, Sobolev’s embedding,
Hölder’s inequality and Taylor’s formula.

3 Energy estimates

An essential step is to bound the distance between an exact solution and a smoother approxi-
mate solution V a = (ρa, va) satisfying

∂tV
a = J∂xδH[V a] + fa, for some remainder fa.

Due to the quasi-linear nature of the system the flow map is (probably) not Lipschitz even in
high regularity Sobolev spaces, nevertheless Lipschitz bounds with harmless loss of derivatives
on V a can be obtained.
Energy estimates were obtained by Benzoni et al [6] thanks to a change of variable (initially
due to F. Coquel), and this section is actually more or less contained in [6]. Let us shortly
describe the argument : if (ρ, v) is a smooth solution of (1.1) without vacuum, n ≥ 2, set
w =

√
K/ρ∂xρ, and z = v + iw. Then z satisfies

∂tz + v∂xz + iw∂xz + i∂x
(
a∂xz

)
+ g′(ρ)∂xρ = 0, (3.1)

with a(ρ) =
√
ρK. This equation has a nice structure : i∂xa∂x is antisymetric, v∂x too up to

zero order terms, g′∂xρ is of order zero since w is a derivative of ρ. The only bad term iw∂xz
is dealt with thanks to a gauge method.
A few preliminary notations : for V = (ρ, v), solution of (1.1) and V a = (ρa, va) an approximate
solution, we denote z and za the associated new variables. We assume that V a = Vref + Ua

and V = Vref + U (same reference state) so that V − V a = U − Ua.
Generically for F a function of ρ we denote ∆F = F (ρ) − F (ρa), for F a function of v,
∆F = F (v) − F (va) etc. The gauge function of order n is ϕn(ρ) := an/2

√
ρ and the modified

norm
‖̃∆V ‖H2n := ‖∆ρ‖L2 + ‖√ρ∆z‖L2 + ‖ϕn∂

2n
x ∆z‖L2 .

This notation is quite incorrect as the “norm” depends on V in a nonlinear way. Nev-
ertheless, using the computation rules 2.2 and with constants depending continuously on
‖V ‖H2n + ‖V a‖H2n +

∥∥ρ + 1
ρ

∥∥
L∞ +

∥∥ρa + 1
ρa

∥∥
L∞ , we have ‖̃∆V ‖H2n ∼ ‖∆ρ‖L2 + ‖∆z‖H2n ,

and ‖(∆ρ,∆v)‖H2n ∼ ‖∆z‖H2n + ‖∆ρ‖L2 , so

‖̃∆V ‖H2n ∼ ‖∆V ‖H2n . (3.2)

The main result is the following:

Proposition 3.1. Let V a
ref be a reference state smooth, bounded with its derivatives rapidly

decaying at infinity. Let V a = (ρa, va) = V a
ref + Ua be an approximate solution of (1.1)

∂tV
a = J∂xδH[V a] + fa,
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and V a solution of (1.1) such that U = V − V a
ref ∈ H2n, n ≥ 1. Then the estimate holds

∣∣∣∣
1

2

d

dt
‖̃∆V ‖H2n

∣∣∣∣ ≤ C

(
‖U‖H2n + ‖Ua‖H2n+2 +

∥∥1/ρ+ 1/ρa
∥∥∥∥
L∞

)(
‖̃∆V ‖H2n + ‖fa‖H2n

)
,

with C a continuous, positive nondecreasing function R
+ → R

+∗.

Proof. We recall the convention of section 2; the hidden constants in .,∼ are as the function
C of the statement. If fa = (fa

1 , f
a
2 ), the equations on ∆ρ,∆z are





∂t∆ρ+ ∂x(∆ρv + ρa∆v) = fa
1 ,

∂t∆z + v∂x∆z +∆v∂xz
a + iw∂x∆z + i∆w∂xz

a

+∂x∆g + i∂x
(
a∂x∆z +∆a∂xz

a) = i
√

K
ρa∂xf

a
1 + fa

2 := ha.

‖∆ρ‖L2 is estimated by multiplying the first equation by ∆ρ and space integration
∣∣∣∣
1

2

d

dt
‖∆ρ‖2L2

∣∣∣∣ ≤ ‖∂x∆ρ‖L2(‖∆ρ‖L2‖v‖L∞ + ‖ρa‖L∞‖∆v‖L2) + ‖∆ρ‖L2‖fa
1 ‖L2

.
(
‖∆V ‖H2n + ‖fa‖2H2n

)
‖∆V ‖H2n . (3.3)

The main issue is thus to control ∆z. Let us first note that

‖ha‖2H2n . ‖∂xfa
1 ‖2H2n + ‖fa

2 ‖2H2n ≤ ‖fa‖2H2n . (3.4)

For 0 ≤ k ≤ n, we apply ak
√
ρ∂2k

x := ϕk∂
2k
x to the second equation. Denoting ∆zk = ϕk∂

2k
x ∆z

we find after some commutations

∂t∆zk + v∂x∆zk + i∂x(a∂x∆zk) + i(ϕkw + 2k∂x(a)ϕk − 2a∂xϕk)∂
2k+1
x ∆z

+iϕk∂
2k+1
x (∆a∂xz

a) = R+ ϕk∂
2k
x ha(3.5)

where R is a remainder term containing derivatives of ∆z of order at most 2k, and derivatives
of za of order at most 2k + 2

R = [z∂x, ϕk∂
2k
x ]∆z − iϕk∂

2k
x (∆v∂xz

a + i∆w∂xz
a)

+i[∂x(a∂x·), ϕk∂
2k
x ]∆z + 2ik∂x(a)ϕk∂

2k+1
x ∆z

−ϕk∂
2k+1
x (∆g) + iϕk∂

2k+1
x (∆a∂xz

a)− ϕ′
k∂x(ρv)∂

2k
x ∆z.

By construction,

ϕkw + 2k∂x(a)ϕk − 2a∂xϕk = ak
√
K + 2k

√
ρK

=

(√
K

ρ
ak

√
ρ+ 2kaka′

√
ρ− 2kaka′

√
ρ− ak+1

√
ρ

)
∂xρ

= 0.

Therefore, multiplying (3.5) by ∆zk and integrating,
∣∣∣∣
d

dt
‖∆zk‖2L2

∣∣∣∣ . (‖v‖L∞‖∆zk‖L2 + ‖R‖L2 + C‖za‖H2k+2‖∆z‖H2k + ‖ϕk∂
2k
x ha‖L2)‖∆zk‖L2 .(3.6)
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Using section 2.2 and Faa di Bruno formula ‖R‖L2 . ‖∆V ‖H2k , moreover from (3.4) ‖ϕk∂
2k
x ha‖L2 .

‖fa‖H2k , (3.6) rewrites
∣∣∣∣
d

dt
‖∆zk‖2L2

∣∣∣∣ . ‖∆V ‖H2k

(
‖∆V ‖H2k ++‖fa‖H2k

)
.

Thanks to (3.2), ‖∆V ‖H2k . ‖̃∆V ‖H2n . Adding estimates (3.3) and (3.6) with k = 0 and
k = n we conclude∣∣∣∣
d

dt
‖̃∆V ‖2H2n

∣∣∣∣ =
∣∣∣∣
d

dt

(
‖∆ρ‖2L2+‖√ρ∆z‖2L2+‖ϕn∂

2n
x ∆z‖2L2)

∣∣∣∣ . ‖̃∆V ‖H2n

(
‖̃∆V ‖H2n+‖fa‖H2n

)
.

4 Linear estimates

This section is devoted to estimates inHn on the flows associated to J∂xδ
2H[V c] (V c a traveling

wave) and J∂xδ
2H[S].

We recall the notation δH[V ] =

(
−K∂2

xρ− 1
2K

′(∂xρ)
2 + g(ρ) + v2/2

ρv

)
, in the same spirit

δ2H[V ]

(
r
u

)
=

(
(−K ′(ρ)∂2

xρ− 1
2K

′′(ρ)(∂xρ)
2 + g′(ρ)

)
r − ∂x(K∂xr) + uv

ρu+ rv

)
, (4.1)

or in a matrix operator notation

δ2H[V ] =

((
−K ′(ρ)∂2

xρ− 1
2K

′′(ρ)(∂xρ)
2 + g′(ρ)

)
− ∂x(K∂x·) v

v ρ

)
.

As can be expected, δ2H is a symmetric operator. Recalling 〈·, ·〉 is the L2 scalar product, we
shall use frequently that

〈δ2H[V ]

(
r
u

)
,

(
r1
u1

)
〉 =

∫

R

(
−K ′(ρ)∂2

xρ−
1

2
K ′′(ρ)(∂xρ)

2 + g′(ρ)
)
rr1

+K∂xr∂xr1 + vur1 + vru1 + ρuu1dx, (4.2)

so that δ2H induces a continuous bilinear form on H0 if V is smooth enough.

4.1 Linear stability of a traveling wave

The case of a kink Let V c be a kink of speed c. The system (1.1)linearized near V c reads
after the change of variables x → x− ct

∂tU(x, t) = J∂xδ
2(H − cP )[V c(x)]U(x, t).

We define a modified energy functional E = H − cP . According to lemma 3 in [5] (see also
remark 2 in this reference) kinks are always stable in the following sense:

Lemma 4.1. For any U ∈ H there exists a unique orthogonal decomposition

U = α∂xV
c +W, ∂xV

c ∈ Ker(δ2E) and 〈δ2E[V c]U,U〉 & ‖W‖2H0 . (4.3)

For the link between linear stability and δ2E being definite positive, see e.g. theorem 3.1
of Pego-Weinstein [17].
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The case of a soliton We consider a branch of solitons V c. As it is more convenient here to
work on U c, we denote P [U c] =

∫
rcuc and abusively δH[U c] = δH[V c]. We recall (see (1.2))

that J =

(
0 −1
−1 0

)
so that δ2P = −J . From −c∂xU

c = J∂xδH[U c] we have a number of

useful identities

∀U, V, δP [U ] = δ2P [V ]U = −JU, (4.4)

(δH − cδP )[U c] := δE[U c] is constant, (4.5)

δ2E[U c] · ∂xU c = 0 (differentiation of (4.5) in x), (4.6)

δ2E[U c]∂cU
c − δP [U c] = 0 (differentiation in c) (4.7)

⇔ δ2E[U c]∂cU
c = −JU c. (4.8)

Stability assumption We assume that Uc is stable, namely it satisfies :

dP [U s]

ds
|s=c < 0.

(see the appendix for a link with the so called Boussinesq momentum of instability). This also
implies that ∂cU

c is an unstable direction in the sense that

〈δ2E[U c]∂cU
c, ∂cU

c〉 = 〈δP [U c], ∂cU
c〉 = d

dc
P [U c] < 0.

Let us first recall a result from [5] (proved for the formulation of the Euler-Korteweg system
in Lagrangian coordinates, see also [1] appendix B for a proof in Eulerian coordinates).

Lemma 4.2. Under the stability assumption, the operator δ2E[U c] is block diagonal on the
orthogonal decomposition H = vect(U−) ⊕⊥ vect(∂xU

c) ⊕⊥ G, where ∂xU
c spans the kernel of

δ2E, U− is a normalized eigenvector associated to the unique negative eigenvalue, and

∀W ∈ G, 〈δ2E[V c]W,W 〉 & ‖W‖2H0 .

Lemma 4.3. For U ∈ H, there exists a unique orthogonal decomposition

U = αδP [U c] + β∂xU
c +W, W ∈ (δP [U c], ∂xU

c)⊥ and 〈δ2EU,U〉 & ‖W‖2H0 − Cα2. (4.9)

Remark 3. To underline the unity between this decomposition and (4.3) in the case of a kink,
let us point out that since the reference state is constant

∂xV
c = ∂xU

c.

Proof. The momentum being invariant by translation, 〈δP [U c], ∂xU
c〉 = 0 and according to

(4.6), ∂xU
c ∈ Ker(δ2E). Therefore the only thing to prove is 〈δ2EW,W 〉 & ‖W‖2H0 . By

contradiction we assume the existence of W ∈ (δP [U c], ∂xU
c)⊥ \{0} such that 〈δ2EW,W 〉 ≤ 0,

then for any (α, β, γ) ∈ R
3, using identities (4.6), (4.7)

〈δ2E(α∂cU
c + β∂xU

c + γW ), α∂cUc + β∂xU
c + γW 〉

= 〈δ2E(α∂cU
c + γW ), α∂cU

c + γW 〉
= α2〈δP [U c], ∂cU

c〉+ γ2〈δ2EW,W 〉
+2αγ〈δP [U c],W 〉

= α2〈δP [U c], ∂cU
c〉+ γ2〈δ2EW,W 〉,
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by orthogonality. By definition, 〈∂xU c,W 〉 = 0 and 〈∂cU c, δP [U c]〉 < 0 therefore (∂cU
c, ∂xU

c,W )
is free. But δ2E is thus nonpositive on a dimension 3 space, which contradicts lemma 4.2. As
a consequence

∀W ∈ (δP [U c], ∂xU
c)⊥ \ {0}, 〈δ2EW,W 〉 > 0. (4.10)

The improved inequality 〈δ2EW,W 〉 & ‖W‖2H0 follows from a (probably standard) compact-
ness argument : consider a sequence Vn of (δP [U c], ∂xU

c)⊥ such that ‖Vn‖H0 = 1 and
〈δ2EVn, Vn〉 → 0. Using lemma 4.2 we write Vn = αnU− + βn∂xU

c + Wn, Wn ∈ G. By
assumption, βn = 0 and up to an extraction, αn →n→∞ α, Wn ⇀ W ∈ G. Denoting −λ− the
negative eigenvalue,

1 = ‖Vn‖2H = α2
n + ‖Wn‖2H0 = α2 + lim

n
‖Wn‖2H,

0 = lim
n→∞

〈δ2EVn, Vn〉 = lim
n→∞

−λ−α
2
n + 〈δ2EWn,Wn〉 ≥ −λ−α

2 + c lim inf
n

‖Wn‖2H0 .

This implies α 6= 0. Let V = αU− +W , then by weak convergence

〈δ2EV, V 〉 = −λ−α
2 + 〈δ2EW,W 〉 ≤ −λ−α

2 + lim
n
〈δ2EWn,Wn〉 = 0,

but since V is the weak limit of Vn, it belongs to (δP [U c], ∂xU
c)⊥, and (4.10) implies V = 0,

which contradicts α 6= 0.

As a consequence, we deduce the following linear stability result, whose proof will be a
guideline for the computations in the multi-soliton case.

Theorem 4.4. Under the stability assumption (4.1), the solution of

{
∂tU(x, t) = J∂xδ

2H[U c(x− ct)]U(x, t),
U |t=0 = U0,

satisfies for t ∈ R

‖U(t)‖H0 . (1 + |t|)‖U0‖H0 .

Proof. For conciseness we write δ2H for δ2H[U c]. Using δ2P = −J

d

dt
〈(δ2H − cδ2P )U,U〉 = 〈[∂t, δ2H]U,U〉+ 2〈δ2HJ∂xδ

2HU,U〉+ c〈[∂x, δ2H]U,U〉

= 〈[∂t + c∂x, δ
2H]U,U〉.

Since the coefficients of the operator δ2H only depend on x− ct, [∂t + c∂x, δ
2H] = 0, so

d

dt
〈(δ2H − cδ2P )U,U〉 = 0. (4.11)

We use the decomposition (4.9) for the solution U(t) = α(t)δP [U c(x− ct)]+β(t)∂xU
c+W (t).

Since ∂xU
c ∈ Ker(δ2E)

α′(t) =
〈J∂xδ2HU, δ2PU c〉+ 〈U,−c∂xδ

2PU c〉
〈δP [Uc], δP [uc]〉

=
〈U, (δ2H − cδ2P )∂xU

c〉
〈δP [Uc], δP [uc]〉

= 0.
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By the conservation (4.11) and the continuity of δ2H as a bilinear form (4.2)

〈δ2EU(0), U(0)〉 = 〈δ2EU(t), U(t)〉 = 〈δ2E(αδP [U c] +W ), αδP [U c] +W 〉 & ‖W‖2H0 − Cα2

⇒ ‖W (t)‖2H0 . α(0)2 + ‖U(0)‖2H0 .

Moreover |α(0)| = 〈U(0), δP [U c]〉/‖δP [U c]‖2H〉 . ‖U(0)‖H0 . The last term is estimated thanks
to the bounds on α, V :

|β′(t)| =
∣∣∣∣
d

dt

〈U(t), ∂xU
c〉

‖∂xU c‖2
L2

∣∣∣∣ =
∣∣∣∣
〈J∂xδ2E(αδP [U c] + V ), ∂xU

c〉
‖∂xU c‖2

L2

∣∣∣∣ . ‖U(0)‖L2 ,

and by integration, |β(t)| ≤ |β(0)| + |t|‖U(0)‖H0 .

Remark 4. The linear growth in time is unavoidable, indeed we have

J∂xδ
2E∂cU

c = ∂xJδP [U c] = ∂xU
c ∈ Ker(J∂xδ

2E),

therefore (∂cU
c, ∂xU

c) is associated to a Jordan block of the eigenvalue 0 of J∂xδ
2E.

Remark 5. Of course to study the stability of a single soliton it is much more natural to
do the galilean change of variable y = x − ct and consider the autonomous linear problem
∂tU = (δ2H−cδ2P )[U c(y)]U . The proof of theorem 4.4 is simplified in this frame. Nevertheless,
when considering multi-soliton such a change variable is not available and this first simple case
is a good warm up before the more technical computations of section 4.2.

4.2 Stability near multiple traveling waves

We recall that the multi-soliton is defined as

S(x, t) = V c1(x− c1t) +

n∑

k=2

U ck(x− ckt−
k∑

j=2

Aj) = V1 +

n∑

2

Uk, Aj ≥ A,

where V ck = V ck
ref + U ck are traveling waves, c1 < c2 · · · < cn. We have exponential decay

∀ p ≥ 0, 1 ≤ k ≤ n, ∃α > 0 : |∂p
xUk(x, t)| . e−α|x−ckt−

∑k
2 Aj |. (4.12)

The aim of this section is to get bounds on the flow associated to J∂xδ
2H[S + η] where η

is a small perturbation of limited smoothness that depends on x and t. When there is no
ambiguity, we write δ2H for δ2H[S + η] and

δ2Ek := δ2H[Vk]− ckδ
2P.

Lemma 4.5. For s ≥ 0, let U solve

{
∂tU = J∂xδ

2H[S + η]U,
U |t=s = U0,

(4.13)

with η a smooth perturbation. There exist C and ε0 such that for ε := 1/A + ‖η‖X1 ≤ ε0,

∀ t ≥ 0, ‖U(t)‖H0 ≤ C(1 + |t− s|)eCε1/4|t−s|‖U0‖H0 .
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Remark 6. The estimate is not true for t ≤ 0 as the key argument is that the distance between
the traveling waves must be (in some sense) larger than A.

The proof requires some preliminaries that will be used through the section. Let 2c0 =
infj<k ck − cj , and for 1 ≤ k < n, ck+1/2 = (ck + ck+1)/2. We first define localizing functions :
pick a nondecreasing χ ∈ C∞(R), supp(χ) = [0,∞], χ|[1/2,∞) = 1, 0 < χ < 1 on (0, 1/2), and
set

ϕ1(x, t) = 1− χ

(
x− c1+1/2t−A2/2

A2

)
,

∀ 2 ≤ k < n, ϕk(x, t) = χ

(
x− ck−1/2t−

(∑k
2 Aj −Ak/2

)

Ak

)

−χ

(
x− ck+1/2t−

(∑k
2 Aj +Ak+1/2

)

Ak+1

)
,

ϕn(x, t) = χ

(
x− cn−1/2t−

(∑n
2 Aj −An/2

)

An

)
.

It is easily seen that

supp(ϕ1) = (−∞, c3/2t+A2],

∀ 2 ≤ k ≤ n− 1, supp(ϕk) = [ck−1/2t+
k∑

2

Aj −
Ak

2
, ck+1/2t+

k+1∑

2

Aj ],

supp(ϕn) = [cn−1/2t+

n∑

2

Aj −An/2,∞),

and

n∑

k=1

ϕ2
k ≥ c > 0 for some constant independent of x. The localizing functions are then

defined as
χj =

ϕj√∑n
1 ϕ

2
j

so that
∑

χ2
j = 1. (4.14)

Note that ϕj and χj have same support. Thanks to (4.12) we have the following estimates,
uniformly for A large

‖∂j
x∂

k
t χj‖L∞

x,t
= O(1/Ak+j) (slow variation ),(4.15)

∀ j 6= k, (p, q) ∈ N
2, r ≥ 1, ∃α > 0 : ‖∂p

x∂
q
tUk‖Lr

x(supp(χj)) = O(e−αc0t/A), (4.16)

if (p, q) 6= (0, 0), r ≥ 1, ‖∂p
x∂

q
t Vk‖Lr

x(supp(χj)) = O(e−αc0t/A), (4.17)

(support decorrelation).

Proof of lemma 4.5. In the spirit of the proof of theorem 4.4 we define the modified energy

Ẽ(t) = 〈δ2H[S + η]U(t), U(t)〉 −
n∑

k=1

ck〈δ2PχkU(t), χkU(t)〉. (4.18)
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Similarly to theorem 4.4, the proof has three steps : 1) Control of dẼ/dt, 2) control of ‖U(t)‖2H0

by Ẽ up to a finite number of parameters, 3) Control of these parameters.

Step 1: Control of dẼ/dt. From basic computations, using δ2P = −J, J2 = I,

d

dt
Ẽ = 〈([∂t, δ2H] + δ2HJ∂xδ

2H)U,U〉+
n∑

k=1

2ck〈χ′
kJU, χkU〉

+

n∑

k=1

ck

(
〈χk∂xδ

2HU,χkU〉+
(
〈χkU,χk∂xδ

2HU〉
)

= 〈[∂t, δ2H]U,U〉+
n∑

k=1

2ck〈χ′
kJU, χkU〉

+
n∑

k=1

ck

(
〈[χ2

k, ∂xδ
2H]U,U〉+ 〈[∂x, δ2H]χ2

kU,U〉
)

=
n∑

k=1

〈([∂t, δ2H] + ck[∂x, δ
2H])χ2

kU,U〉+ ck
(
2〈χ′

kJU, χkU〉+ ck〈[χ2
k, ∂xδ

2H]U,U〉
)

=
n∑

k=1

C1,k(t) + C2,k(t) + C3,k(t).

We first point out that X1 controls the L∞ norm, therefore for ‖η‖X1 small enough the density
of S+η remains bounded away from 0 and the computations rules in (2.2),(2.3) can be applied.
C2,k and C3,k are not difficult to control : let us write [χ2

k, ∂xδ
2H] = (Li,j)1≤i,j≤2 as a matrix

of operators, S + η =

(
ρ1
v1

)
and detail the estimate for 〈L1,1r, r〉

〈L1,1r, r〉 = 〈
[
χ2
k, ∂x

(
(g′ −K ′′(∂xρ1)

2 −K ′∂2
xρ1)− ∂xK∂x

)]
r, r〉

= −〈2χk∂x(χk)(g
′ −K ′′(∂xρ1)

2 −K ′∂2
xρ1)r, r〉 (4.19)

−2〈χk∂xχk∂x(K∂xr), r〉 − 〈[χ2
k, ∂xK∂x]r, ∂xr〉. (4.20)

Using the Sobolev estimates (2.2) and (4.15), we find (4.19) . ‖r‖2H1/A, the second one is
estimated by an integration by part

∣∣− 2〈χk∂xχk∂x(K∂xr), r〉
∣∣ ≤

∫

R

∣∣K∂xr∂x
(
2χk∂xχk r

)∣∣dx .
1

A
‖r(t)‖2H1 .

The last term in (4.20) is estimated similarly with the explicit commutator formula [χ2
k, ∂xK∂x]r =

−2∂x(χ
2
k)K∂xr − ∂x(χ

2
k)∂x(Kr). Similar computations eventually lead to

|C2,k + C3,k| .
1

A
‖U‖2H0 . (4.21)

To bound C1,k we introduce the (bilinear) operator δ3H such that

[∂t, δ
2H[S + η]]U = δ3H[S + η](U, ∂t(S + η)). (4.22)
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This is merely a convenient notation, as writing S + η =

(
ρ1
v1

)
, δ3H(·, ∂t(S + η)) is explicitly

δ3H[S + η](·, ∂t(S + η)) =

(
Mt ∂tv1
∂tv1 ∂tρ1

)
, (4.23)

with Mtr =

(
g′′∂tρ1 −

K ′′′∂tρ1(∂xρ1)
2 + 2K ′′∂xρ1∂xtρ1
2

)
r

−(K ′′∂tρ1∂
2
xρ1 +K ′∂xxtρ1)r − ∂x(K

′∂tρ1∂xr),

and we use the same notation for [∂x, δ
2H] := δ3H[S](·, ∂xS). We can thus rewrite using

S = V1 +
∑n

j=2 Uj, with ∂tV1 = −c1∂xV1, ∂tUj = −cj∂xUj , for k > 1

C1,k(t) = 〈δ3H(U, ∂tS + ck∂xS)χ
2
kU,U〉+ 〈δ3H(U, ∂tη + ck∂xη)χ

2
kU,U〉

= 〈δ3H(U,−c1∂xV1 −
∑

j 6=k

cj∂xUj)χ
2
kU,U〉+ 〈δ3H(U, ∂tη + ck∂xη)χ

2
kU,U〉,

and if k = 1

C1,1(t) = 〈δ3H(U,−
n∑

j=2

cj∂xUj)χ
2
1U,U〉+ 〈δ3H(U, ∂tη + c1∂xη)χ

2
1U,U〉.

Now using the support decorrelation property (4.16) and the explicit form (4.23) of δ3H we
obtain in both cases

|C1,k(t)| .
e−αc0t

A
‖U(t)‖2H0 + (‖η(t)‖H2 + ‖∂tη(t)‖H1)‖U(t)‖2H0 . (4.24)

Adding this estimate with (4.21) gives

∣∣Ẽ′(t)
∣∣ . ε‖U(t)‖2H0 . (4.25)

Step 2: Lower bounds for Ẽ. The key here is the decompositions (4.3) and (4.9). For 1 ≤ k ≤ n
we set χkU(t) = αk(t)δP [Uk] + βk(t)∂xVk + Wk(t), with the convention that if V1 is a kink,
α1 = 0 (in this case the relevant decomposition is (4.3)). Using the translation invariance of
the L2 norm, the lower bound in (4.9) gives for some m,C > 0

∀ 1 ≤ k ≤ n, 〈δ2E[Uk]χkU,χkU〉 ≥ m‖Wk‖2H0 −Cα2
k.

According to this, we split Ẽ as a sum of localized terms and remainders:

Ẽ = 〈δ2H[S + η]U,U〉 −
n∑

k=1

ck〈δ2PχkU,χkU〉

=
n∑

k=1

〈δ2H[S + η]χ2
kU,U〉 − ck〈δ2PχkU,χkU〉,
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so commuting δ2H and χk we obtain

Ẽ(t) =

n∑

k=1

〈δ2EkχkU,χkU〉+ 〈(δ2H[S + η]− δ2H[Uk])χkU,χkU〉

+〈[δ2H[S + η], χk]χkU,U〉

≥
n∑

k=1

m‖Wk(t)‖2H0 − Cα2
k(t) + 〈(δ2H[S + η]− δ2H[Vk])χkU,χkU〉

+〈[δ2H,χk]χkU,U〉. (4.26)

The last term is estimated as in (4.20),

∣∣〈[δ2H,χk]χkU(t), U(t)〉
∣∣ . ε‖U(t)‖2H0 . (4.27)

Thanks to the support decorrelation (4.16) and calculus rules (2.2), one can check

〈(δ2H[S + η]− δ2H[Vk])χkU,χkU〉 .
(
e−αc0t

A
+ ‖η‖H2

)
‖U(t)‖2H0 . (4.28)

For example the term associated to ∂x(K∂xr) is controlled as follows

∣∣〈∂x
(
(K(S + η)−K(Vk))∂x(χkr)

)
, χkr〉

∣∣ ≤
∣∣‖K(S + η)−K(Vk)‖L∞(supp(χk))‖∂x(χkr)‖2L2

.

(
e−αc0t

A
+ ‖η(t)‖H0

)
‖r(t)‖2H1 .

Note that ‖U‖2H0 .
∑n

1 ‖Wk‖2H0 + α2
k + β2

k, so for ε small enough, from (4.26),(4.27),(4.28),
there exists constants m,C0, C1 (m is not the same as in (4.26)) such that

Ẽ(t) ≥
n∑

k=1

m‖Wk(t)‖2H0 − C0α
2
k(t)−C1εβ

2
k(t). (4.29)

Step 3: Control of the parameters. Once more it is a matter of repeating the proof of theorem
4.4 with some commutators. Let us start with (αk(t))1≤k≤n (k > 2 when V1 is a kink):

α′
k(t) =

d

dt

〈χkU, δ
2PUk〉

‖δ2PUk‖2L2

=
〈(∂tχk)U, δ

2PUk〉+ 〈χkJ∂xδ
2H[S + η]U, δ2PUk〉+ 〈χkU,−ckδ

2P∂xUk〉
‖δ2PUk‖2L2

=
〈(∂tχk)U, δ

2PUk〉+ 〈[χk, J∂xδ
2H[S + η]]U, δ2PUk〉

‖δ2PUk‖2L2

+
〈J∂x(δ2H[S + η]− δ2H[Vk])χkU, δ

2PUk〉+ 〈χkU, δ
2Ek∂xUk〉

‖δ2PUk‖2L2

.

There are four terms. The fourth one is actually 0, thanks to identity (4.6). From the same
argument as for C2,k, C3,k in (4.20), the first and second ones are O(|U(t)‖H0/A). Using
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integration by part, the smoothness of Uk and the same argument as for (4.28), the third one
is O(‖U(t)‖H0(e−αc0t/A+ ‖η‖H2)). To summarize

∀ 1 ≤ k ≤ n, t ≥ 0, |α′
k(t)| . ε‖U(t)‖H0 . (4.30)

We bound now βk(t):

‖∂xVk‖2L2β
′
k(t) =

d

dt
〈χkU, ∂xVk〉

= 〈(∂tχk)U, ∂xVk〉+ 〈χkJ∂xδ
2HU, ∂xVk〉+ 〈χkU,−ck∂

2
xVk〉

= 〈(∂tχk)U, ∂xUk〉+ 〈J∂xδ2Ek(χkU), ∂xVk〉
+〈χkJ∂x(δ

2H[S + η]− δ2H[Vk])U, ∂xVk〉+ 〈[χk, J∂xδ
2H[Vk]]U, ∂xVk〉.

Since χkU = αkδP [Uk] + βk∂xVk +Wk, with δ2Ek∂xVk = 0, we have
∣∣〈J∂xδ2Ek

(
χkU(t)

)
, ∂xVk(t)〉

∣∣ . |αk(t)|+ ‖Wk(t)‖H0 .

The other terms are estimated as for α′
k, leading to

|β′
k(t)| . |αk(t)|+ ‖Wk(t)‖H0 + ε‖U(t)‖H0 . (4.31)

Conclusion. Let us rewrite (4.25),(4.30),(4.31) : there exists some C > 0 such that for ε small
enough

∣∣Ẽ′(t)
∣∣ ≤ Cε‖U(t)‖2H0ds,

|α′
k(t)| ≤ Cε‖U(t)‖H0 ,

|β′
k(t)| ≤ C

(
|αk(t)|+ ‖Vk(t)‖H0 + ε‖U(t)‖H0

)
.

With the same constants as in (4.29), let Ê(t) := Ẽ(t) +
n∑

1

(C0 +m)α2
k + ε1/2β2

k , then for ε

small enough Ê(t) &
∑n

1 α
2
k + ‖Wk‖2H0 + ε1/2β2

k , and

∣∣Ê′(t)
∣∣ ≤

n∑

k=1

Cε
(
‖Wk‖2H0 + α2

k + β2
k

)
+ Cε1/2|βk|

(
|αk|+ ‖Wk‖H0 + ε‖U‖H0

)

≤ Cε1/2Ẽ + Cε1/2
(
α2
k + ‖Wk‖2H0

ε1/4
+ ε1/4β2

k

)

≤ Cε1/4Ê(t).

With Gronwall’s lemma and thanks to (4.29) we get

n∑

k=1

m
(
‖Wk(t)‖2H0 + α2

k(t)
)
+ ε1/2β2

k(t) ≤ Ê(t) ≤ Ê(s)eCε1/4|t−s|.

We can assume ε ≤ 1/(4C2
1 ) so that ε1/2 − C1ε ≥ ε1/2/2, and

n∑

k=1

(
‖Wk(t)‖2H0 + αk(t)

2
)
. ‖U(s)‖2H0e

Cε1/4|t−s| = ‖U0‖2H0e
Cε1/4|t−s|.
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To bound βk independently of ε, we plug the estimate above in the differential inequality (4.31)

n∑

k=1

|β′
k(t)| ≤ M

( n∑

k=1

|αk(t)|+ ‖Wk(t)‖H0 + ε‖U(t)‖H0

)

≤ M1‖U0‖H0eCε1/4|t−s|/2 +
Cε1/4

2

n∑

k=1

|βk(t)|. (4.32)

(for ε small enough so that Mε ≤ Cε1/4/2). (4.32) has the form (e−δ|t−s|ϕ(t))′ ≤ Meµ|t−s|, so
by integration on [s, t]

n∑

k=1

|βk(t)| ≤
n∑

k=1

|βk(s)|eCε1/4|t−s|/2 +
2M1‖U0‖H0

Cε1/4

(
eCε1/4|t−s| − 1

)

. ‖U0‖H0

(
1 + |t− s|

)
eCε1/4|t−s|.

Combining this with the estimate on Wk, αk, we conclude

‖U(t)‖H0 . ‖U0‖H0(1 + |t− s|)eCε1/4|t−s|.

It is useful to restate the result of lemma 4.5 in a slightly more abstract way:

Corollary 4.6. Let Rη(t, s) the resolvent operator associated to ∂tU = J∂xδ
2H[S + η]U .

There exists ε0 and C such that if 1/A+ ‖η‖X1 := ε ≤ ε0, t, s ≥ 0:

‖Rη(t, s)‖L(H0) ≤ (1 + |t− s|)CeCε1/4|t−s|.

We deduce now similar estimates at any level of regularity.

Theorem 4.7 (Higher order estimates). Let ε := 1/A + ‖η‖X2n , n ∈ N
∗. There exists εn,

Ce,n, Cn such that for any ε ≤ εn, we have the resolvent estimate

‖Rη(t, s)‖L(H2n) ≤ (1 + |t− s|)Cne
Ce,nε1/4|t−s|

Proof. The hamiltonian structure is useless here, so we denote for conciseness L := J∂xδ
2H[S+

η]. As for the energy estimate, an important issue is that J∂xδ
2H[S + η] does not commute

with ∂t, this will be overcome with the same method as for the zero order estimate. The
commutator [∂t, L] = J∂xδ

3H( · , ∂t(S + η)) := δL( · , ∂t(S + η)) is not zero (for the definition
of δ3H, see (4.22) in the proof of lemma 4.5), thus to get higher order estimates it is more

natural to use the operator L̃ := L+
n∑

k=1

ckχ
2
k∂x. Indeed using

[L, L̃] =

n∑

k=1

[L, ckχ
2
k∂x] =

n∑

k=1

ck[L,χ
2
k]∂x − ckχ

2
kδL(·, ∂x(S + η)),
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we find for any V

[∂t − L, L̃]V =

n∑

k=1

χ2
kδL(V, (∂t + ck∂x)(S + η)) + 2ckχk(∂tχk)∂xV − [L, ckχ

2
k]∂xV, (4.33)

therefore recalling ∂xVj = ∂xUj for j ≥ 2

∂t
(
L̃nU

)
= L

(
L̃nU

)
+

n−1∑

q=0

L̃q[∂t − L, L̃]Ln−q−1U

= L(L̃nU) +

n−1∑

q=0

L̃q

(∑

j 6=k

χ2
kδL(·, (ck − cj)∂xVj) + χ2

kδL(·, (∂t + ck∂x)η)

)
L̃n−q−1U

+

n−1∑

q=0

L̃q

( n∑

k=1

2ckχk(∂tχk)∂x − [L, ckχ
2
k]∂x

)
L̃n−q−1U

= L(L̃nU) + C1 + C2. (4.34)

Let us recall that if S + η =

(
ρ1
v1

)
, for any U = (r, u)t, we have

LV = −∂x




uρ1 + rv1(
g′ − K ′′(∂xρ1)2

2 −K ′∂2
xρ1

)
r − ∂x(K∂xr) + uv1


 ,

the first coefficient contains derivatives of r, u, ρ1, v1 of order at most 1, the second contains
derivatives of v1, v of order at most 1, and derivatives of ρ1, l of order at most 3 so using the
rules of section 2.2,

∀N ≥ 0, ‖LV ‖HN ≤ CN (‖η‖HN+2)‖V ‖HN+2 , (4.35)

⇒ ‖L̃V ‖HN ≤ MN (‖η‖HN+2)‖V ‖HN+2 , (4.36)

with CN ,MN positive locally bounded functions (we recall that S is smooth and is unimportant
in the estimates). With this observation, estimate (4.15) and computations similar to (4.20)
we deduce

‖C2(t)‖H0 .
‖U(t)‖H2n

A
≤ ε‖U(t)‖H2n .

Similarly, C1(t) is estimated thanks to (4.16) as for (4.24),

∥∥∥∥C1(t)

∥∥∥∥
H0

.

(
e−αc0t

A
+ ‖η‖X2n

)
‖U(t)‖H2n ≤ ε‖U(t)‖H2n .

Conversely thanks to the interpolation estimate ‖∂p
xϕ‖L2 ≤ ‖ϕ‖1−p/q

L2 ‖∂q
xϕ‖p/qL2 , and Young’s

inequality, ‖∂p
xϕ‖L2 ≤ C(ε)‖ϕ‖L2 + ε‖∂q

xϕ‖L2 for any ε > 0, p < q, therefore using once more
the explicit formula for L̃V , we obtain

‖L̃V ‖H0 & ‖V ‖H2 − C‖V ‖H0 , and by induction ‖L̃nU‖H0 & ‖U‖H2n − Cn‖U‖H0 . (4.37)
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Equation (4.34) is of the form ∂tV = LV + f . We apply Duhamel’s formula and corollary 4.6

‖L̃nU(t)‖H0 . (1 + |t− s|)‖U0‖H2neCε1/4|t−s| + ε

∫ t

s
(1 + |t− τ |)eCε1/4|t−τ |‖U(τ)‖H2nds(4.38)

. (1 + |t− s|)‖U0‖H2neCε1/4|t−s| + ε3/4
∫ t

s
e2Cε1/4|t−τ |‖U(τ)‖H2ndτ, (4.39)

where the last estimate simply follows from (1 + s)es . e2s.

We use (4.39), the bound ‖U(t)‖H0 ≤ C(1 + |t − s|)eCε1/4|t−s|‖U0‖H0 of lemma 4.5 and the
lower bound (4.37) with Gronwall’s lemma

‖U(t)‖H2n . (1 + |t− s|)eCε1/4|t−s|‖U0‖H2n + ε3/4
∫ t

s
e2Cε1/4(t−τ)‖U(s)‖H2nds,

⇒ ‖U(t)‖H2n . (1 + |t− s|)‖U0‖H2neC(ε1/4+ε3/4)|t−s|.

For ε small ε3/4 + ε1/4 = O(ε1/4) and the proof is complete.

5 Construction of an approximate solution

We construct here an approximate solution V a close to the multi-soliton and such that the
error ∂tV

a−J∂xδH[V a] is rapidly decaying in t. It is done with Newton’s algorithm, initialized
with S as the first approximate solution.

Theorem 5.1. For any n ∈ N, ε > 0, Ce > 0, there exists A0 such that for A ≥ A0, there
exists Ua ∈ L∞

t Hn, α > 0 such that

∀ t ≥ 0, ‖∂t(S + Ua)− J∂xδH[S + Ua]‖Hn ≤ εe−Cet and ‖Ua(t)‖Hn .
e−αc0t

A
.

We recall Newton’s algorithm: S0 = S, f0 = ∂tS
0 − J∂xδH[S0], η0 = 0, and recursively

ηj+1 is the solution of

{
∂tη

j+1 = J∂xδ
2H[Sj ]ηj+1 − f j,

lim
t→∞

ηj+1 = 0,

Sj+1 = Sj + ηj+1, f j+1 = ∂tS
j+1 − J∂xδH[Sj+1].

Of course since ∂tS
j+1−J∂xδH[Sj+1] = J∂xδH[Sj ]+J∂xδ

2H[Sj ]ηj+1−J∂xδH[Sj+1] we need
some Taylor expansion estimate :

Lemma 5.2. For V := S + U , (U, η) ∈ (Hn+2)2 such that ‖V ‖L∞ + ‖η‖L∞ ≤ inf ρS/2 (non
vacuum condition), then

‖J∂xδH[V + η]− J∂xδH[V ]− J∂xδ
2H[V ]η‖Hn ≤ C(‖η‖Hn+2 + ‖U‖Hn+2)‖η‖2Hn+2 ,

with C continuous.
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Proof. We set V =

(
ρ
v

)
, U =

(
r
u

)
, η =

(
γ
ω

)
.

Elementary computations lead to

J∂xδH[V + η] − J∂xδH[V ]− J∂xδ
2H[V ]η

= −∂x




γω
ω2

2
+

(
g(ρ+ γ)− g(ρ)− γg′(ρ)

)
−

(
K(ρ+ γ)−K(ρ)

)
∂2
xγ

+
(
K(ρ) + γK ′(ρ)−K(ρ+ γ)

)
∂2
xρ−

(
K ′(ρ+ γ)−K ′(ρ)

)
∂xρ∂xγ

−1
2K

′(ρ+ γ)(∂xγ)
2




.

We have using the rules in 2.2

‖∂x(γω)‖Hn+1 . ‖γ‖Hn+2‖ω‖Hn+2 ≤ ‖η‖2Hn+2 .

For the second coordinate, we only treat a few terms. Thanks to the smallness assumption in
L∞, inf ρ, inf ρ+ γ ≥ inf ρS/2 so that we can use the composition rules again

‖∂x
(
(K(ρ+ γ)−K(ρ))∂2

xγ
)
‖Hn . ‖K(ρ+ γ)−K(ρ)‖Hn+1‖γ‖Hn+3 . ‖γ‖2Hn+3 ,

‖∂x
(
K(ρ) + γK ′(ρ)−K(ρ+ γ))∂2

xρ
)
‖Hn . ‖K(ρ) + γK ′(ρ)−K(ρ+ γ)‖Hn+1‖r‖Hn+3

. ‖γ‖2Hn+2 .

After similar estimates for the other terms, we end up with

‖J∂xδH[U + η]− J∂xδH[U ]− J∂xδ
2H[U ]η‖Hn . ‖ω‖2Hn+2 + ‖γ‖2Hn+3 = ‖η‖2Hn+2 .

Proof of theorem 5.1. We fix some k ∈ N large, and iterate Newton’s algorithm k times.
The proof is divided in the following steps : 1. Control of f0, 2. Control of η1, 3. Iteration
argument.
Step 1: Control of f0. We use the partition of unity (4.14):

∂tS − J∂xδH[S] =
∑

j,k, j 6=k

χ2
jJ∂xδH[Vk] +

∑

j

χ2
jJ∂x

(
δH[Vj ]− δH

[
S
])
.

We set Vj =

(
ρj
vj

)
, S =

(
ρS
vS

)
, and explicit the second term

δH[Vj ]− δH[S] =




−(ρS − ρj)vj − ρS(vS − vj)

(uS − uj)(uj + uS) +
(
K(ρj)−K(S)

)
∂2
xρj

+K
(
S
)
∂2
x

(
ρj − S

)

+1
2K

′(ρj)(∂xρj)
2 − 1

2K
′(S)(∂xS)

2


 .

Since all terms are smooth and spatially decorrelated, they are small and exponentially decaying
in t for any Sobolev norms, for example
∥∥∥∥χj∂x

(
(K(ρj)−K(ρS))∂

2
xρj

)∥∥∥∥
H2n+2k

. ‖∂xρj‖H2n+2(k+1)‖K(ρj)−K(S)‖H2n+2k+1(supp(χj))

.
e−αc0t

A
.
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With similar computations, we find the existence of C0 only depending on S, n, k such that

‖f0‖H2n+2k ≤ C0
e−αc0t

A
.

Step 2: Control of η1 and η2. At this point some care with the constants is required. We
denote Rη the resolvent operator associated to J∂xδ

2H[S + η]. Following the notation and
result of theorem 4.7, we set Ce = maxn≤p≤n+k Ce,p. There exists a constant CR such that for
1 ≤ l ≤ k, under the conditions

Ce(1/A+ ‖η‖X2n+2l )1/4 ≤ αc0/4, 1/A+ ‖η‖X2n+2l ≤ min
1≤j≤k

εn+j , (5.1)

and using tet ≤ e2t then

‖Rη(t, s)‖L(H2n+2l) ≤ C(1 + |t− s|)eαc0|t−s|/4 ≤ CRe
αc0|t−s|/2. (5.2)

According to lemma 5.2, there exists CTayl such that for

j ≤ n+ k, η ∈ H2j+2, U ∈ H2j+2, V = S + U, ‖η‖L∞ + ‖U‖L∞ ≤ inf S/2, (5.3)

⇒ ‖J∂xδH[V + η]− J∂xδH[V ]− J∂xδ
2H[V ]η‖H2j ≤ CTayl‖η‖2H2j+2 . (5.4)

With these notations we bound η1 using the Duhamel formula,

η1 =

∫ ∞

t
R0(t, s)f

0(s)ds,

⇒ ‖η1‖H2n+2k ≤
∫ ∞

t
C0CRe

αc0
2

|t−s| e
−αc0s

A
ds =

2C0CR

Aαc0
e−αc0t.

We define δ = 2C0CR/(Aαc0), which can be as small as needed.
To bound f1 = J∂xδH[S]+J∂xδH[S]η1 −J∂xδH[S + η1] we can use estimate (5.4) (note that
up to decreasing min1≤j≤k εn+j , condition (5.1) is stronger than (5.3))

‖f1‖H2n+2(k−1) ≤ CTaylδ
2e−2αc0t.

Next to use the resolvent estimate (5.2), we need to bound ‖η1‖X2n+2(k−1) . This is done thanks
to a general estimate : if ∂tη = J∂xδH[S + U ]η + f , then using (4.35)

∀N ≥ 2, ‖∂tη‖HN−2 ≤ CX,N (‖U‖HN )‖η‖HN + ‖f‖HN−2 . (5.5)

We define CX = max
1≤j≤k

CX,2n+2j(εn+j). Since ∂tη
1 = J∂xδ

2H[S]η1 − f0, (5.5) gives

‖∂tη1‖H2n+2(k−1) ≤ CX‖η1‖H2n+2k +
C0e

−αc0t

A
≤ CXδ +

C0

A
.

In particular, ‖η1‖X2n+2(k−1) ≤ (CX + 1)δ + C0/A. Therefore (up to increasing A) condition
(5.1) is satisfied (with l = k), Duhamel’s formula gives again

‖η2‖H2n+2(k−1) ≤
∫ ∞

t
CRCTaylδ

2eαc0|t−s|/2e−2αc0sds ≤ CRCTaylδ

αc0
δe−2αc0t := qδe−2αc0t.
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We note for later use that for A large enough, we have q ≤ 1/2 so that
∑

j≥0 q
j ≤ 1.

Step 3. Induction. Assume we have constructed (ηi)1≤i≤j for some j < k, with

‖η1‖H2n+2k ≤ δe−αc0t, ∀ i ≥ 2, ‖ηi‖H2n+2(k−i+1) ≤ q2
i−1

δe−2i−1αc0t.

In particular, ‖∑j
1 η

i‖H2n+2(k−i+1) ≤ 2δ and from (5.4)

∀ 1 ≤ i ≤ j, ‖f i(t)‖H2n+2(k−i) ≤ CTaylq
2iδ2e−2iαc0t.

Estimating ∂tη
i as for ∂tη

1 we have

∥∥∥∥∂t(
j∑

i=1

ηi)

∥∥∥∥
H2n+2(k−j)

≤
j∑

i=1

CX‖ηi‖H2n+2(k−i+1) + ‖f i−1‖H2n+2(k−i) ≤ 2CXδ + 2CTaylδ
2 +

C0

A
,

therefore ‖∑j
1 η

i‖X2n+2(k−j) ≤ 2(CX + 1)δ + 2CTaylδ
2 + C0/A, and the smallness conditions

(5.1) are satisfied (with l = k − j) for A large enough independent of j.
We can use the uniform resolvent estimate (5.2) and Taylor estimate (5.4) as for the construc-
tion of η2

‖ηj+1‖H2n+2(k−j) ≤
∫ ∞

t
CRCTaylq

2jδ2eαc0|t−s|/2e−2jαc0sds ≤ q2
j
δe−2jαc0t.

By induction, we obtain (ηj)1≤j≤k, the function Ua
∑k

1 η
j is sufficient to end the proof since

by construction and estimate (5.4)

∂t(S +
k∑

1

ηj) = J∂xδH[S +
k∑

1

ηj ] + fk, with ‖fk‖H2n ≤ CTaylq
2kδe−2kt,

so that the remainder fk is as small and rapidly decreasing as required for k large enough.

6 Proof of the main result

This section is a compactness argument. Let V a =

(
ρa

va

)
= S+Ua be an approximate solution

given by theorem 5.1 with Ua ∈ H2n+2 and n, ε, Ce to choose later. Define V k the solution of
(1.1) with Cauchy data V k(k) = V a(k). According to the energy estimate of proposition 3.1,
we have for ∆Uk := V k − V a

∣∣∣∣
d

dt
‖̃∆Uk‖H2n

∣∣∣∣ ≤ C
(
‖∆Uk‖H2n + ‖Ua‖H2n+2 + ‖1/ρk + 1/ρa‖L∞

)(
‖̃∆Uk‖H2n + εe−Cet

)
.

Let m = inf
(x,t)∈R×R+

ρa, we pick ε such that ‖̃∆Uk‖H2n < 2ε ⇒ inf ρk ≥ m/2, and ‖∆Uk‖H2n ≤

C1‖̃∆Uk‖H2n . Set C = C(2C1ε+ ‖Ua‖H2n+2 +3/m), and fix Ce ≥ 2C. We can assume C ≥ 1.
Since ∆Uk(k) = 0, the energy estimate backwards in time gives (as long as ‖U(t)‖H2n ≤ 2ε)

d

dt

(
eCt‖̃∆Uk‖H2n

)
≥ −εe−(Ce−C)t ⇒ ‖̃∆Uk(t)‖2H2n ≤ ε

Ce − C
e−Cet ≤ εe−Cet.
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From a (backwards) continuation argument, the solution is well defined on [0, k] for ε small
enough, and independently of k

∀ 0 ≤ t ≤ k, ‖∆Uk(t)‖H2n ≤ C1εe
−Cet.

For n large (actually n = 2 is enough), we have from the equation ∂tV
k ∈ Cb(R+,H2n−2),

indeed we recall that ∂xS is smooth and rapidly decaying:

∂tρ
k = −∂x(ρ

kuk), with ρk ∈ (ρS +H2n+1), uk ∈ (uS +H2n), thus ∂tρ
k ∈ H2n−1,

∂tu
k = −∂x

(
g(ρk) +

(uk)2

2︸ ︷︷ ︸
(uS)2+H2n

−K∂2
xρ

k

︸ ︷︷ ︸
H2n−1

− 1

2
K ′(∂xρ

k)2

︸ ︷︷ ︸
H2n

)
∈ H2n−2.

Similarly, ∂tU
a ∈ Cb(R

+,H2n). We deduce that V k−S = Ua+∆Uk is bounded in Cb([0, k],H2n)
and C1

b ([0, k],H2n−2. By weak* compactness, up to an extraction V k − S converges weakly
to some U ∈ L∞(R+,H2n). Moreover for any bounded interval J , we have the compact em-
bedding H2n−2(J) ⊂ H2n−3(J), so using the Ascoli-Arzela theorem, up to another extraction
V k − S converges to U in Cloc(R

+,H2n−2
loc ). For 2n− 3 ≥ 2 it is not hard to check that S + U

is a solution of the Euler-Korteweg system (1.1).
Now due to the uniform estimate ‖V k(t)− V a(t)‖H2n ≤ εe−Cet (t ≤ k), passing to the (weak)
limit

‖(S + U)(t) − V a(t)‖H2n ≤ εe−Cet (a.e.).

From theorem 5.1, we also know ‖V a − S‖H2n . e−αc0t

A , therefore we can conclude

lim
t→∞

‖U(t)− S(t)‖H2n = 0.

Remark 7. A priori, the pointwise H2n convergence holds only almost everywhere in t, however
using the well-posedness theorem 1.1 in [5], one can prove that U coincides with the C(R+,H2n)
solution, and by continuity the convergence holds for all t.

A Complements on traveling waves

Existence of kinks A traveling wave satisfy





−c∂xρ+ ∂x(ρv) = 0,

−c∂xv + ∂x(v
2/2) + ∂xg(ρ) = ∂x

(
K∂2

xρ+
1
2K

′(∂xρ)
2

)
.

A first integration gives





ρ(v − c) = j,
(v − c)2

2
+ g(ρ) −K∂2

xρ−
1

2
K ′(∂xρ)

2 = q.
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Assuming lim±∞ ρ = ρ±, lim±∞ v = v±, we have

j = ρ(v − c) = ρ+(v+ − c) = ρ−(v− − c), (A.1)

q =
(v − c)2

2
+ g(ρ)−K∂2

xρ−
1

2
K ′(∂xρ)

2 (A.2)

=
(v+ − c)2

2
+ g(ρ+) (A.3)

=
(v− − c)2

2
+ g(ρ−). (A.4)

This implies

q =
j2

2ρ2
+ g(ρ) −K∂2

xρ−
1

2
K ′(∂xρ)

2 =
j2

2ρ2+
+ g(ρ+) (A.5)

=
j2

2ρ2−
+ g(ρ−). (A.6)

Set f(ρ) = j2

2ρ2 − q + g(ρ), we get two conditions

f(ρ+) = f(ρ−) = 0. (A.7)

Multiplying (A.5) by ∂xρ and integrating from ρ− to ρ

1

2
K(∂xρ)

2 = −q(ρ− ρ−)−
j2

2

(
1

ρ
− 1

ρ−

)
+G(ρ) := F (ρ), (A.8)

with G the primitive of g such that G(ρ−) = 0. From this integrated momentum equation we
get one condition :

F (ρ+) = 0. (A.9)

This condition can be written only in term of ρ−, ρ+:

G(ρ+)−G(ρ−)

ρ− − ρ−
=

g(ρ+)ρ+ + g(ρ−)ρ−
ρ+ + ρ−

. (A.10)

Lastly according to (A.2) ρ satisfies the following system of ODE

{ √
K∂xρ = w√
K∂xw = j2/2ρ2 + g(ρ) − q,

up to a change of variable it is hamiltonian (with energy F (ρ)) therefore steady states can only
be centers or saddles, and a traveling wave connects two saddle points. So (ρ±, 0) should be a
saddle point, which leads to a last condition: the characteristic equation at (ρ±, 0) is

λ2 + j2/ρ3± − g′(ρ±) = 0,

and the roots in λ are real with opposite sign under the condition

j2 < ρ3±g
′(ρ±) ⇔ (v± − c)2 < ρ±g

′(ρ±) ⇔ f ′(ρ±) > 0. (A.11)
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(we will see several interpretations of this condition). Conversely, assume (A.7),(A.9),(A.11)
are satisfied, and that f only changes sign once on (ρ−, ρ+). Due to (A.7), (A.11), f ′(ρ± > 0
thus f must be positive then negative on (ρ−, ρ+), and from (A.9), F remains positive on
(ρ−, ρ+), but vanishes at second order at ρ±. The existence of a kink then just follows from
the integration of ±

√
K∂xρ/

√
2F (ρ) = 1 (with a choice of sign adapted to the one of ρ−−ρ+).

To summarize, provided this equation is satisfied c is a free parameter, and either ρ+ or ρ− is
used to fully parametrize the traveling waves. Kinks should thus form locally two dimensional
manifolds.

Remark 8. As the construction of the profile ρ depends on (v+−c)2, we can assume c−v+ > 0.

The speed of kinks, some geometry The momentum equation is

j2

2ρ2
− j2

2ρ2+
+ g(ρ) = K∂2

xρ+
1

2
K ′(∂xρ)

2,

⇒ −j2(ρ− ρ+)
2

2ρρ2+
+G(ρ) =

1

2
K(∂xρ)

2 ≥ 0. (A.12)

Letting x → ±∞, from the sign condition we find again (A.11)

j2

ρ3±
=

(v± − c)2

ρ±
≤ g′(ρ±). (A.13)

This inequality gives a geometric interpretation of (A.7), that we rewrite

g(ρ−) =
−j2

2ρ2−
+ q, g(ρ+) =

−j2

2ρ2+
+ q,

meaning that ρ± are intersection points of the curves g,−j2/2ρ2 + q, and conditions (A.11)
mean that the curves intersect transversally at ρ±. Condition (A.9) means that the total signed
area between the two curves from ρ− to ρ+ must be zero. See figure A. When g follows a Van
Der Waals law, such conditions can be met we refer to [5] for some relevant examples.

The dimension of families of kinks. There exists a kink provided equations (A.7), (A.9)
are met ((A.11) is open and therefore plays no role for the dimension), namely

f(ρ+) = f(ρ−) =

∫ ρ+

ρ−

f(ρ)dρ = 0, where f depends on ρ±, c, j, q.

Consider the application ϕ : (ρ±, j, q, c) →




f(ρ+)
f(ρ−)∫ ρ+

ρ−
f(ρ)dρ


, we have

Dϕ =



−j2/ρ3− + g′(ρ−) 0 j/ρ2− −1 0

0 −j2/ρ3+ + g′(ρ+) j/ρ2+ −1 0

−f(ρ−) f(ρ+)
j2

2 (1/ρ− − 1/ρ+) ρ− − ρ+ 0




=



−j2/ρ3− + g′(ρ−) 0 j/ρ2− −1 0

0 −j2/ρ3+ + g′(ρ+) j/ρ2+ −1 0

0 0 j2

2 (1/ρ− − 1/ρ+) ρ− − ρ+ 0


 .
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Figure 1: Full line g, dashed line −j2/(2ρ2) + q, the two shaded areas should be equal.

According to the sign condition (A.11), in the generic case −j2/ρ3± + g′(ρ±) > 0, so the rank
of the matrix is three and the kinks form a manifold of dimension two.

The case of solitons Kinks can not provide a nontrivial soliton in the limit ρ− → ρ+, indeed
kinks are monotonous therefore the “soliton” limit of a kink is actually a constant solution.
Nevertheless, the construction of solitons follows the same lines. We denote ρ+ = lim±∞ ρ.
Since g is a primitive of g′, we can assume g(ρ+) = 0. Equation (A.7) gives

f(ρ+) =
j2

2ρ2+
− q = 0 ⇒ f(ρ) =

j2

2ρ2
− j2

2ρ2+
+ g(ρ).

Then (A.9) is free so

1

2
K(ρ′)2 =

−j2

2ρρ2+
(ρ+ − ρ)2 +G(ρ) =

−(c− v+)
2

2ρ
(ρ+ − ρ)2 +G(ρ). (A.14)

For j2 < ρ3+g
′(ρ+) ⇔ (v+ − c)2 < ρ+g

′(ρ+), we can define

ρm = sup

{
ρ < ρ+ :

−j2

2ρρ2+
(ρ+ − ρ)2 +G(ρ) = 0

}
.

From basic ODE arguments, there exists a homoclinic orbit to ρ+ with minimal value ρm; a
“bubble” decreasing from ρ+ to ρm then increasing back to ρ+.

Remark 9. We recall that a kink of speed ck and right endstate (ρ+, v+) satisfies (v+ − ck)
2 <

ρ+g
′(ρ+), and since its construction depends on (v+−ck)

2 rather than v+−ck, we may assume
ck−v+ ≥ 0. In particular since there exists solitons of speed cs with (v+−cs)

2 arbitrarily close
to ρ+g

′(ρ+), there always exists solitons faster than the kink and sharing the same endstate.



A COMPLEMENTS ON TRAVELING WAVES 27

Existence of kink-stable solitons configuration According to remark 9, given a kink
with right endstate (ρ+, v+), there exists solitons with same endstate and larger speed satisfying
c− v+ > 0. We are left to check wether such solitons are stable.
We assume here that the asymptotic state (ρ+, v+) is fixed, so that solitons only depend on
the speed c, and we also assume g′′(ρ+) ≥ 0 (this is true for the Van Der Waals case).
For consistency, we first prove that the stability condition dP/dc < 0 is indeed equivalent to
the stability condition of Benzoni et al[5]. To do so, we recall the definition of momentum of
instability from [5]. The equations satisfied by a soliton are

{
−c(v − v+) + v2/2 + g(ρ) −K∂2

xρ− 1
2K

′(∂xρ)
2 = v2+/2 + g(ρ+),

−c(ρ− ρ+) + ρv = ρ+v+.

Defining H =
1

2

∫
ρv2 − ρ+v

2
+ + K(∂xρ)

2 + 2G(ρ)dx, and recalling P =
∫
(ρ − ρ+)(v − v+),

they can be expressed in an abstract way

δH − cδP =
(
u2+/2 + g(ρ+)

)
δP1 + ρ+v+δP2 := λ1δP1 + λ2δP2, (A.15)

where P1 =
∫
ρ− ρ+dx, P2 =

∫
v − v+dx. The momentum of instability is then

m(c) = H − cP − λ1P1 − λ2P2, (A.16)

and the stability condition of [5] is m′′(c) > 0.

Lemma A.1. The condition m′′(c) > 0 is equivalent to

dP

dc
=

d

dc

∫

R

(ρ− ρ+)
2

ρ
(c− v+)dx < 0. (A.17)

Proof. Denote ′ the derivative with respect to c, using (A.15) we have

m′(c) = H ′ − cP ′ − P − λ1P
′
1 − λ2P

′
2 = −P, (A.18)

We differentiate again and use the identity ρ(v − c) = ρ+(v+ − c)

m′′(c) = −P ′ = − d

dc

∫

R

(ρ− ρ+)(v − v+)dx

= − d

dc

∫

R

(ρ− ρ+)
2

ρ
(c− v+)dx.

The condition m′′ > 0 gives the expected result.

The so-called transonic limit corresponds to j2/ρ2+ = (v+ − c)2 → ρ+g
′(ρ+), so we set

j2 = ρ3+g
′(ρ+)(1− ε). From numerical computations it was conjectured in [5] that solitons are

stable in the transonic limit, and this is rigorously proved with the following result. As it gives
the existence of stable solitons with speed arbitrarily close to

√
ρ+g′(ρ+), it also provides the

existence of kink-stable soliton configurations.

Lemma A.2. For ε small enough and g′′(ρ+) > 0, “bubble” solitons of speed
√

ρ+g′(ρ+)(1− ε)
are stable.



REFERENCES 28

Proof. The condition dP/dc < 0 is equivalent to dP/dε > 0 and equation (A.14) reads

1

2
K(∂xρ)

2 = (ρ− ρ2+)

(
g′(ρ+)

2
+

g′′(ρ+)(ρ− ρ+)

6
− ρ+g

′(ρ+)(1− ε)

2ρ
+O(ρ− ρ+)

2

)

= (ρ− ρ+)
2

(
ερ+g

′(ρ+)

2ρ
+

(
g′′(ρ+)

6
+

g′(ρ+)

2ρ

)
(ρ− ρ+) +O(ρ− ρ+)

2

)

:=
ρ+g

′(ρ+)

2ρ
(ρ− ρ+)

2
(
ε+ α(ρ− ρ+)

)
+O(ρ− ρ+)

4.

Note that α > 0, in the limit ε → 0+, solitons have an amplitude ρ+ − ρm ∼ ε/α → 0, where
ρm(ε) is the minimum of ρ, and in this regime ρ′m(ε) < 0. Up to translation, we can assume
that the minimum of ρ is reached at x = 0, and ρ is strictly decreasing on (−∞, 0). Using on

x ∈ (0,∞) the change of variable ρ(x) = ρ, dx =
√

K
2F dρ we find

P = 2

∫ ρ+

ρm

(ρ− ρ+)
2(c− v+)

ρ

√
K

2F
dρ. (A.19)

As is expectable, the situation is somewhat degenerate at ε = 0, as one can check that P (c) =
P (

√
ρ+g′(ρ+)(1− ε)) = O(ε3/2). This is handled by a factorization of F (see (A.8)):

F =
ρ+g

′(ρ+)(ρ− ρ+)
2

2ρ

(
ε+

2ρG

ρ+g′(ρ+)(ρ− ρ+)2
− 1

)
:=

ρ+g
′(ρ+)(ρ− ρ+)

2

2ρ

(
ε+H(ρ)

)
.

Here H(ρ+) = 0 and by construction H(ρm(ε)) + ε = 0. The condition α > 0 implies
H ′(ρ+) > 0, so ϕ(ρ, ε) := (H + ε)/(ρ − ρm) is well defined near (ρ, ε) = (ρ+, 0), smooth and

does not cancel. To summarize, F = ρ+g′(ρ+)(ρ−ρ+)2(ρ−ρm)
2ρ ϕ(ρ, ε). Denoting δ(ε) = ρ+ − ρm,

we use the change of variables ρ = ρ+ − δr :

P = 2

∫ 1

0

δ2r2(c− v+)

ρ

√
ρK

ρ+g′(ρ+)δ2r2δ(1 − r)ϕ(r, ε)
δdr

= 2

∫ 1

0

δ3/2r(c− v+)

ρ

√
ρK

ρ+g′(ρ+)(1 − r)ϕ(r, ε)
dr.

From ρ′m(ε) < 0, ε → δ(ε) is locally invertible and the stability condition is equivalent to
dP/dδ > 0, but it is clear from the formula that

dP/dδ =
3δ1/2

2

∫ 1

0

r(c− v+)

ρ

√
ρK

ρ+g′(ρ+)(1− r)ϕ(r, ε)
dr +O(δ3/2),

which is positive for δ small enough.
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