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Nous proposons dans cet article des algorithmes d'échantillonage de distributions dont la densité est ni lisse ni log-concave. Nos algorithmes sont basés sur la diffusion de Langevin de la densité lissée par la régularisation de Moreau-Yosida. Ces résultats sont ensuite appliqués pour établir des agrégats à poids exponentiels dans un contexte de grande dimension.

Introduction

Consider the following linear regression

y = Xθ 0 + ξ (1) 
where y ∈ R n is the response vector, X ∈ R n×p is a deterministic design matrix, and ξ are errors. The objective is to estimate the vector θ 0 ∈ R p from the observations in y. Generally, the problem ( 1) is either under-determined or determined (i.e., p ≤ n), but X is ill-conditioned, and then (1) becomes ill-posed. However, θ 0 generally verifies some notions of low-complexity. Namely, it has either a simple structure or a small intrinsic dimension. One can impose the notion of low-complexity on the estimators by considering a prior promoting it.

Exponential weighted aggregation (EWA) EWA consists to calculate the following expectation

θ EWA n = R p θ µ(θ)dθ, µ(θ) ∝ exp (-V (θ)/β), (2) 
where β > 0 is called temperature parameter and

V (θ) def = F (Xθ, y) + W λ • D (θ),
where F : R n × R n → R is a general loss function assumed to be differentiable, W λ : R q → R ∪ {+∞} is a regularizing penalty depending on a parameter λ > 0, and D ∈ R p×q a analysis operator. W λ promotes some specific notion of low-complexity.

Langevin diffusion The computation of θ

EWA n corresponds to an integration problem which becomes very involved to solve analytically, or even numerically in highdimension. A classical approach is to approximate it using a Markov chain Monte-Carlo (MCMC) method which consists in sampling from µ by constructing a Markov chain via the Langevin diffusion process, and to compute sample path averages based on the output of the Markov chain. A Langevin diffusion L in R p , p ≥ 1 is a homogeneous Markov process defined by the stochastic differential equation (SDE)

dL(t) = 1 2 ρ(L(t))dt + dW (t), t > 0, L(0) = l 0 , (3) 
where ρ = ∇ log µ, µ is everywhere non-zero and suitably smooth target density function on R p , W is a pdimensional Brownian process and l 0 ∈ R p is the initial value. Under mild assumptions, the SDE (3) has a unique strong solution and, L(t) has a stationary distribution with density µ. This opens the door to approximating integrals R p f (θ)µ(θ)dθ, where f : R p → R, by the average value of a Langevin diffusion, i.e., 1 T T 0 f (L(t))dt for a large enough T . In practice, we cannot follow exactly the dynamic defined by the SDE (3). Instead, we must discretize it by the forward (Euler) scheme, which reads

L k+1 = L k + δ 2 ρ(L k ) + √ δZ k , t > 0, L 0 = l 0 ,
where δ > 0 is a sufficiently small constant discretization step-size and {Z k } k are iid ∼ N (0, I p ). The average value L k where T /δ denotes the interger part of T /δ. For a complete review about sampling by Langevin diffusion from smooth and log-concave densities, we refer the studies in [START_REF] Dalalyan | Theoretical guarantees for approximate sampling from a smooth and log-concave density[END_REF]. To cope with non-smooth densities, several works have proposed to replace log µ with a smoothed version (typically involving the Moreau-Yosida regularization) [START_REF] Dalalyan | Sparse regression learning by aggregation and langevin monte-carlo[END_REF][START_REF] Pereyra | Proximal markov chain monte carlo algorithms[END_REF][START_REF] Durmus | Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm[END_REF][START_REF] Durmus | Sampling from convex non continuously differentiable functions, when Moreau meets Langevin[END_REF].

Algorithm and guarantees

Our main contribution is to englarge the family of µ covered in [START_REF] Dalalyan | Sparse regression learning by aggregation and langevin monte-carlo[END_REF][START_REF] Pereyra | Proximal markov chain monte carlo algorithms[END_REF][START_REF] Durmus | Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm[END_REF][START_REF] Durmus | Sampling from convex non continuously differentiable functions, when Moreau meets Langevin[END_REF] by relaxing the underlying conditions. Namely, in our framework, µ is structured as µ with W λ is not necessarily differentiable nor convex. Let F β = F (X•, y)/β and W β,λ = W λ /β. To apply the Langevin Monte-Carlo approach, we regularize W β,λ by a Moreau envelope defined as

γ W β,λ (u) def = inf w∈R q w -u 2 2 2γ + W β,λ (w), γ > 0.
Define also the corresponding proximal mapping as

prox γW β,λ (u) def = Argmin w∈R q w -u 2 2 2γ + W β,λ (w), γ > 0.
To establish the algorithm, let us state some assumptions.

(H.1) W β,λ is proper, lsc and bounded from below.

(H.2) prox γW β,λ is single valued.

(H.3) prox γW β,λ is locally Lipschitz continuous. (H.4) ∃K 1 > 0, ∀θ ∈ R p , D θ, prox γW β,λ (D θ) ≤ K(1 + θ 2 2 ). (H.5) ∃K 2 > 0, ∀θ ∈ R p , θ, ∇F β (θ) ≤ K 2 (1 + θ 2 2 ).
A large family of W β,λ satisfies (H.1)-(H.3). Indeed, one can show that the functions called prox-regular (and a fortiori convex) functions verify these assumptions. The following proposition ensures differentiability of W β,λ and expresses the gradient

∇ γ W β,λ through prox γW β,λ . Proposition 2.1. Assume that (H.1)-(H.2) hold. Then γ W β,λ ∈ C 1 (R q ) with ∇ γ W β,λ = 1 γ I q -prox γW β,λ .
Consider the Langevin diffusion L ∈ R p defined by the following SDE

dL(t) = - 1 2 ∇ F β + ( γ W β,λ ) • D (L(t))dt+dW (t), (4 
) when t > 0 and L(0) = l 0 . Here W is a p-dimensional Brownian process and l 0 ∈ R p is the initial value. Proposition 2.2. Assume that (H.1)-(H.5) hold. For every initial point L(0) such that E L(0) 2 2 < ∞, SDE (4) has a unique solution which is strongly Markovian, nonexplosive and admits an unique invariant measure

µ γ ∝ exp -F β (θ) + ( γ W β,λ ) • D (θ) .
The following proposition answers the natural question on the behaviour of µ γ -µ as a function of γ. Proposition 2.3. Assume that (H.1) hold. Then µ γ converges to µ in total variation as γ → 0.

Inserting the identities of Lemma 2.1 into (4), we get dL(t) = A(L(t))dt + dW (t), L(0) = l 0 , t > 0. [START_REF] Pereyra | Proximal markov chain monte carlo algorithms[END_REF] where A = -1 2 ∇F β + γ -1 D I q -prox γW β,λ • D . Consider now the forward Euler discretization of (5) with step-size δ > 0, which can be rearranged as

L k+1 = L k + δA(L k ) + √ δZ k , t > 0, L 0 = l 0 . (6) 
From ( 6), an Euler approximate solution is defined as

L δ (t) def = L 0 + t 0 A(L(s))ds + t 0 dW (s)ds,
where

L(t) = L k for t ∈ [kδ, (k + 1)δ[. Observe that L δ (kδ) = L(kδ) = L k , hence L δ (t) and L(t)
are continuous-time extensions to the discrete-time chain {L k } k . Mean square convergence of the pathwise approximation (6) and of its first-order moment is described below. Our algorithm has been applied in several numerical problems. Figure 1 shows an application in Inpainting using EWA with SCAD and 1,2 penalties. 

  t)dt can then be naturally approximated via the Riemann sum δ/T T /δ -1 k=0
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 21 Assume that (H.1)-(H.5) hold, andE L(0) p 2 < ∞ for any p ≥ 2. Then E L δ (T ) -E [L(T )] 2 ≤ E sup 0≤t≤T L δ (t) -L(t) 2 -→ δ→0 0.
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