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Résumé
On s’intéresse à la résolution numérique du problème
de déconvolution sans grille pour des mesures de Ra-
don discrètes. Une approche courante consiste à intro-
duire des relaxations semidéfinies positives (SDP) du
problème variationnel associé, qui correspond ici à un
problème de minimisation de variation totale. Cepen-
dant, pour des signaux de dimension supérieure à 1,
les méthodes usuelles de points intérieurs sont peu ef-
ficaces pour résoudre le programme SDP correspon-
dant, la taille de celui-ci étant de l’ordre de f2d

c où fc
désigne la fréquence de coupure du filtre et d la di-
mension du signal. Nous introduisons en premier lieu
une version pénalisée de la formulation SDP, dont les
solutions sont de faible rang. Nous proposons ensuite
un schéma numérique basé sur l’algorithme de Frank-
Wolfe, capable d’exploiter efficacement d’une part cette
propriété de faible rang, d’autre part l’aspect convolu-
tif du problème ; notre méthode atteint ainsi un coût
de l’ordre de O(fdc log fc) par itération. Nos simula-
tions sont prometteuses, et montrent que l’algorithme
converge en k étapes, k étant le nombre de Diracs dans
la solution.

Mots-Clés déconvolution parcimonieuse ; super-
résolution ; relaxations SDP ; Frank-Wolfe

Abstract
We propose a new solver for the sparse spikes deconvo-
lution problem over the space of Radon measures. A
common approach to off-the-grid deconvolution con-
siders semidefinite (SDP) relaxations of the total vari-
ation (i.e. the total mass of the measure) minimization
problem. The direct resolution of this SDP is however
intractable for large scale settings, since the problem
size grows as f2d

c where fc is the cutoff frequency of the
filter. Our first contribution introduces a penalized for-
mulation of this semidefinite lifting, which has low-rank
solutions. Our second contribution is a conditional gra-

dient (a.k.a. Frank-Wolfe) optimization scheme with
non-convex updates. This algorithm leverages both the
low-rank and the convolutive structure of the involved
variable, resulting in an O(fdc log fc) complexity per it-
eration. Our numerical simulations are promising and
show that this algorithm converges in exactly k steps,
where k is the number of Diracs composing the solu-
tion.

Keywords sparse deconvolution; superresolution;
SDP relaxations; conditional gradient

1 Introduction
1.1 Sparse spikes deconvolution
The super-resolution problem aims at accurately recov-
ering a sparse signal from low-resolution and possibly
noisy measurements. This is an important challenge in
fields such as medical imaging, microscopy or astron-
omy, where it may be crucial to overcome the physical
limits of the resolving power of sensing devices.
Formally, we want to retrieve a d-dimensional discrete
Radon measure µ0 =

∑r
k=1 ajδxj

(aj ∈ R, xj ∈ Td)
given the discrete observations

y = Φµ0 + σw ∈ Cn,

where w is some normalized noise, and Φ is a known
filter. In this work we focus on the case where Φ is a
low-pass filter of cutoff frequency fc. In particular, for
any measure µ ∈M(Td), we have

Φµ =
∫
Td

ϕ(x)dµ(x), (1)

where ϕ(x) =
[
e2iπ〈k, x〉]

|k|6fc
.

1.2 Beurling LASSO
Although this inverse problem is severely ill-posed,
sparse estimates can be found by solving the follow-
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ing minimization problem, known as the BLASSO [5]:

µλ ∈ argmin
µ∈M(Td)

1
2λ ||y − Φµ||2 + |µ|(Td), (Pλ)

where the total variation norm is defined as

|µ|(T) = sup
{∫

T
ηdµ ; η ∈ C(T), ||η||∞ 6 1

}
,

and naturally extends the `1-norm of finite-dimensional
vectors to the continuous setting of measures. This
grid-free approach offers beneficial mathematical in-
sight on the problem, leading to sharp criteria for sta-
ble spikes recovery [2, 3, 9]. However, the infinite-
dimensionality of (Pλ) poses a numerical challenge.
The dual formulation plays an important role in the
practical resolution of the BLASSO. It aims at the re-
covery of a trigonometric polynomial Φ∗pλ where pλ is
the solution of the program

pλ = max
p∈Cnd

{
1
2 ||
y

λ
− p||2 ; ||Φ∗p||∞ 6 1

}
. (Dλ)

In the case where Φ is a low-pass filter, knowing this
dual certificate then enables accurate recovery using
root-finding techniques [3], since primal-dual optimal-
ity relations ensure that the support of µλ is contained
in the set {x ; |Φ∗pλ(x)| = 1}, see Figure 1. In prac-
tice, we recover the support by extracting the double
roots of 1− |Φ∗pλ|2. Amplitudes are then deduced us-
ing the relation Φµλ = y − λpλ (see Algorithm 2).

Figure 1 – Observations (left) and dual polynomial
ηλ = Φ∗pλ (right) for 5 Diracs (σ = 0.002, fc = 13).

1.3 Previous works
Early works on superresolution [7] considered a discrete
approximation of the problem, restraining the search to
measures located on a grid. This parameterization en-
abled the use of basis pursuit methods [4], also known
as LASSO.
However, this approximation typically leads to imper-
fect solutions for thin grids [9], and better results as
well as refined mathematical analysis are achieved us-
ing the grid-free setting. The support of the measure
may then be iteratively estimated using conditional
gradient methods [2, 1], or recovered through the dual

polynomial, which can be computed in a robust man-
ner using semidefinite relaxations [14, 3, 6].
Although we focus here on `1-regularization tech-
niques, there is also a vast literature on non-convex
superresolution schemes, such as Prony’s method [11],
MUSIC [13] or FRI-based methods [16], among others.

1.4 Contributions
This work present a novel numerical approach to the
superresolution problem. Our method mixes the afore-
mentioned conditional gradient methods with SDP re-
laxations, thus providing a fast and robust scheme.
Our first contribution introduces a penalized semidef-
inite formulation of (Pλ) with low-rank solutions that
is suitable for conditional gradient schemes. We study
the sensitivity of this relaxation.
Our second contribution builds a new numerical solver
for this penalized SDP, which fully exploits the afore-
mentioned low-rank structure and the convolutive na-
ture of the problem. In particular, the main operations
are performed using Fast Fourier Transforms, thus en-
abling fast implementation for challenging settings, e.g.
superresolution on images.
In the following, although all our results are in dimen-
sion 1, the case d = 2 currently being implemented, we
present the problems in arbitrary dimension.

2 Low-rank SDP relaxation
Although (Pλ) can be used for any degradation opera-
tor Φ, we assume in the following sections that it is of
the form (1).

2.1 Theoretical background
To deal with the numerical resolution of (Pλ) or (Dλ),
it is possible to consider their semidefinite relaxations.
SDP hierarchies were introduced by Lasserre [12], and
rely on the one hand on a re-parameterization of mea-
sures in terms of moment sequences, which remedies
the infinite-dimensionality of (Pλ), and on sum-of-
squares representations of nonnegative polynomials on
the other, which allows to tackle the `∞-constraint of
(Dλ). Although the solutions of these hierarchies have
only been proven to converge weakly toward the so-
lution of their original problems, the interest of this
method comes from the fact that finite convergence is
very frequent in practice. In particular, in many in-
teresting cases, the hierarchy collapses at low order of
relaxation.
The Lasserre hierarchy was originally intended for real
measures and real polynomials, and its trigonometric
equivalent was studied by Dumitrescu [8]. The prob-
lems we introduce in the following are derived from his
results.
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2.2 SDP relaxation
The semidefinite relaxation of (Pλ) at order (m −

n+ 1) reads:

Rλ ∈ argmin
u,z,τ

h(R) def.= u0 + τ + 1
2 ||
y

λ
+ 2z||2

s.t.


(a) R =

[
R z
z∗ τ

]
� 0,

(b) R =
∑
|k|<m ukΘk,

Θk ∈ Cmd×md

(P(m)
λ )

where n = 2fc + 1, m > n, k = (k1, . . . , kd), and Θk =
Θkd
⊗ . . .⊗Θk1 . Here Θkj denotes the Toeplitz matrix

with ones on its kj-th diagonal and zeros everywhere
else, and ⊗ stands for the Kronecker product. This
formulation follows from the bounded real lemma [8].
The coefficients pλ of the dual polynomial may then
be retrieved from Rλ through the simple optimality
relation

pλ = y

λ
+ 2zλ. (2)

In 1-D, the relaxation is exact with m = n, meaning
that (P(m)

λ ) and (Pλ) have the same solution (it re-
sults from Caratheodory-Toeplitz theorem [14], or from
Fejér-Riesz theorem [8]). In dimension d > 1, the re-
laxation is not tight in the general case, but numerical
simulations tend to show that low relaxation orders are
sufficient. In particular, as mentioned in [6, Section 4],
for d = 2, the hierarchy is known to collapse, but with
no a priori information on the order m at which it oc-
curs.
As it appears, the size of the above semidefinite pro-
gram is m2d, with m > 2fc + 1. Therefore, interior
points methods are limited specifically for d > 1, or
even in 1-D for large values of fc. The algorithm we
detail in Section 4 remedies this issue.

2.3 Low-rank structure
Inspection of the proof in [14, Proposition 2.1] reveals
that (P(m)

λ ) in the univariate case (d = 1) admits a so-
lution whose rank is bounded by the number of spikes
in the measure solving (Pλ). Furthermore, this re-
sult seems to hold in the d-dimensional case [17]. Our
numerical simulations corroborate this low-rank struc-
ture, see Fig. 2.
The search space of (P(m)

λ ) may thus be restricted to
matrices of rank at most r, which would allow to store
a variable of size (md+1)×r rather than the full matrix
R. However, in terms of optimization, the intersection
between the manifold of fixed rank matrices and the
affine space defined by (b) quickly becomes unanalyz-
able when r > 1 and n > 2: for instance, rank-deficient
Toeplitz matrices of size n = 3 live in the reunion of an
affine plane and a cone. In particular, non-convex opti-
mization schemes on this search space seem difficult to

implement. Instead, we propose to smooth the geom-
etry of the problem by penalizing the affine constraint
(b).

Figure 2 – (d = 2, fc = 5 and r = 4 spikes). Singular
values of the primal (blue) and dual (black) solutions.

3 Toeplitz penalization
To overcome the difficulty induced by the affine con-
straint (b), we propose a penalized version of (P(m)

λ ):

Rλ,ρ ∈ argmin
u,z,τ

h(R) + 1
2ρ ||R−

∑
|k|<m

ukΘk||2

s.t.

 R =
[
R z
z∗ τ

]
� 0,

R,Θk ∈ Cmd×md

(P(m)
λ,ρ )

Note that this approach could equivalently be seen as
a perturbation of the atomic norm used in [14] to reg-
ularize the problem.
Obviously, the dual polynomial ηλ,ρ deriving from
(P(m)

λ,ρ ) (using relation (2) which still holds for the pe-
nalized problem) may differ from ηλ, in particular with
regard to their roots, thus compromising exact recov-
ery, see Fig. 3. However, following an approach similar
to [15], under some mild non-degeneracy hypothesis, it
is possible to show that, for small enough values of ρ,
Rλ,ρ is sufficiently close to Rλ to allow accurate sup-
port reconstruction (in particular they have the same
rank, see Fig. 4). Numerical observations confirm that
this regime exists.

4 Algorithm
In this section, we take advantage of the low-rank prop-
erty of the solutions as well as of the convolutive struc-
ture of the Toeplitz constraint to build a robust and
efficient numerical scheme for solving (P(m)

λ,ρ ).
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Figure 3 – (d = 1, r = 5, λ = 0.05 and fc = 13).
Trajectory of the roots of the polynomial 1− |ηλ,ρ|2
w.r.t. ρ. When ρ = 0 (constrained case), the support
can be recovered from double roots of unit modulus.

When ρ > 0, these roots may split, but remain
identifiable for small values of ρ.

Figure 4 – (σ = 0.005). Same example as above, with
randomized norm. Left: rank of Rλ,ρ w.r.t. ρ. We
use small perturbations around fixed positions to
study the behavior of the rank for similar signals.

Right: singular values of one of these signals w.r.t ρ
(log-scale). Values below 10−4 are taken to be zero.

In the following, we note

f(R) = u0 + τ + 1
2 ||
y

λ
+ 2z||2 + 1

2ρ ||R−
∑
|k|<m

ukΘk||2,

where the uk are a function of the coefficients of R.

4.1 Conditional gradient
Conditional gradient, aka Frank-Wolfe (FW) algo-
rithm [10], aims at minimizing a convex and contin-
uously differentiable function f over a compact con-
vex subset K of a Hilbert space. The essence of the
method is as follows: linearize f at the current posi-
tion s(k), solve the auxiliary linear problem of mini-
mizing s 7→ 〈∇f(s(k)), s〉 on K (Linear Minimization
step), and move toward the minimizer to obtain the
next position. This scheme ensures the sparsity of its
iterates, since the solution after k iterations is a convex
combination of at most k atoms.
A remarkable property of this method is that the LM
amounts to extracting an extremal point of the set K.
When the latter consists in the convex hull of an atomic

domain, this subproblem may thus be solved efficiently.
In particular, the positive semidefinite cone being gen-
erated by rank-one matrices, the LM in this case will
result in computing a leading eigenvector of ∇f , which
can be done using power iterations.

4.2 Superresolution algorithm
We propose a Frank-Wolfe scheme to minimize the
function f over the cone of positive semidefinite matri-
ces. In order to return to optimization over a compact,
we set a boundD0 on the trace of the iterates such that
trRλ,ρ 6 D0. In practice, one may choose D0 = f(0).
To take advantage of the low-rank structure of the so-
lutions, we store our iterates as R = ssH (sH being the
conjugate transpose of s). We add a non-convex cor-
rection step similar to [1], which consists in a gradient
descent on F : s 7→ f(ssH). We used a BFGS descent
in our implementation, described in Algorithm 1.

Algorithm 1 Recovering dual polynomial

set: s0 = [0 . . . 0]>,
D0 s.t. tr(s?) 6 D0 (bound on the domain)

for r = 1 : N (where N > 2fc + 1 is fixed) do
1. Compute next atom:

vr = D0 arg min||v||61 v
> · ∇f(srsHr ) · v

2. Update: ŝr+1 = [αrsr, βrvr], with
αr, βr = arg minα+β61 f(αsrsHr + βvrv

H
r )

3. Non-convex corrective step:
sr+1 = descent((s, F (s)) : s ∈ C(n+1)×(r+1))

end for
return pλ = y

λ + 2z, where
[
z
τ

]
is the last column

of sN+1s
H
N+1.

Both the positions and amplitudes of the solution may
then be recovered from the coefficients pλ. Algorithm 2
gives the main steps of the reconstruction process. To
recover the roots of ηλ,ρ which correspond to the sup-
port of the solution µλ (the true candidates), we fix a
tolerance around the unit circle in which they should
be located, for small enough values of ρ, see Fig. 3.

Algorithm 2 Reconstruction via root-finding
input: pλ coefficients of the dual polynomial
set: a tolerance ε > 0, R = roots(pλ)
- identify candidate roots:
R1← R

(
|1− |R|| < ε

)
- compute positions (angles of the roots):

Θ← sort(arg(R1))
x← 1

2πΘ(1 : 2 : end) # remove symmetric roots
- compute amplitudes:
# optimality relation
a← (Φ∗xΦx)−1Φ∗x(y − λpλ), where Φx = Φ|x

return x, a
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4.3 FFT-based computations
As mentioned in section 4.1, step 1. in Algorithm 1
simply amounts to computing a leading eigenvector of
∇f(srsHr ), using power iterations, which is based on
matrix-vector products only. Here, given the particular
form of f , the sole costly operation will consist in

(i) computing the projection of srsHr on Toeplitz (or
block-Toeplitz in d-dimensional cases) matrices,

(ii) multiply the latter with a vector.

Both steps can be done efficiently using only Fast
Fourier Transforms: indeed, the projector in (i) has
a simple factorization involving only padding, un-
padding, FFT and inverse FFT operators; on the other
hand, the Toeplitz-vector product of (ii) may be imple-
mented with the same operators, since it corresponds
to a convolution with padding.

4.4 Complexity
As we mainly implemented the 1-D setting for now, we
focus here on the complexity for the 1-D case. At step
r in algorithm 1, the iterate sr has size (n+1)×r, with
n = 2fc + 1. Step 1 is done with power iteration, us-
ing the FFT-scheme described in section 4.3, and costs
O(r·fc log fc+CPI ·fc log fc), where CPI depends on the
tolerance chosen for power iterations. The line-search
in Step 2 has a closed-form expression, hence a con-
stant cost. Finally, the complexity of BFGS iterations
in Step 3 basically reduces to the complexity necessary
to compute the gradient of F : s 7→ f(ssH). Since this
can also be done using FFT, the complexity we reach
is O(CBFGS · fc log fc).

5 Numerics
In our simulations, we fixed a limit of 500 BFGS iter-
ations, regardless of the chosen tolerance. The results
that are presented in this section were all obtained in
1-D settings.
It appears that the performance of the algorithm does
not rely on high BFGS precisions, which is why in prac-
tive we often set the tolerance to 10−2 or 10−3 for this
step, see Fig. 5.
Accurate reconstruction essentially relies on the abil-
ity to identify the correct roots among all of the roots
of ηλ,ρ. A possible way would be to use some clus-
tering algorithm to make a distinction between roots
that are sufficiently close to the unit-norm and oth-
ers. In our experiments, we set manually a confidence
interval around the unit circle (the value ε = 0.1 in Al-
gorithm 2 worked well in general, but may need to be
tuned according to the different parameters), but we
will investigate more reliable criteria in future works.
Fig. 6 measures the decay of the distance between the

Figure 5 – (r = 5, λ = 0.05, and fc = 13). Precision
on dual coefficients for noiseless (left) and noisy

(σ = 0.005, right) observations, in logarithmic scale.
In the noiseless example, a tolerance of 10−2 appears
to be sufficient. In the noisy example, lower precision
is reached, but poor resolution on BFGS is sufficient.

r-th and (r + 1)-th closest roots to the unit circle as ρ
increases for a measure with r spikes.

Figure 6 – (r = 6, fc = 13, σ = 0). We measure the
distance that separates the worst true candidate from
the closest wrong candidate, among the roots of the
dual polynomial. This is a fundamental criterion to
ensure that we recover the right number of spikes.

Note that the relation between the roots of the dual
polynomial and the rank of the matrix Rλ is unclear;
in particular the critical value ρc for which we lose
tracking of a ’good’ root is larger in practice than the
value at which the rank drops for the first time.

Finally, an important property of Algorithm 1 is that
thanks to the non-convex descent step, it has finite
convergence. Even more remarkably, convergence in k
steps when k is the number of spikes in the solution
is almost always observed with reasonable BFGS tol-
erances, and for values of ρ that are not too high, see
Fig. 7. However, when ρ tends to zero, the method
converges more slowly, and in particular the number of
BFGS iterations necessary to reach a given tolerance
greatly increases in those cases.

5



Figure 7 – (r = 5, fc = 13 and σ = 0). Up: Number
of Frank-Wolfe iterations w.r.t. log(ρ). This number
is computed as the number of iterations necessary to
reach a certain precision on either the energy or the
coefficients of the dual polynomial. For 1 6 ρ 6 200,
we see that the algorithm converged in exactly 5 steps.
Bottom: total number of BFGS iterations (summed

over all FW iterations) w.r.t. log(ρ).

6 Conclusion
The proposed algorithm, being generalizable to 2D,

opens new perspectives for the superresolution of im-
ages. Owing to its low complexity, our method scales
well with the dimension of the problem, and may yield
a good alternative to MUSIC or Prony’s method in the
bidimensional case.
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