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This paper brings an identified model for a 6 degrees of freedom (dof) industrial robot, the Denso VP-6242G robot, first without payload, then with a payload. This last is composed of a force sensor fixed between a spherical handle and the robot end-effector. This equipped end-effector is intended to experiments in the field of Physical Human-Robot Interactions (PHRI), for co-manipulation purposes. The control algorithms that are necessary to achieve a good PHRI, require a good knowledge of the robot dynamical model, especially the inertia matrix which should be positive definite whatever the configuration of the robot. However, most of industrial robots are supplied without any datasheet containing the inertial parameters nor Computer-Aided-Design (CAD) model. Hence, we propose to apply an identification procedure to experimental data, based on the Inverse Dynamic model Identification Method (IDIM). To ensure the positive definiteness of the inertia matrix, the used optimization step addresses the problem of nonlinear Weighted Least Squares (WLS), derived from the mathematical formulation of the identification problem, under a set of nonlinear constraints in the parameters.

Introduction

In control engineering field, most of the advanced nonlinear control techniques require the knowledge of the system's dynamical model. It is the case for many control problems concerning industrial robot manipulators, for which good trajectory tracking has to be carried out. Many works about Physical Human-Robot Interactions (PHRI) rely on the principle of trajectory tracking, as in [START_REF] Jlassi | An event-controlled online trajectory generator based on the human-robot interaction force processing[END_REF]. In these papers, the authors worked on the co-manipulation problem, which consists in achieving a master-slave relationship between an industrial robot and a human operator (HO), while making the PHRI safe and transparent for the HO. A dynamical model contains kinematic and dynamic parameters. The kinematic parameters are known as the parameters of the Modified Denavit-Hartenberg convention (MDH) [START_REF] Khosla | Parameter identification of robot dynamics[END_REF].

It is not difficult to extract these latter based on the robot datasheet provided by the manufacturers. However, dynamic parameters, which are inertial and friction parameters, are rarely available in such datasheet. Also, it is difficult, say impossible, to get a Computer-Aided-Design (CAD) model in order to obtain a good approximation of some inertial parameters. Then, the use of identification techniques applied to experimental data [START_REF] Walter | Identification of Parametric Models from Experimetal Data[END_REF] become the only way to get a good dynamical model. This topic has received a great attention by the robotics community during the last thirty years. Several important issues have been addressed by researchers. A non exhaustive list of issues can be found in [START_REF] Swevers | Dynamic model identification for industrial robots[END_REF]. Among them, the obtaining of a parametrized dynamical model is of utmost importance because it determines the number of parameters to be estimated. This issue has raised a great number of works that has lead the researchers to distinguish between the notions of base parameters and link inertial parameters. These keywords were introduced in [Gautier and Khalil, 1990, Gautier, 1990]. Basically, the base parameters are a kind of parameters' regrouping within the motion equations, that allows to formulate these motion equations as a linear relation in these parameters. This turns out to be useful when deriving an algorithm of parameters' estimation. Another issue concerns the experimental design, including the robot excitation [Jin and Gans, 2015]. Most of people suggested a data acquisition in closed-loop, using a joint-position control with a simple proportional controller designed to ensure a desired trajectory tracking. Even if the closed-loop feature creates some correlations between the noise affecting the measurements and the other signals within the closed-loop structure, this approach turns out to be quite efficient in the parameters' estimation if the measured signals are well post-processed with a suitable filtering [Janot et al., 2014, Brunot et al., 2017]. The desired trajectories are almost always taken as a sum of sinusoids with appropriate magnitudes, phases and frequencies, in order to maximize the Signal-to-Noise-Ratio (SNR) during the acquisition and to provide a persistent excitation, which ensures the parameters' identifiability. Finally, the estimated parameters' computation method is closely related to the kind of model used for identification. The Inverse Dynamic model Identification Method (IDIM) is the most popular one since it provides an equivalent formulation of the torques that is linear in the base parameters. Hence, the Least Squares (LS) algorithm can easily be performed [START_REF] Swevers | Dynamic model identification for industrial robots[END_REF], Jin and Gans, 2015, Vuong and Jr., 2009]. Most of works have rather used the Weighted Least Squares (WLS) technique to prevent the effects of inaccurate data. Nevertheless, there is no guarantee that the estimated parameters lead to a positive definite inertial matrix [START_REF] Yoshida | Verification of the positive definiteness of the inertial matrix of manipulators using base inertial parameters[END_REF].

In this paper, we propose to combine a nonlinear WLS estimation technique under a set of nonlinear constraints in the dynamic parameters, that ensures the inertia matrix to be positive definite. The paper is organized as follows: Section 2 introduces the basics on robot identification. It explains the used method based on a constrained nonlinear WLS. Then, Section 3 proposes the application of this method to the Denso VP-6242G robot, in order to identify a model of the robot with and without a payload. Finally, Section 4 concludes this paper.

Basics on robot identification

Consider the general case of a rigid robot composed of n revolute joints, n serial links and a fixed base. The kinematic parameters are assumed to be well known. The dynamic parameters stands for the inertial parameters of the links as defined by [START_REF] Yoshida | Verification of the positive definiteness of the inertial matrix of manipulators using base inertial parameters[END_REF], and the usual Coulomb & viscous friction coefficients as indicated in [START_REF] Swevers | Dynamic model identification for industrial robots[END_REF].

A parametric equation of motion in these parameters can be formulated, in continuous time, as:

M(q, θ ) q + N(q, q, θ ) = τ, (1) 
where q, q and q denote the (n × 1) vectors of joint positions, velocities and accelerations respectively, called kinematic joint variables. τ is the (n × 1) vector of joint torques; M(q, θ ) denotes the (n × n) inertia matrix which is symmetric and positive definite; N(q, q, θ ) is the (n × 1) vector that gathers the Coriolis, centrifugal, gravity and friction torques. Both terms depend on the dynamic parameters' vector denoted θ , of dimension (n θ × 1), in a linear manner. It is assumed that all the components of q and τ are measured with noisy sensors.

Choice of the parameters for the IDIM approach

The IDIM consists in rewriting the left side of (1) as a linear relation in θ as follows:

τ = D(q, q, q)θ . ( 2 
)
where D is a (n × n θ ) matrix that only depends on the joint variables of the robot, called the measurements matrix [START_REF] An | Estimation of inertial parameters of rigid body links of manipulators[END_REF]. By using the same notations as [START_REF] Khalil | Symoro+: A system for the symbolic modelling of robots[END_REF] for the link i, we can define the following dynamic parameters:

xx i , xy i , xz i , yy i , yz i , zz i are the components of the inertia tensor matrix i I i around the origin O i of the link frame R i ; -mx i , my i , mz i are the first moments;

m i is the mass of the link; -Fs i , Fv i are the Coulomb and viscous friction coefficients of a friction model linear in these parameters.

The above parameters are gathered in the following vector:

θ i T = xx i xy i xz i yy i yz i zz i mx i my i mz i m i Fs i Fv i .
(

) 3 
where T denotes the transpose operator, and θ is built by concatenating the θ i (i = 1, ..., n). The first ten parameters of θ i are called the inertial parameters for the link i, as indicated by [START_REF] Yoshida | Verification of the positive definiteness of the inertial matrix of manipulators using base inertial parameters[END_REF].

In [Gautier and Khalil, 1990, Gautier, 1990], the authors have proposed to determine which are the parameters that have no influence on the dynamics of the robot. They derived some rules for the regrouping of the inertial parameters and the corresponding relationships. The regrouped inertial parameters are called minimum inertial parameters. The new parameter vector is called the base parameter vector θ B of n θ B components. Relation (2) can be rewritten as

τ = D B (q, q, q)θ B , (4) 
where D B is a (n × n θ B ) matrix, with n θ B < n θ .

Closed-loop data acquisition and excitation signals

For the sake of preserving the robot integrity, it is matter to drive the robot while mastering its configuration at each sampling time, in order to avoid self collisions or collisions of the robot with its environment. Hence, a joint position feedback control with a simple proportional controller, with suitable adjusted gains, is performed to follow a given trajectory in joint space that meets some desired requirements. In identification, the choice of the excitation signal is important, because it should allow that "all the parameters to estimate are excited". A signal with this feature is called a Persistent Excitation Signal (PES). A PES used to identify n θ B parameters must contains at least n θ B sinusoids of different frequencies [START_REF] Walter | Identification of Parametric Models from Experimetal Data[END_REF], [Gautier and Khalil, 1988], [Lennart, 1971]. In addition, the desired trajectory should be designed so that it is periodic during a long time range with a number of period grater than n in order to allow the statistical analysis of the results [START_REF] Swevers | Dynamic model identification for industrial robots[END_REF]. Moreover, the values taken by the designed position trajectories should comply with the robot allowable limit range of motion, and at the same time maximize the Signal-to-Noise-Ratio (SNR)

of the interesting measured signals. Such generated signals are typically used in identification as desired trajectories for the joint positions. If the proportional gains are high enough, then the tracking errors between the measured joint positions and the desired ones are small enough to consider them having similar properties than the desired periodic trajectories, each trajectory being built to be a PES.

Signal processing

Because of the noises that affect the sensors, the measured data (joint torques and positions) can not be directly used in identification because of the closed-loop feedback control that might creates correlations between the noises and the signals of the closed-loop system. This can strongly influence the values of parameters to identify [Brunot et al., 2017].

To attenuate the undesirable effects of noise on the estimated parameters, it is matter to filter these data before their use in the estimation procedure. This is done off-line thanks to a low-pass filter with a unit gain at low frequencies and a frequency cut-off roughly set a decade after the highest existing frequency in the desired trajectories. To avoid the drawbacks that are inherent to causal linear filtering, a forward plus backward filtering of the noisy data is performed to get a zero-phase filtering of all the measurements. Furthermore, since the applied excitation signals contain many periods, an average period of each signal is computed over all the available periods in order to reduce the computational burden of the estimation algorithm and to provide statistical information about the estimation confidence. Given a periodic signal in discrete time, denoted s(t), with P full periods K samples per period. The average period of s(t), denoted by s(t) is computed as follow:

s(t) = 1 P p=P ∑ p=1 s(t + K(p -1)). (5) 
Finally, to reduce the computational burden, it may be useful to undersample the data if the sampling frequency is very higher than the frequency bandwidth.

Let τ and q be the resulting joint torques and positions after applying all the signal processing steps described before; q and q are the resulting joint velocities and accelerations, computed by a suitable numerical differentiation of q and a Université Paris-Sud XI UFR des Sciences d'Orsay
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τ(t) = D B q(t), q(t), q(t) θ B + ρ(t) (6)
where ρ is an (n × 1) vector of error terms, gathering the noises and the unmodelled phenomena. It is assumed to have a zero-mean, and uncorrelated samples. The sets of N samples kept after the whole signal processing described above are used to define:

Y :=     τ(1) . . . τ(N)     , W :=     D B q
(1), q(1), q(1) . . .

D B q(N), q(N), q(N)     , R:=     ρ(1) . . . ρ(N)     , (7) 
where Y , R are (n N × 1) vectors, and W is (n N × n θ B ) matrix. Then, by using these new variables, (6) becomes

Y = W θ B + R, (8) 
which is an overdeterminated set of linear equations in the unknown parameters in θ B . It is worth at noting that the conditioning number of the regressor matrix W allows to measure the sensitivity of the solution θ B to the residual noises affecting the data in τ, q, q and q. Therefore, the signal processing step should reduce as much as possible this indicator while ensuring the convergence of the identification procedure toward a vector of parameters that is unbiased and plausible [Janot et al., 2014].

Estimation of the base parameter vector

By assuming that W is of full rank and that the components of R are independent and form a zero-mean Gaussian sequence, an estimation θB of θ B can be obtained by solving the following constrained WLS optimization problem:

θB = arg min θ B W T Σ -1/2 (Y -W θ B ) 2 such that M( q, θB ) > 0. ( 9 
)
where Σ denotes the covariance matrix of the actuator torque data, which is a block diagonal matrix composed of N matrices of dimension (n × n) and denoted Σ t . This last corresponds to the covariance matrix of the actuator torques at the sample time t and is given by:

Σ t = 1 (P -1) P ∑ p=1 (T p (t) -τ (t)) (T p (t) -τ (t)) T , (10) 
where T p (t) denotes the p th period at the sample time t of the torque measurements τ, on which has been applied only the filtering and the decimation steps of the signal processing procedure, say without the average computing one.

The problem (9) consists in minimizing the squared norm of the weighted error between the measured and computed joint torques, under the constraint that the reconstructed inertia matrix M( q, θB ) is always positive definite, say with positive eigenvalues, whatever the robot configuration. A sufficient condition for the inertial matrix to be positive definite for each configuration of the manipulator is given in [START_REF] Yoshida | Verification of the positive definiteness of the inertial matrix of manipulators using base inertial parameters[END_REF]. The authors have proved that the following constraints on the link physical parameters for each link composing the manipulator, lead to a definite positive inertia matrix:

m i > 0 and i I g i > 0, i = 1, . . . , n (11) 
where m i and i I g i are the mass and the inertia tensor matrix around the center of mass g i of the link i.The relation between i I i and i I g i is given by [START_REF] Yoshida | Verification of the positive definiteness of the inertial matrix of manipulators using base inertial parameters[END_REF]]:

i I i = i I g i + m i r T i r i E 3 -r i r T i , (12) 
where r i = x i y i z i T is the vector from O i to g i , and E 3 is the (3 × 3) identity matrix.The link inertial parameters of subsection 2.1 are denoted by θ I i . The base parameters' vector θ B is a nonlinear function of θ I i , Fs i and Fv i denoted by

θ B = f {θ I i , Fs i , Fv i } i=1,...,n , (13) 
whose expression can be derived analytically as reported in [Khalil andCreusot, 1997, Khalil et al., 2014]. Let define the link physical parameters θ P i as the elements of i I g i , r i and m i . Some elements of θ I i are also in θ P i (like m i ). However, other elements have a linear (like mr i ) or nonlinear (like i I i ) relation with elements of θ P i . By denoting h the general relation derived from (12), between θ I i and θ P i , it comes:

θ I i = h (θ P i ) , i = 1, . . . , n. (14) 
Using the relations ( 13) and ( 14), the base parameters' vector θ B can be rewritten as a nonlinear function, denoted by g,

of ϑ i = θ T P i Fs i Fv i T : θ B = g {ϑ i } i=1,...,n . (15) 
According to [START_REF] Yoshida | Verification of the positive definiteness of the inertial matrix of manipulators using base inertial parameters[END_REF], a sufficient condition to have a positive definite inertia matrix is that all m i and i I g i contained in (15) must satisfy the conditions in (11). However, the solutions in m i and i I g i are not unique. In [START_REF] Yoshida | Verification of the positive definiteness of the inertial matrix of manipulators using base inertial parameters[END_REF], they form a set of virtual parameters. The problem in (9) becomes a new Constrained WLS (CWLS) optimization problem, in which the solution is sought by solving:

θ = arg min ϑ W T Σ -1 (Y -W g(ϑ )) 2
such that m i > 0, i I g i > 0,

Fs i > 0, Fv i > 0, i = 1, . . . , n (16) 
Note that i I g i > 0 is equivalent for its eigenvalues to be strictly positive. Moreover, the estimated values of Fs i and Fv i can only be positive, that is why these constraints have been added in (16). Finally, the estimated base parameters' vector θB is obtained by substituting the estimated vector θ in (15). Note that, because of its nonlinear feature w.r.t. the physical parameters, the optimization problem in ( 16) may contain several local minima. It should then be tackled by global optimization solvers. The global minimum seeking may be a tedious task.

Payload parameters identification

The joint torques in Y can be seen as the sum of the ones resulting from the robot bodies Y r , and those of the robot payload Y p [START_REF] Swevers | Dynamic model identification for industrial robots[END_REF] (plus R the vector of unknown noises and unmodelled dynamics):

Y = Y r +Y p + R (17) = Y r +W p θ p + R, (18) 
where W p is a (n × n θ p ) regressor matrix; θ p is a vector of parameters composed of the payload inertial parameters and the variation of joints friction parameters (∆Fs i and ∆Fv i ) for all the joints. Indeed, the friction parameters may change when a payload is added to the robot [START_REF] Swevers | Dynamic model identification for industrial robots[END_REF]. As the frame of the payload is fixed w.r.t. the last link, W p is composed by the columns of W which correspond to all the joint friction parameters, and to the base inertial parameters of the last link. Note that W is the derived regressor matrix of the robot with its payload. To identify the payload parameters, the acquisition of two data series is necessary. The first corresponds to the robot without the payload, while the second is acquired for the robot with its payload. The estimation of θ p can be obtained by solving the following problem: θp = arg min

θ p W T p Σ -1 (Y -Y r -W p θ p ) 2
such that m p > 0, n I g p > 0,

∆Fs i > 0, ∆Fv i > 0, i = 1, . . . , n (19) 
where Y r contains the torques data from the first data series, whereas Y and W p contains the second data series.

Validation

To check the validity of the estimated parameters by the proposed procedure, these parameters are used to reconstruct the joint torques and compared to the measured ones. For this purpose, the joint positions, velocities and accelerations are used as inputs for the inverse dynamic model in (2) with the identified parameters. This validation step is necessary to have information about the confidence intervals of the identified parameters, and at the same time about the validity of the dynamical model of the robot.

3 Case study : Denso VP-6242G robot

Dynamic identification model of the robot

The Denso VP-6242G robot is a manipulator with six revolute joints, depicted in Figure 1. As shown in Fig. 1, the robot end-effector can be equipped with a force sensor and a spherical handle for PHRI experiments. The dynamical model is computed using the parameters of the Modified Denavit-Hartenberg convention (MDH) [START_REF] Khalil | A new geometric notation for open and closedloop robots[END_REF].

Figure 2 shows the frames attached to each joint of the robot according to this convention. Table 1 shows the MDH parameters of the Denso VP-6242G robot, extracted from Fig. 2. By using the SYMORO+ software package Table 1: Kinematic parameters of the Denso robot Khalil andCreusot, 1997, Khalil et al., 2014] with these parameters, the dynamic model of the robot for identification is calculated. It results in a base parameters' vector θ B of dimension (48 × 1), and a regressor matrix D B of dimension (6 × 48). The base parameters' vector of the payload θ p is a (19 × 1) vector.

i α i d i r i θ i i α i d i r i θ i 1 0 0 l 1z q 1 4 - π 2 -l 3x l 3z + l 4 q 4 2 π 2 0 0 q 2 + π 2 5 π 2 0 0 q 5 3 0 l 2 0 q 3 - π 2 6 - π 2 0 l 5 q 6 [

Excitation signals

The used excitation signals, for each axis, have been designed as a sum of 55 basic sinusoids of same amplitudes, random phases and different frequencies. Each resulting sum was scaled to comply with its corresponding range of joint motion (see Table 2), set to keep the robot safe. The frequencies have been chosen to be integer multiples of a fundamental frequency. The number of sinusoids is greater than the number of base parameters to identify in order to obtain a PES [Lennart, 1971]. Also, all frequencies are lower than the limit frequency, defined as follow:

y 0 z 0 x 1 y 1 z 1 , x 2 y 2 z 2 x 3 y 3 z 3 x 4 , x 5 y 4 z 4 , y 5 z 5 x 6 y 6 z 6 (R 0 ) (R 1 ), (R 2 ) (R 3 ) (R 4 ), (R 5 ) (R 6 ) C 0 C 1 C 1 C 2 C 2 C 3 C 3 C 4 C 4 C 5 C 5 C 6
f i = A q,i 2πA q,i , (20) 
where A q,i and A q,i are the maximum allowed amplitude of the joint position and velocity for the joint actuator i. The A q,i are determined to avoid the collisions between the robot and its environment, and the self collisions between some parts of the robot. The A q,i are derived from the actuator positioning time characteristic, that gives a relation between positioning time and motion angle, according to the weight of the load carried by the manipulator. These excitation signals are used as desired inputs for the robot in closed-loop, through a joint position feedback control with proportional gains. To have a more accurate estimation, the excitation signals are created with 12 periods, with 380 sec per period. This number of periods is greater than n = 6, which allows to compute the square root inverse of the covariance matrix. The sampling time is 10 -3 sec. The duration of one period depends on the fundamental frequency and on the limit frequency. To ensure that the robot does not exceed the range of joint motion, the initial joint positions are set in the middle of this range. In addition, the movement starts and stops with zero joint velocities and accelerations. For this, a phase of immobility of 4 sec is added at the beginning and at the end of the movement. During this phase, the robot remains at its initial position. A connection phase of 5 sec is also inserted to connect the initial joint position of the robot with the excitation signals. The total excitation time is of 4578 sec. Table 2 presents the range of the joint motion [q i,m , q i,M ], the amplitudes A q,i , A q,i , the limit frequencies f i and the proportional gain K p i of the joint-position controller for each axis J i . 

[q i,m , q i,M ] [ • ] A q,i [ • ] A q,i [ • /s] f i [Hz] K p i J 1 [-

Data processing

First, the measurements of the joint currents and positions are recorded. To obtain joint torques, the joint currents are multiplied by their corresponding torque constants K c i and motor gear ratios G r i , presented in table 3. Then, the data are filtered by using a low-pass Butterworth filter, with a cut-off frequency of 10 Hz, and of order 1. Joint velocities and accelerations are computed by a suitable numerical differentiation of the filtered joint positions. To reduce possible noises due to numerical differentiation, the velocities and accelerations signals are also filtered by the same filter. In a third step, the data corresponding to the phases of immobility and connection are deleted. The average periodic data are computed over the 12 periods as in (5). In the last step, since the sample frequency (10 3 Hz) is too high compared to the filter cutoff frequency (10 Hz), the size of the data are reduced by an undersampling of factor 10, that makes the signals with a sample frequency equal to 10 2 Hz. This frequency remains sufficiently high compared to the highest frequency contained in the data (Table 2). Hence, the data should not be affected too much by this decimation.

A zoom between the instants 1200 and 1300 sec of the signals of measured joint position and torque, and calculated velocity and acceleration of the joint 1, before and after filtering are shown by the figure 3 (corresponds to the robot with the payload). We can observe that the noisy measurements are suitably filtered. We conclude that the choice of the filter parameters (cut-off frequency and order) is good. The important error in the joint acceleration signal is interpreted by a significant noise associated with this signal, resulting from a double differentiation of the noisy joint position measurement.

We consider that these post-processed data are ready to be used in the sequel of the identification procedure.

Parameters estimation

The regressor matrices and the torque vectors were built for the two cases: with and without the payload. We have checked that these matrices are of full rank. In the case of the VP-6242G Denso robot, ϑ is of dimension (66 × 1) and ϑ p is (22 × 1). The estimation of the parameter vectors ϑ and ϑ p consists in solving the CWLS optimization problem in (16).

For this, we used a global optimization solver of Matlab, based on its function fmincon that allows to find a minimum solution of the CWLS problem. Table 4 shows two sets of numerical values of the base parameter vector θB estimated with and without the payload robot.

Table 5 shows numerical values of the payload base parameters, containing the variation of the joint friction coefficients. 

Torque reconstruction

Torque reconstruction is a step for checking the validity of the estimated parameters, and at the same time the corresponding dynamical model. For this, a different measurement series than the one exploited for the identification, but with the same features, is used. We have used two ways to reconstruct the torques of the robot with the payload. The first is by using the parameters estimated in the case of the robot with this last. The second is by using the parameters calculated without the payload, for which we add the friction variations and payload parameters, to the friction and the 6 th link parameters, respectively. The figures in Fig. 4 show, for the six joints: the measured torques after filtering (blue); the computed torques with θ B found with the payload robot (green); the computed torques using θ B found without the payload robot to which is added θ p (red). The figures in Fig. 4 illustrate a good quality of reconstruction of the torques. It is clear that the reconstruction with the parameters calculated with the payload is better than the one resulting from the added parameters, because of the number of errors sources. The dynamical model of the robot and the identified parameters can be considered acceptable and used to apply control techniques. 

Conclusion

In this paper, we were interested in identifying the dynamic parameters of the industrial manipulator robot Denso VP-6242G, with and without its handle. To this end, we have used a nonlinear weighted least squares formulation of the identification problem under nonlinear constraints in the dynamic parameters. The identified parameters and the dynamical model of the robot have been validated by the torque prediction approach. The identification method appeared to be efficient in giving parameters that lead to a positive definite inertia matrix. Future works will concern the use of the identified model of the Denso robot to achieve a PHRI for a co-manipulation purpose, as proposed in [START_REF] Jlassi | An event-controlled online trajectory generator based on the human-robot interaction force processing[END_REF]. [ Brunot et al., 2017] Brunot, M., Janot, A., Carillo, F., andGarnier, H. (2017). A pragmatic and systematic statistical analysis for identification of industrial robots. In Proc. of the IEEE Int. Conf. on Advanced Intelligent Mechatronics (AIM), pages 559-564, Munich, Germany.
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Figure 1 :

 1 Figure 1: VP-6242G Denso robot.

Figure 2 :

 2 Figure 2: Robot frames for MDH convention.

Figure 3 :

 3 Figure 3: Data signals for axis 1 with and without processing: measured joint position and torque (top), and computed joint velocity and acceleration (bottom).

Figure 4 :

 4 Figure 4: Comparison of the measured torques after filtering and the computed torques calculated in two ways.
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Table 2 :

 2 Features for the excitation signals' design Axis

Table 3 :

 3 Motor specifications for the studied robot

	Axis	J 1	J 2	J 3	J 4	J 5	J 6
	K c i	0.38 0.38 0.22 0.21 0.21 0.21
	G r i	120	160	120	100	100	100

Table 4 :

 4 Numerical values of θ B with and without the payload.

	θ B	Without	With	θ B Without With	θ B Without With
	zzr 1	5.16	7.10	zzr 3 3.07	4.37	xz 5	0.01 -0.02
	Fs 1 47.44 49.74 mxr 3 -4.15 -5.16 yz 5	0.03	0.01
	Fv 1 122.89 150.81 myr 3 5.76	8.77 zzr 5 0.28	0.56
	xxr 2 -3.28 -5.96 Fs 3 52.23 54.78 mx 5 0.08	0.13
	xy 2 -1.60 -1.01 Fv 3 83.55 87.92 myr 5 0.40	2.12
	xzr 2 -1.30 -1.17 xxr 4 -0.16 -0.21 Fs 5 19.30 20.45
	yz 2 -0.85 -0.97 xy 4	0.14	0.19 Fv 5 24.77 29.29
	zzr 2 15.32 17.29	xz 4	0.25	0.23 xxr 6 -0.02 -0.07
	mxr 2 16.02 18.67	yz 4 -0.03 -0.06 xy 6 -0.02 0.03
	my 2	0.14	0.28	zzr 4 0.06	0.06	xz 6 -0.02 0.02
	Fs 2 60.72 63.64 mx 4 0.29	0.30	yz 6	0.00	0.00
	Fv 2 168.22 185.75 myr 4 0.21	0.20	zz 6	0.05	0.00
	xxr 3 7.43	9.04	Fs 4 24.04 24.63 mx 6 -0.02 0.10
	xyr 3 0.15	0.41	Fv 4 19.21 21.55 my 6 -0.01 -0.05
	xz 3	0.07	0.05	xxr 5 0.05	0.22	Fs 6 18.72 19.08
	yz 3	0.01	0.04	xy 5	0.00	0.01 Fv 6 11.85 15.74

Table 5 :

 5 Numerical values of θ p .

	θ p	Value	θ p	Value	θ p	Value	θ p	Value
	∆Fs 1	3.11	∆Fv 3 14.37 xxr p	2.65	mx p	0.43
	∆Fv 1 33.35 ∆Fs 4	1	xy p -0.20	my p	0.05
	∆Fs 2	4.48	∆Fv 4	3.61	xz p	0.43	∆Fs 6	0.45
	∆Fv 2 22.26 ∆Fs 5	1.68	yz p	0.05	∆Fv 6	4.62
	∆Fs 3	2.17	∆Fv 5	4.61	zz p	0.15		

  . Direct calculation of minimum set of inertial parameters of serial robots. IEEE Trans. on Robotics and Automation, pages 368-373. [Janot et al., 2014] Janot, A., Vandanjon, P.-O., and Gautier, M. (2014). A generic instrumental variable approach for industrial robot identification. IEEE Trans. on Ctrl. Syst. Tech., 22(1):132-145.
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