Radiative and Ablative Studies for In-Flight Validation on Reentry Platforms

-5th PhD Symposium, VKI, 2014-

G. Bailet Aeronautics & Aerospace Dept., von Karman Institute for Fluid Dynamics

> Promotor: Ch. Laux EM2C, Ecole Centrale Paris

Supervisors: J. Muylaert (QARMAN) and T. Magin (CIFRE) Aeronautics & Aerospace Dept., von Karman Institute for Fluid Dynamics

Industrial partners (Astrium Space Transportation): Alexis Bourgoing, Franck Delattre and Coumar Oudea

Content

≻Introduction

➢QARMAN Platform

➤Spectrometer payload

Conclusion and future work

Introduction -www.qb50.eu-

Introduction -QB50-

- Study of the lower thermosphere
 - In-situ
 - 3 month duration mission
 - Network of 40 double CubeSats
 - 10 triple CubeSats for in-orbit demonstration
 - End-of-life analysis, debris
 - Formation flight
 - Micro-propulsion system
 - Micro-g experiment
 - Solar sail

•

.

- Flight demonstrator: QARMAN
 - TPS
 - Instrumentation

- Sint-Genesius-Rode, March 12th 2014 -

VON KARMAN INSTITUTE

- Sint-G

- Sint-Genesius-Rode, March 12th 2014 -

CENTRALE

VON KARMAN INSTITUTI

CINIS

-Preliminary design-

-Preliminary design-

Reference: QARMAN proposal for QB50 call					
Subsystem	Mass		Volume [10cm], [%]		
Heat Shield					
Front surface	360	20	0.63	25	
Side-Panels	217	20	n/a	0	
Functional Unit					
Structure (2U)	468	20	n/a		
OBC	161	10	0.17	10	
EPS + Batteries	248	10	0.33	25	
Solar Panels	336	5	n/a		
Communication	263	10	0.46	10	
Payloads					
Acquisition PCB	240	20	0.25	25	
Sensors	469	20	0.25	25	
AeroSDS	300	20	0.5	25	
Total	3062		2.59		

O AIRBUS

CENTRALE

VON KARMAN INSTITUTE

EM20

CNIS

-Preliminary design-

Reference: QARMAN proposal for QB50 call				
Subsystem	Mass		Volume [10cm], [%]	
Heat Shield				
Front surface	360	20	0.63	25
Side-Panels	217	20	n/a	0
Functional Unit				
Structure (2U)	468	20	n/a	
OBC	161	10	0.17	10
EPS + Batteries	248	10	0.33 n/a	25
Communication	263	10	0.46	10
Payloads				
Acquisition PCB	240	20	0.25	25
Sensors	469	20	0.25	25
AeroSDS	300	20	0.5	25
Total	3062		2.59	

-Payloads-

-What is emission spectrometry?-

-What is emission spectrometry?-

-Flight heritage-

FIRE - Flight Investigation of the Reentry Environment

Cauchon, D. L., Radiative Heating Results from the FIRE II Flight Experiment at a Re-entry Velocity of 11.4 Kilometers per Second, TM X-1402, NASA, 1967.

Data Period	Altitude / km	Velocity / km/s	
Fire I			
1	89.01 - 70.00	11.63 - 11.53	
Fire II			
1	83.75 - 69.80	11.37 – 11.30	
2	54.34 - 53.23	10.61 - 10.51	
3	41.80 - 40.75	8.20 - 7.74	

EM20

CNIS

CENTRALE

VON KARMAN INSTITUT

-Flight heritage-

-Flight heritage-

Mission	Year	Entry speed [km.s ⁻¹]	Altitude range [km]	Spectral range [nm]	Spectral resolution [nm]	Focus
FIRE I	1964	11.5	70-89	300-600	4	Coupled ablation/ radiation
FIRE II	1965	11.5	40-83	300-600	4	Coupled ablation/ radiation
BSUV I	1990	3.5	38-70	200-400	1	UV diagnostic
BSUV II (UVDE)	1991	5.1	62-110	200-400	1	UV diagnostic
Ground observations (Stardust, ATV 1 and Hayabusa)	2006 2008 2010	>12 7.8 >12	?	300-2000	0.1-20	Global observation
EXPERT	2013?	5	?	200-850	1.5	Build a database
QARMAN	2015	7.6-7.8	50-120	200-1100	0.8-1.5	

- Sint-Genesius-Rode, March 12th 2014 -

EM20

cnrs

CENTRALE

VON KARMAN INSTITUT

-Design methodology-

- Sint-Genesius-Rode, March 12th 2014 -

EM20

CNIS

CENTRALE

VON KARMAN INSTITUT

-Design methodology-

-Prediction-

- Sint-Genesius-Rode, March 12th 2014 -

von KARMAN INSTITUT

-Prediction-

between 150 and 1150 nm

AIRBUS

OD KARMAN INSTIT

-Prediction-

Emitted intensity from the stagnation line perceived by the virtual spectrometer between 20 and 2000 nm along the trajectory considering fine plasma approximation (without any filter, top curve; with 50 mm thick sapphire window, down curve)

US & SPACE

EM20

CNIS

CENTRALE

OD KARMAN INSTIT

-Prediction-

-Prediction-

-Selection methodology-

-Selection methodology-

- Sint-Genesius-Rode, March 12th 2014 -

EM20

CINIS

CENTRALE

VON KARMAN INSTITUTI

-Selection methodology-

-Selection methodology-

STS-VIS Dimensions: 40x42x24 cm³ Weight: 68 g Wavelength range: 350-800 nm Spectral resolution: 1.5 nm

Qmini Dimensions: 62x42x14.8 cm³ Weight: 57.5 g Wavelength range: 360-740 nm Spectral resolution: 0.8 nm

Qstick Dimensions: 85.7x22x10 cm³ Weight: 25 g Wavelength range: 360-740 nm Spectral resolution: 1.2 nm

EM20

CENTRALE

YOR KARMAN INSTITU

-Selection methodology-

STS-VIS Dimensions: 40x42x24 cm³ Weight: 68 g Wavelength range: 350-800 nm Spectral resolution: 1.5 nm

Suitable for the selected spectral range/resolution

Suitable for the form factor/mass requirement

Brand selected for EXPERT (RESPECT payload) mission

27

-Measurement in an ablation environment-

-Measurement in an ablation environment-

- Sint-Genesius-Rode, March 12th 2014 -

CENTRAL

YOR KARMAN INSTITUT

-Measurement in an ablation environment-

State of the art on optical path for radiation measurement on ablative TPS:

- Simple to integrate
- Mass effective
- Locally lower the heat flux with pressure oscillations in the cavity, in our case the difference is minor.

But:

Window pollution!

-Measurement in an ablation environment-

- Sint-Genesius-Rode, March 12th 2014 -

CENTRAL

VON KARMAN INSTITU

-Measurement in an ablation environment-

Adaptative optical path to the shape change of the ablative TPS

- Clean window at each measurement
- Easy calibration of the setup due to precise optical path state knowledge
- No complex pressure oscillation in front of the window interface

But:

- Optical path sizing dependent on the TPS and measurement points
- Complexity of the design, so more time demanding to convince

-Measurement in an ablation environment-

State of the art on optical path for radiation measurement on ablative TPS:

- Simple to integrate
- Mass effective
- Locally lower the heat flux with pressure oscillations in the cavity, in our case the difference is minor.

But:

Window pollution

33

-Measurement in an ablation environment-

State of the art on optical path for radiation measurement on ablative TPS:

- Simple to integrate
- Mass effective
- Locally lower the heat flux with pressure oscillations in the cavity, in our case the difference is minor.

But:

Window pollution
reduced

-Breadboard testing-

How to test on VKI's Mini torch (15kW) before final validation on VKI's Plasmatron (1.2 MW).

Sample instrumentation and the coupling system

0

AIRBUS

cnrs

CENTRALE

YOR KARMAN INSTITUT

-Breadboard testing-

-Breadboard testing-

Testing in mini-torch for debugging and final tests in plasmatron

Minitorch Test campaign Effectiveness time (ET)

- Test1: d=6mm;D=6mm;h=0mm LP ET=130s
- Test2: d=4mm;D=4mm;h=0mm ET=325s
- Test3: d=2mm;D=2mm;h=0mm ET=383s
- Test4: d=4mm;D=20mm;h=10mm ET=525s (No Extinction)
- Test5: d=2mm;D=20mm;h=10mm ET=405s (No Extinction)
- Test7: d=4mm;D=20mm;h=5mm
- Test8: d=4mm;D=10mm;h=10mm
- ET=496s (No Extinction)
- ET=440s (No Extinction)

-Breadboard testing-

Testing in mini-torch for debugging and final tests in plasmatron

Test campaign Effectiveness time (ET) Based on: d=4mm;D=20mm;h=10mm At HIGH HEATFLUX (1.5MW/m² at 100mbar)

	Heat load Test11 (368 MJ/m ²)				
\triangleright	Test11: With Kapton tape coating	ET=245s			
\triangleright	Test10: Conical with Eccoband 285 coating	ET=185s			
\triangleright	Test9: Conical	ET=190s			
\triangleright	Test6:	ET=170s			

>>> Heat load QARMAN (450 kJ/m²)

-Breadboard testing-

Temperatures within the cavities (Survivability test)

- Sint-Genesius-Rode, March 12th 2014 -

VON KARMAN INSTITUT

-Integration methodology-

-Integration methodology-

-Breadboard testing-

- Sint-Genesius-Rode, March 12th 2014 -

cnrs

VON KARMAN INSTITUT

-Breadboard testing-

- Sint-Genesius-Rode, March 12th 2014 -

CINITS

VON KARMAN INSTITUTI

-Measurement chain-

Tests done with HR4000 spectrometer

Capability to select: Int. time, start pixel and interval

Thanks to Eray Akyol and Deniz Aksulu

@ AIRBUS

CENTRAL

YOR KARMAN INSTITU

-Measurement chain-

Photodiode Circuitry for Spectrometer Triggering

Thanks to Eray Akyol and Deniz Aksulu

Distance from source(mm)

Conclusion

- Proposed design for the imbedded emission spectrometer
 Full scale test (before end of June 2014)
- Based on the preliminary investigations (decoupled approach) the spectrometer payload will provide important flight data
 - Conduct the analysis over the full trajectory and classifying the observed phenomenon by wavelength categories (by the end of March)
 - Conduct a sensitivity analysis to predict the range of scientific return (in the coming months)

Future work

- Additional decoupled study
 - Use of pyrolisis gas injection into the stagnation line (In the coming months thanks to Alessandro Turchi)
 - Comparing different models for both stagnation line code and radiation code (In the coming months)
- Coupled study (2015)
- Validating the measurement technique at VKI's and ECP's plasma torches (Partially done)

Acknowledgement

AIRBUS DEFENCE & SPACE

The research leading to these results has received funding and support from AIRBUS defence & space through the ANRT's CIFRE program

Special thanks to Mr. Alexis Bourgoing, Franck Delattre, Jean-Marc Bouilly, Marc Dormieux and Coumar Oudea

- Sint-Genesius-Rode, March 12th 2014 -

association nationale recherche technologie

Thank you for your attention

-bailet@vki.ac.be-

Breadboard testing

-Breadboard testing-

Test 1: Safety test

Test conditions:				
Power:	50% (7.5 kW)			
Mass flow:	Air at 0.6 g/s			
Pressure:	10 mbar			
Quartz tube inner diameter:	30 mm			

-PhD days, EADS Astrium-Les Mureaux, October 16th 2013

ЕМ2С

CNrs

FOR FLUID DYNAMIC

-Breadboard testing-

- Sint-Genesius-Rode, March 6th 2013 -

Calculus of the TPS recession by means of an high speed camera Credit: Bernd Helber

- Sint-Genesius-Rode, March 6th 2013 -

- Sint-Genesius-Rode, March 6th 2013 -

- Sint-Genesius-Rode, March 6th 2013 -

-Heat flux profile-

Monte Carlo simulation taking in account the different uncertainties

- Atmospheric parameters
- Aerodynamic coefficients
- Initial conditions

A scattering of ±10% on the nominal value.

Trajectory code and heat flux (Detra, Kemp and Riddell approximation) implementation validated with the literature Reference: A. Schettino, et al., "Aerodynamic and Aerothermodynamic Data Base of Expert Capsule"

-Design methodology-

-Heat flux profile-

-Thermal Protection System sizing-

-Thermal Protection System sizing-

