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Résumé
Nous proposons dans cet article des algorithmes d’échan-
tillonage de distributions dont la densité est ni lisse ni
log-concave. Nos algorithmes sont basés sur la diffusion
de Langevin de la densité lissée par la régularisation de
Moreau-Yosida. Ces résultats sont ensuite appliqués pour
établir des agrégats à poids exponentiels dans un contexte
de grande dimension.

Mots Clef
Diffusion de Langevin, regularisation de Moreau-Yosida,
agrégation à poids exponentiels.

Abstract
In this paper, we propose algorithms for sampling from
the distributions whose density is non-smoothed nor log-
concave. Our algorithms are based on the Langevin dif-
fusion on the regularized counterpart of density by the
Moreau-Yosida regularization. These results are then ap-
plied to compute the exponentially weighted aggregates for
high dimensional regression.
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Langevin diffusion, Moreau-Yosida smoothing, exponen-
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1 Introduction
Consider the following linear regression

y =Xθ0 + ξ (1)

where y ∈ Rn is the response vector, X ∈ Rn×p is a
deterministic design matrix, and ξ are errors. The objective
is to estimate the vector θ0 ∈ Rp from the observations
in y. Generally, the problem (1) is either under-determined
or determined (i.e., p ≤ n), but X is ill-conditioned, and
then (1) becomes ill-posed. However, θ0 generally verifies
some notions of low-complexity. Namely, it has either a
simple structure or a small intrinsic dimension. One can
impose the notion of low-complexity on the estimators by
considering a prior promoting it.

Exponential weighted aggregation (EWA) EWA
consists to calculate the following expectation

θ̂
EWA

n =

∫
Rp
θµ̂(θ)dθ, µ̂(θ) ∝ exp (−V (θ)/β), (2)

where β > 0 is called temperature parameter and

V (θ)
def
= F (Xθ,y) +Wλ ◦D>(θ),

where F : Rn × Rn → R is a general loss function as-
sumed to be differentiable, Wλ : Rq → R ∪ {+∞} is a
regularizing penalty depending on a parameter λ > 0, and
D ∈ Rp×q a analysis operator.Wλ promotes some specific
notion of low-complexity.

Langevin diffusion The computation of θ̂
EWA

n corres-
ponds to an integration problem which becomes very in-
volved to solve analytically, or even numerically in high-
dimension. A classical approach is to approximate it using
a Markov chain Monte-Carlo (MCMC) method which
consists in sampling from µ by constructing a Markov
chain via the Langevin diffusion process, and to compute
sample path averages based on the output of the Markov
chain. A Langevin diffusion L in Rp, p ≥ 1 is a homoge-
neous Markov process defined by the stochastic differential
equation (SDE)

dL(t) =
1

2
ρ(L(t))dt+ dW (t), t > 0, L(0) = l0, (3)

where ρ = ∇ logµ, µ is everywhere non-zero and sui-
tably smooth target density function on Rp, W is a p-
dimensional Brownian process and l0 ∈ Rp is the initial
value. Under mild assumptions, the SDE (3) has a unique
strong solution and, L(t) has a stationary distribution with
density µ. This opens the door to approximating integrals∫
Rp f(θ)µ(θ)dθ, where f : Rp → R, by the average value

of a Langevin diffusion, i.e., 1
T

∫ T
0
f(L(t))dt for a large

enough T . In practice, we cannot follow exactly the dyna-
mic defined by the SDE (3). Instead, we must discretize it
by the forward (Euler) scheme, which reads

Lk+1 = Lk +
δ

2
ρ(Lk) +

√
δZk, t > 0, L0 = l0,

where δ > 0 is a sufficiently small constant discretization
step-size and {Zk}k are iid∼ N (0, Ip). The average value
1
T

∫ T
0
L(t)dt can then be naturally approximated via the

Riemann sum δ/T
∑bT/δc−1
k=0 Lk where bT/δc denotes the

interger part of T/δ. For a complete review about sampling
by Langevin diffusion from smooth and log-concave den-
sities, we refer the studies in [1]. To cope with non-smooth



densities, several works have proposed to replace logµ
with a smoothed version (typically involving the Moreau-
Yosida regularization) [2, 5, 3, 4].

2 Algorithm and guarantees
Our main contribution is to englarge the family of µ co-
vered in [2, 5, 3, 4] by relaxing the underlying condi-
tions. Namely, in our framework, µ is structured as µ̂
with Wλ is not necessarily differentiable nor convex. Let
Fβ = F (X·,y)/β and Wβ,λ = Wλ/β. To apply the Lan-
gevin Monte-Carlo approach, we regularizeWβ,λ by a Mo-
reau envelope defined as

γWβ,λ(u)
def
= inf

w∈Rq

∥∥w − u∥∥2
2

2γ
+Wβ,λ(w), γ > 0.

Define also the corresponding proximal mapping as

proxγWβ,λ
(u)

def
= Argmin

w∈Rq

∥∥w − u∥∥2
2

2γ
+Wβ,λ(w), γ > 0.

To establish the algorithm, let us state some assumptions.

(H.1) Wβ,λ is proper, lsc and bounded from below.

(H.2) proxγWβ,λ
is single valued.

(H.3) proxγWβ,λ
is locally Lipschitz continuous.

(H.4) ∃K1 > 0, ∀θ ∈ Rp,
〈
D>θ,proxγWβ,λ

(D>θ)
〉
≤

K(1 +
∥∥θ∥∥2

2
).

(H.5) ∃K2 > 0, ∀θ ∈ Rp, 〈θ,∇Fβ(θ)〉 ≤ K2(1 +
∥∥θ∥∥2

2
).

A large family of Wβ,λ satisfies (H.1)-(H.3). Indeed, one
can show that the functions called prox-regular (and a for-
tiori convex) functions verify these assumptions. The fol-
lowing proposition ensures differentiability of Wβ,λ and
expresses the gradient∇γWβ,λ through proxγWβ,λ

.

Proposition 2.1. Assume that (H.1)-(H.2) hold. Then
γWβ,λ ∈ C1(Rq) with∇γWβ,λ = 1

γ

(
Iq − proxγWβ,λ

)
.

Consider the Langevin diffusion L ∈ Rp defined by the
following SDE

dL(t) = −1

2
∇
(
Fβ + (γWβ,λ) ◦D>

)
(L(t))dt+dW (t),

(4)
when t > 0 and L(0) = l0. Here W is a p-dimensional
Brownian process and l0 ∈ Rp is the initial value.

Proposition 2.2. Assume that (H.1)-(H.5) hold. For every
initial point L(0) such that E

[∥∥L(0)∥∥2
2

]
< ∞, SDE (4)

has a unique solution which is strongly Markovian, non-
explosive and admits an unique invariant measure µ̂γ ∝
exp

(
−
(
Fβ(θ) + (γWβ,λ) ◦D>(θ)

))
.

The following proposition answers the natural question on
the behaviour of µ̂γ − µ̂ as a function of γ.

Proposition 2.3. Assume that (H.1) hold. Then µ̂γ
converges to µ̂ in total variation as γ → 0.

Inserting the identities of Lemma 2.1 into (4), we get

dL(t) = A(L(t))dt+ dW (t), L(0) = l0, t > 0. (5)

whereA = − 1
2

(
∇Fβ + γ−1D

(
Iq − proxγWβ,λ

)
◦D>

)
.

Consider now the forward Euler discretization of (5) with
step-size δ > 0, which can be rearranged as

Lk+1 = Lk + δA(Lk) +
√
δZk, t > 0, L0 = l0. (6)

From (6), an Euler approximate solution is defined as

Lδ(t)
def
= L0 +

∫ t

0

A(L(s))ds+
∫ t

0

dW (s)ds,

where L(t) = Lk for t ∈ [kδ, (k + 1)δ[. Observe
that Lδ(kδ) = L(kδ) = Lk, hence Lδ(t) and L(t)
are continuous-time extensions to the discrete-time chain
{Lk}k. Mean square convergence of the pathwise approxi-
mation (6) and of its first-order moment is described below.

Theorem 2.1. Assume that (H.1)-(H.5) hold, and
E
[∥∥L(0)∥∥p

2

]
<∞ for any p ≥ 2. Then∥∥E[Lδ(T )]−E [L(T )]

∥∥
2
≤ E

[
sup

0≤t≤T

∥∥Lδ(t)−L(t)
∥∥
2

]
−→
δ→0

0.

Our algorithm has been applied in several numerical pro-
blems. Figure 1 shows an application in Inpainting using
EWA with SCAD and `1,2 penalties.

FIGURE 1 – (a) : Masked image (b) : Inpainting with EWA
- `1,2. (c) Inpainting with EWA - SCAD.

Références
[1] A. S. Dalalyan. Theoretical guarantees for approxi-

mate sampling from a smooth and log-concave density.
to appear in JRSS B 1412.7392, arXiv, 2014.

[2] A. S. Dalalyan and A. B. Tsybakov. Sparse regression
learning by aggregation and langevin monte-carlo. J.
Comput. Syst. Sci., 78(5) :1423–1443, Sept. 2012.

[3] A. Durmus and E. Moulines. Non-asymptotic conver-
gence analysis for the Unadjusted Langevin Algo-
rithm. Preprint hal-01176132, July 2015.

[4] A. Durmus, E. Moulines, and M. Pereyra. Sampling
from convex non continuously differentiable functions,
when Moreau meets Langevin. hal-01267115, 2016.

[5] M. Pereyra. Proximal markov chain monte carlo algo-
rithms. Statistics and Computing, 26(4), 2016.


