
HAL Id: hal-01866381
https://hal.science/hal-01866381v1

Submitted on 10 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Parameters Identification of an Industrial
Robot With and Without Payload.
Abdelkrim Bahloul, Sami Tliba, Yacine Chitour

To cite this version:
Abdelkrim Bahloul, Sami Tliba, Yacine Chitour. Dynamic Parameters Identification of an In-
dustrial Robot With and Without Payload.. 18th IFAC Symposium on System Identification,
SYSID 2018, KTH Royal Institute of Technology, Jul 2018, Stockholm, Sweden. pp.443-448,
�10.1016/j.ifacol.2018.09.185�. �hal-01866381�

https://hal.science/hal-01866381v1
https://hal.archives-ouvertes.fr


Dynamic Parameters Identification of an Industrial Robot With and Without
Payload

Authors: Abdelkrim Bahloul, Sami Tliba and Yacine Chitour

A. Bahloul, S. Tliba and Y. Chitour are with Laboratoire des Signaux et Systèmes UMR8506, Univ Paris-Sud,
CNRS, CentraleSupelec, Université Paris-Saclay, 3 rue Joliot Curie, 91192 Gif-sur-Yvette, France (corresponding
author e-mail: sami.tliba@u-psud.fr).

This work was partially supported by the ICODE institute, research project of the Idex Paris-Saclay.

Université Paris-Sud XI, UMR : Laboratoire des Signaux & Systèmes
U.F.R. des Sciences d’Orsay Projet : Robotic comanipulation

Layout by Sami TLIBA, c© septembre 2018 Type : Postprint of “2018 18th IFAC Symposium on System
Identification”

1/13

mailto:sami.tliba@u-psud.fr


Abstract

This paper brings an identified model for a 6 degrees of freedom (dof) industrial robot, the Denso VP-6242G robot,

first without payload, then with a payload. This last is composed of a force sensor fixed between a spherical handle

and the robot end-effector. This equipped end-effector is intended to experiments in the field of Physical Human-Robot

Interactions (PHRI), for co-manipulation purposes. The control algorithms that are necessary to achieve a good PHRI,

require a good knowledge of the robot dynamical model, especially the inertia matrix which should be positive definite

whatever the configuration of the robot. However, most of industrial robots are supplied without any datasheet containing

the inertial parameters nor Computer-Aided-Design (CAD) model. Hence, we propose to apply an identification proce-

dure to experimental data, based on the Inverse Dynamic model Identification Method (IDIM). To ensure the positive

definiteness of the inertia matrix, the used optimization step addresses the problem of nonlinear Weighted Least Squares

(WLS), derived from the mathematical formulation of the identification problem, under a set of nonlinear constraints in

the parameters.

keywords: Industrial Robot; Closed-Loop Identification; Constrained Optimization.

1 Introduction

In control engineering field, most of the advanced nonlinear control techniques require the knowledge of the system’s
dynamical model. It is the case for many control problems concerning industrial robot manipulators, for which good tra-
jectory tracking has to be carried out. Many works about Physical Human-Robot Interactions (PHRI) rely on the principle
of trajectory tracking, as in [Jlassi et al., 2014]. In these papers, the authors worked on the co-manipulation problem, which
consists in achieving a master-slave relationship between an industrial robot and a human operator (HO), while making the
PHRI safe and transparent for the HO. A dynamical model contains kinematic and dynamic parameters. The kinematic pa-
rameters are known as the parameters of the Modified Denavit-Hartenberg convention (MDH) [Khosla and Kanade, 1985].
It is not difficult to extract these latter based on the robot datasheet provided by the manufacturers. However, dynamic
parameters, which are inertial and friction parameters, are rarely available in such datasheet. Also, it is difficult, say
impossible, to get a Computer-Aided-Design (CAD) model in order to obtain a good approximation of some inertial pa-
rameters. Then, the use of identification techniques applied to experimental data [Walter and Pronzato, 1997] become the
only way to get a good dynamical model. This topic has received a great attention by the robotics community during
the last thirty years. Several important issues have been addressed by researchers. A non exhaustive list of issues can be
found in [Swevers et al., 2007]. Among them, the obtaining of a parametrized dynamical model is of utmost importance
because it determines the number of parameters to be estimated. This issue has raised a great number of works that has
lead the researchers to distinguish between the notions of base parameters and link inertial parameters. These keywords
were introduced in [Gautier and Khalil, 1990, Gautier, 1990]. Basically, the base parameters are a kind of parameters’
regrouping within the motion equations, that allows to formulate these motion equations as a linear relation in these pa-
rameters. This turns out to be useful when deriving an algorithm of parameters’ estimation. Another issue concerns the
experimental design, including the robot excitation [Jin and Gans, 2015]. Most of people suggested a data acquisition in
closed-loop, using a joint-position control with a simple proportional controller designed to ensure a desired trajectory
tracking. Even if the closed-loop feature creates some correlations between the noise affecting the measurements and the
other signals within the closed-loop structure, this approach turns out to be quite efficient in the parameters’ estimation if
the measured signals are well post-processed with a suitable filtering [Janot et al., 2014, Brunot et al., 2017]. The desired
trajectories are almost always taken as a sum of sinusoids with appropriate magnitudes, phases and frequencies, in order
to maximize the Signal-to-Noise-Ratio (SNR) during the acquisition and to provide a persistent excitation, which ensures
the parameters’ identifiability. Finally, the estimated parameters’ computation method is closely related to the kind of
model used for identification. The Inverse Dynamic model Identification Method (IDIM) is the most popular one since
it provides an equivalent formulation of the torques that is linear in the base parameters. Hence, the Least Squares (LS)
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algorithm can easily be performed [Swevers et al., 2007, Jin and Gans, 2015, Vuong and Jr., 2009]. Most of works have
rather used the Weighted Least Squares (WLS) technique to prevent the effects of inaccurate data. Nevertheless, there is
no guarantee that the estimated parameters lead to a positive definite inertial matrix [Yoshida and Khalil, 2000].

In this paper, we propose to combine a nonlinear WLS estimation technique under a set of nonlinear constraints in the
dynamic parameters, that ensures the inertia matrix to be positive definite. The paper is organized as follows: Section 2
introduces the basics on robot identification. It explains the used method based on a constrained nonlinear WLS. Then,
Section 3 proposes the application of this method to the Denso VP-6242G robot, in order to identify a model of the robot
with and without a payload. Finally, Section 4 concludes this paper.

2 Basics on robot identification

Consider the general case of a rigid robot composed of n revolute joints, n serial links and a fixed base. The kinematic pa-
rameters are assumed to be well known. The dynamic parameters stands for the inertial parameters of the links as defined
by [Yoshida and Khalil, 2000], and the usual Coulomb & viscous friction coefficients as indicated in [Swevers et al., 2007].
A parametric equation of motion in these parameters can be formulated, in continuous time, as:

M(q,θ)q̈+N(q, q̇,θ) = τ, (1)

where q, q̇ and q̈ denote the (n× 1) vectors of joint positions, velocities and accelerations respectively, called kinematic
joint variables. τ is the (n×1) vector of joint torques; M(q,θ) denotes the (n×n) inertia matrix which is symmetric and
positive definite; N(q, q̇,θ) is the (n× 1) vector that gathers the Coriolis, centrifugal, gravity and friction torques. Both
terms depend on the dynamic parameters’ vector denoted θ , of dimension (nθ ×1), in a linear manner. It is assumed that
all the components of q and τ are measured with noisy sensors.

2.1 Choice of the parameters for the IDIM approach

The IDIM consists in rewriting the left side of (1) as a linear relation in θ as follows:

τ = D(q, q̇, q̈)θ . (2)

where D is a (n× nθ ) matrix that only depends on the joint variables of the robot, called the measurements matrix
[An et al., 1985]. By using the same notations as [Khalil and Creusot, 1997] for the link i, we can define the following
dynamic parameters:

- xxi, xyi, xzi, yyi, yzi, zzi are the components of the inertia tensor matrix iIi around the origin Oi of the link frame Ri;

- mxi, myi, mzi are the first moments;

- mi is the mass of the link;

- Fsi, Fvi are the Coulomb and viscous friction coefficients of a friction model linear in these parameters.

The above parameters are gathered in the following vector:

θi
T =

[
xxi xyi xzi yyi yzi zzi

mxi myi mzi mi Fsi Fvi

]
.

(3)

where T denotes the transpose operator, and θ is built by concatenating the θi (i = 1, ...,n). The first ten parameters of θi

are called the inertial parameters for the link i, as indicated by [Yoshida and Khalil, 2000].
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In [Gautier and Khalil, 1990, Gautier, 1990], the authors have proposed to determine which are the parameters that
have no influence on the dynamics of the robot. They derived some rules for the regrouping of the inertial parameters
and the corresponding relationships. The regrouped inertial parameters are called minimum inertial parameters. The new
parameter vector is called the base parameter vector θB of nθB components. Relation (2) can be rewritten as

τ = DB(q, q̇, q̈)θB, (4)

where DB is a (n×nθB) matrix, with nθB < nθ .

2.2 Closed-loop data acquisition and excitation signals

For the sake of preserving the robot integrity, it is matter to drive the robot while mastering its configuration at each
sampling time, in order to avoid self collisions or collisions of the robot with its environment. Hence, a joint position
feedback control with a simple proportional controller, with suitable adjusted gains, is performed to follow a given trajec-
tory in joint space that meets some desired requirements. In identification, the choice of the excitation signal is important,
because it should allow that “all the parameters to estimate are excited”. A signal with this feature is called a Persistent
Excitation Signal (PES). A PES used to identify nθB parameters must contains at least nθB sinusoids of different frequen-
cies [Walter and Pronzato, 1997], [Gautier and Khalil, 1988], [Lennart, 1971]. In addition, the desired trajectory should
be designed so that it is periodic during a long time range with a number of period grater than n in order to allow the statis-
tical analysis of the results [Swevers et al., 2007]. Moreover, the values taken by the designed position trajectories should
comply with the robot allowable limit range of motion, and at the same time maximize the Signal-to-Noise-Ratio (SNR)
of the interesting measured signals. Such generated signals are typically used in identification as desired trajectories for
the joint positions. If the proportional gains are high enough, then the tracking errors between the measured joint positions
and the desired ones are small enough to consider them having similar properties than the desired periodic trajectories,
each trajectory being built to be a PES.

2.3 Signal processing

Because of the noises that affect the sensors, the measured data (joint torques and positions) can not be directly used
in identification because of the closed-loop feedback control that might creates correlations between the noises and the
signals of the closed-loop system. This can strongly influence the values of parameters to identify [Brunot et al., 2017].
To attenuate the undesirable effects of noise on the estimated parameters, it is matter to filter these data before their use
in the estimation procedure. This is done off-line thanks to a low-pass filter with a unit gain at low frequencies and
a frequency cut-off roughly set a decade after the highest existing frequency in the desired trajectories. To avoid the
drawbacks that are inherent to causal linear filtering, a forward plus backward filtering of the noisy data is performed to
get a zero-phase filtering of all the measurements. Furthermore, since the applied excitation signals contain many periods,
an average period of each signal is computed over all the available periods in order to reduce the computational burden
of the estimation algorithm and to provide statistical information about the estimation confidence. Given a periodic signal
in discrete time, denoted s(t), with P full periods K samples per period. The average period of s(t), denoted by s̄(t) is
computed as follow:

s̄(t) =
1
P

p=P

∑
p=1

s(t +K(p−1)). (5)

Finally, to reduce the computational burden, it may be useful to undersample the data if the sampling frequency is very
higher than the frequency bandwidth.

Let τ̂ and q̂ be the resulting joint torques and positions after applying all the signal processing steps described before;
˙̂q and ¨̂q are the resulting joint velocities and accelerations, computed by a suitable numerical differentiation of q̂ and a
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zero-phase filtering to reduce the numerical noises. Assume the data contains N samples per period for each of these
variables. These data are assumed to check the following relation at sample time t, derived from (4)

τ̂(t) = DB
(
q̂(t), ˙̂q(t), ¨̂q(t)

)
θB +ρ(t) (6)

where ρ is an (n×1) vector of error terms, gathering the noises and the unmodelled phenomena. It is assumed to have a
zero-mean, and uncorrelated samples. The sets of N samples kept after the whole signal processing described above are
used to define:

Y :=


τ̂(1)

...

τ̂(N)

, W :=


DB
(
q̂(1), ˙̂q(1), ¨̂q(1)

)
...

DB
(
q̂(N), ˙̂q(N), ¨̂q(N)

)
, R:=


ρ(1)

...

ρ(N)

 , (7)

where Y , R are (nN×1) vectors, and W is (nN×nθB) matrix. Then, by using these new variables, (6) becomes

Y = W θB +R, (8)

which is an overdeterminated set of linear equations in the unknown parameters in θB. It is worth at noting that the
conditioning number of the regressor matrix W allows to measure the sensitivity of the solution θB to the residual noises
affecting the data in τ̂ , q̂, ˙̂q and ¨̂q. Therefore, the signal processing step should reduce as much as possible this indicator
while ensuring the convergence of the identification procedure toward a vector of parameters that is unbiased and plausible
[Janot et al., 2014].

2.4 Estimation of the base parameter vector

By assuming that W is of full rank and that the components of R are independent and form a zero-mean Gaussian sequence,
an estimation θ̂B of θB can be obtained by solving the following constrained WLS optimization problem:

θ̂B = argmin
θB
‖W T

Σ
−1/2 (Y −WθB) ‖2

such that M(q̂, θ̂B) > 0.
(9)

where Σ denotes the covariance matrix of the actuator torque data, which is a block diagonal matrix composed of N

matrices of dimension (n×n) and denoted Σt . This last corresponds to the covariance matrix of the actuator torques at the
sample time t and is given by:

Σt =
1

(P−1)

P

∑
p=1

(Tp (t)− τ̄ (t))(Tp (t)− τ̄ (t))T , (10)

where Tp (t) denotes the pth period at the sample time t of the torque measurements τ , on which has been applied only the
filtering and the decimation steps of the signal processing procedure, say without the average computing one.

The problem (9) consists in minimizing the squared norm of the weighted error between the measured and computed
joint torques, under the constraint that the reconstructed inertia matrix M(q̂, θ̂B) is always positive definite, say with posi-
tive eigenvalues, whatever the robot configuration. A sufficient condition for the inertial matrix to be positive definite for
each configuration of the manipulator is given in [Yoshida and Khalil, 2000]. The authors have proved that the following
constraints on the link physical parameters for each link composing the manipulator, lead to a definite positive inertia
matrix:

mi > 0 and iIgi > 0, i = 1, . . . ,n (11)

where mi and iIgi are the mass and the inertia tensor matrix around the center of mass gi of the link i.The relation between
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iIi and iIgi is given by [Yoshida and Khalil, 2000]:

iIi = iIgi +mi
(
rT

i riE3− ri rT
i
)
, (12)

where ri =
[
xi yi zi

]T
is the vector from Oi to gi, and E3 is the (3×3) identity matrix.The link inertial parameters of

subsection 2.1 are denoted by θIi . The base parameters’ vector θB is a nonlinear function of θIi , Fsi and Fvi denoted by

θB = f
(
{θIi ,Fsi,Fvi}i=1,...,n

)
, (13)

whose expression can be derived analytically as reported in [Khalil and Creusot, 1997, Khalil et al., 2014]. Let define the
link physical parameters θPi as the elements of iIgi , ri and mi. Some elements of θIi are also in θPi (like mi). However, other
elements have a linear (like mri) or nonlinear (like iIi) relation with elements of θPi . By denoting h the general relation
derived from (12), between θIi and θPi , it comes:

θIi = h(θPi) , i = 1, . . . ,n. (14)

Using the relations (13) and (14), the base parameters’ vector θB can be rewritten as a nonlinear function, denoted by g,

of ϑi =
[
θ T

Pi
Fsi Fvi

]T
:

θB = g
(
{ϑi}i=1,...,n

)
. (15)

According to [Yoshida and Khalil, 2000], a sufficient condition to have a positive definite inertia matrix is that all mi

and iIgi contained in (15) must satisfy the conditions in (11). However, the solutions in mi and iIgi are not unique. In
[Yoshida and Khalil, 2000], they form a set of virtual parameters. The problem in (9) becomes a new Constrained WLS
(CWLS) optimization problem, in which the solution is sought by solving:

ϑ̂ = argmin
ϑ
‖W T

Σ
−1 (Y −Wg(ϑ)) ‖2

such that

{
mi > 0, iIgi > 0,

Fsi > 0, Fvi > 0, i = 1, . . . ,n

(16)

Note that iIgi > 0 is equivalent for its eigenvalues to be strictly positive. Moreover, the estimated values of Fsi and Fvi

can only be positive, that is why these constraints have been added in (16). Finally, the estimated base parameters’ vector
θ̂B is obtained by substituting the estimated vector ϑ̂ in (15). Note that, because of its nonlinear feature w.r.t. the physical
parameters, the optimization problem in (16) may contain several local minima. It should then be tackled by global
optimization solvers. The global minimum seeking may be a tedious task.

2.5 Payload parameters identification

The joint torques in Y can be seen as the sum of the ones resulting from the robot bodies Yr, and those of the robot payload
Yp [Swevers et al., 2007] (plus R the vector of unknown noises and unmodelled dynamics):

Y = Yr +Yp +R (17)

= Yr +Wpθp +R, (18)

where Wp is a (n× nθp ) regressor matrix; θp is a vector of parameters composed of the payload inertial parameters and
the variation of joints friction parameters (∆Fsi and ∆Fvi) for all the joints. Indeed, the friction parameters may change
when a payload is added to the robot [Swevers et al., 2007]. As the frame of the payload is fixed w.r.t. the last link, Wp is
composed by the columns of W which correspond to all the joint friction parameters, and to the base inertial parameters of
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the last link. Note that W is the derived regressor matrix of the robot with its payload. To identify the payload parameters,
the acquisition of two data series is necessary. The first corresponds to the robot without the payload, while the second is
acquired for the robot with its payload. The estimation of θp can be obtained by solving the following problem:

θ̂p = argmin
θp
‖W T

p Σ
−1 (Y −Yr−Wpθp) ‖2

such that

{
mp > 0, nIgp > 0,

∆Fsi > 0, ∆Fvi > 0, i = 1, . . . ,n

(19)

where Yr contains the torques data from the first data series, whereas Y and Wp contains the second data series.

2.6 Validation

To check the validity of the estimated parameters by the proposed procedure, these parameters are used to reconstruct the
joint torques and compared to the measured ones. For this purpose, the joint positions, velocities and accelerations are
used as inputs for the inverse dynamic model in (2) with the identified parameters. This validation step is necessary to
have information about the confidence intervals of the identified parameters, and at the same time about the validity of the
dynamical model of the robot.

3 Case study : Denso VP-6242G robot

3.1 Dynamic identification model of the robot

The Denso VP-6242G robot is a manipulator with six revolute joints, depicted in Figure 1. As shown in Fig. 1, the robot
end-effector can be equipped with a force sensor and a spherical handle for PHRI experiments. The dynamical model is
computed using the parameters of the Modified Denavit-Hartenberg convention (MDH) [Khalil and Kleinfinger, 1986].
Figure 2 shows the frames attached to each joint of the robot according to this convention. Table 1 shows the
MDH parameters of the Denso VP-6242G robot, extracted from Fig. 2. By using the SYMORO+ software package

Table 1: Kinematic parameters of the Denso robot
i αi di ri θi i αi di ri θi

1 0 0 l1z q1 4 −π

2
−l3x l3z + l4 q4

2
π

2
0 0 q2 +

π

2
5

π

2
0 0 q5

3 0 l2 0 q3−
π

2
6 −π

2
0 l5 q6

[Khalil and Creusot, 1997, Khalil et al., 2014] with these parameters, the dynamic model of the robot for identification
is calculated. It results in a base parameters’ vector θB of dimension (48× 1), and a regressor matrix DB of dimension
(6×48). The base parameters’ vector of the payload θp is a (19×1) vector.

3.2 Excitation signals

The used excitation signals, for each axis, have been designed as a sum of 55 basic sinusoids of same amplitudes, random
phases and different frequencies. Each resulting sum was scaled to comply with its corresponding range of joint motion
(see Table 2), set to keep the robot safe. The frequencies have been chosen to be integer multiples of a fundamental
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Figure 1: VP-6242G Denso robot.
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z5

x6

y6

z6
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(R1),(R2)

(R3)

(R4),(R5)

(R6)

C0

C1

C1

C2

C2

C3

C3

C4

C4

C5

C5

C6

Figure 2: Robot frames for MDH convention.

frequency. The number of sinusoids is greater than the number of base parameters to identify in order to obtain a PES
[Lennart, 1971]. Also, all frequencies are lower than the limit frequency, defined as follow:

fi =
Aq̇,i

2πAq,i
, (20)

where Aq,i and Aq̇,i are the maximum allowed amplitude of the joint position and velocity for the joint actuator i. The Aq,i

are determined to avoid the collisions between the robot and its environment, and the self collisions between some parts of
the robot. The Aq̇,i are derived from the actuator positioning time characteristic, that gives a relation between positioning
time and motion angle, according to the weight of the load carried by the manipulator. These excitation signals are used
as desired inputs for the robot in closed-loop, through a joint position feedback control with proportional gains. To have
a more accurate estimation, the excitation signals are created with 12 periods, with 380 sec per period. This number of
periods is greater than n = 6, which allows to compute the square root inverse of the covariance matrix. The sampling
time is 10−3 sec. The duration of one period depends on the fundamental frequency and on the limit frequency. To ensure
that the robot does not exceed the range of joint motion, the initial joint positions are set in the middle of this range. In
addition, the movement starts and stops with zero joint velocities and accelerations. For this, a phase of immobility of 4
sec is added at the beginning and at the end of the movement. During this phase, the robot remains at its initial position. A
connection phase of 5 sec is also inserted to connect the initial joint position of the robot with the excitation signals. The
total excitation time is of 4578 sec. Table 2 presents the range of the joint motion [qi,m,qi,M], the amplitudes Aq,i, Aq̇,i, the
limit frequencies fi and the proportional gain Kpi of the joint-position controller for each axis Ji.
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Table 2: Features for the excitation signals’ design

Axis [qi,m,qi,M] [◦] Aq,i [◦] Aq̇,i [◦/s] fi [Hz] Kpi

J1 [−135,+135] 135 ±168.7882 0.1989 1.2838

J2 [−45,+90] 67.5 ±126.4223 0.2981 1.6683

J3 [−90,−40] 25 ±168.3147 1.0715 4.4711

J4 [−155,+155] 155 ±202.1053 0.2075 1.3116

J5 [−90,+90] 90 ±205.1282 0.3627 1.7577

J6 [−160,+160] 160 ±203.6364 0.2025 1.6678

3.3 Data processing

First, the measurements of the joint currents and positions are recorded. To obtain joint torques, the joint currents are
multiplied by their corresponding torque constants Kci and motor gear ratios Gri , presented in table 3. Then, the data are

Table 3: Motor specifications for the studied robot
Axis J1 J2 J3 J4 J5 J6

Kci 0.38 0.38 0.22 0.21 0.21 0.21
Gri 120 160 120 100 100 100

filtered by using a low-pass Butterworth filter, with a cut-off frequency of 10 Hz, and of order 1. Joint velocities and
accelerations are computed by a suitable numerical differentiation of the filtered joint positions. To reduce possible noises
due to numerical differentiation, the velocities and accelerations signals are also filtered by the same filter. In a third step,
the data corresponding to the phases of immobility and connection are deleted. The average periodic data are computed
over the 12 periods as in (5). In the last step, since the sample frequency (103 Hz) is too high compared to the filter cutoff
frequency (10 Hz), the size of the data are reduced by an undersampling of factor 10, that makes the signals with a sample
frequency equal to 102 Hz. This frequency remains sufficiently high compared to the highest frequency contained in the
data (Table 2). Hence, the data should not be affected too much by this decimation.

A zoom between the instants 1200 and 1300 sec of the signals of measured joint position and torque, and calculated
velocity and acceleration of the joint 1, before and after filtering are shown by the figure 3 (corresponds to the robot with
the payload). We can observe that the noisy measurements are suitably filtered. We conclude that the choice of the filter
parameters (cut-off frequency and order) is good. The important error in the joint acceleration signal is interpreted by a
significant noise associated with this signal, resulting from a double differentiation of the noisy joint position measurement.
We consider that these post-processed data are ready to be used in the sequel of the identification procedure.

3.4 Parameters estimation

The regressor matrices and the torque vectors were built for the two cases: with and without the payload. We have
checked that these matrices are of full rank. In the case of the VP-6242G Denso robot, ϑ is of dimension (66×1) and ϑp

is (22×1). The estimation of the parameter vectors ϑ and ϑp consists in solving the CWLS optimization problem in (16).
For this, we used a global optimization solver of Matlab, based on its function fmincon that allows to find a minimum
solution of the CWLS problem. Table 4 shows two sets of numerical values of the base parameter vector θ̂B estimated
with and without the payload robot.
Table 5 shows numerical values of the payload base parameters, containing the variation of the joint friction coefficients.
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Figure 3: Data signals for axis 1 with and without processing: measured joint position and torque (top), and computed
joint velocity and acceleration (bottom).

3.5 Torque reconstruction

Torque reconstruction is a step for checking the validity of the estimated parameters, and at the same time the correspond-
ing dynamical model. For this, a different measurement series than the one exploited for the identification, but with the
same features, is used. We have used two ways to reconstruct the torques of the robot with the payload. The first is by
using the parameters estimated in the case of the robot with this last. The second is by using the parameters calculated
without the payload, for which we add the friction variations and payload parameters, to the friction and the 6th link
parameters, respectively. The figures in Fig. 4 show, for the six joints: the measured torques after filtering (blue); the com-
puted torques with θB found with the payload robot (green); the computed torques using θB found without the payload
robot to which is added θp (red). The figures in Fig. 4 illustrate a good quality of reconstruction of the torques. It is clear
that the reconstruction with the parameters calculated with the payload is better than the one resulting from the added
parameters, because of the number of errors sources. The dynamical model of the robot and the identified parameters can
be considered acceptable and used to apply control techniques.
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Table 4: Numerical values of θB with and without the payload.

θB Without With θB Without With θB Without With

zzr1 5.16 7.10 zzr3 3.07 4.37 xz5 0.01 −0.02

Fs1 47.44 49.74 mxr3 −4.15 −5.16 yz5 0.03 0.01

Fv1 122.89 150.81 myr3 5.76 8.77 zzr5 0.28 0.56

xxr2 −3.28 −5.96 Fs3 52.23 54.78 mx5 0.08 0.13

xy2 −1.60 −1.01 Fv3 83.55 87.92 myr5 0.40 2.12

xzr2 −1.30 −1.17 xxr4 −0.16 −0.21 Fs5 19.30 20.45

yz2 −0.85 −0.97 xy4 0.14 0.19 Fv5 24.77 29.29

zzr2 15.32 17.29 xz4 0.25 0.23 xxr6 −0.02 −0.07

mxr2 16.02 18.67 yz4 −0.03 −0.06 xy6 −0.02 0.03

my2 0.14 0.28 zzr4 0.06 0.06 xz6 −0.02 0.02

Fs2 60.72 63.64 mx4 0.29 0.30 yz6 0.00 0.00

Fv2 168.22 185.75 myr4 0.21 0.20 zz6 0.05 0.00

xxr3 7.43 9.04 Fs4 24.04 24.63 mx6 −0.02 0.10

xyr3 0.15 0.41 Fv4 19.21 21.55 my6 −0.01 −0.05

xz3 0.07 0.05 xxr5 0.05 0.22 Fs6 18.72 19.08

yz3 0.01 0.04 xy5 0.00 0.01 Fv6 11.85 15.74

Table 5: Numerical values of θp.

θp Value θp Value θp Value θp Value

∆Fs1 3.11 ∆Fv3 14.37 xxrp 2.65 mxp 0.43
∆Fv1 33.35 ∆Fs4 1 xyp −0.20 myp 0.05
∆Fs2 4.48 ∆Fv4 3.61 xzp 0.43 ∆Fs6 0.45
∆Fv2 22.26 ∆Fs5 1.68 yzp 0.05 ∆Fv6 4.62
∆Fs3 2.17 ∆Fv5 4.61 zzp 0.15

4 Conclusion

In this paper, we were interested in identifying the dynamic parameters of the industrial manipulator robot Denso VP-
6242G, with and without its handle. To this end, we have used a nonlinear weighted least squares formulation of the
identification problem under nonlinear constraints in the dynamic parameters. The identified parameters and the dynamical
model of the robot have been validated by the torque prediction approach. The identification method appeared to be
efficient in giving parameters that lead to a positive definite inertia matrix. Future works will concern the use of the
identified model of the Denso robot to achieve a PHRI for a co-manipulation purpose, as proposed in [Jlassi et al., 2014].
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