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Abstract10

This paper presents an improved identification method of the constitutive11

properties of lung parenchyma. The aim of this work is to determine the non-12

linear viscoelastic behavior of lung parenchyma with a particular focus on the13

compressible properties. Tensile tests are performed on living precision-cut14

rat lung slices. Image registration is used to compute the displacement field15

at the surface of the sample. This allows to identify the compressibility of16

the tissue. The constitutive model consists of a hyperelastic potential split17

into volumetric and isochoric contributions and a viscous contribution. This18

allows the description of the experimentally observed hysteresis loop. The19

identification is performed numerically: each test is simulated using the real20

geometry of the sample; the error in the displacement (i.e. the difference21

between the measured and computed displacements) is minimized with an22

improved Levenberg-Marquardt algorithm. This global method allows the23

comparison between several hyperelastic potentials and we can determine24
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the most suitable law for rat lung parenchyma. We find that both an ex-25

ponential potential or a polynomial potential with a first order term and a26

third or higher order term give similarly satisfactory results. The identified27

parameters are: for the volumetric contribution: κ = 7.25e4 ± 2.74e4 Pa, for28

the exponential potential: k1 = 4.70e3 ± 1.60e3 Pa, k2 = 5.90 ± 1.51, for29

the polynomial form: C1 = 2.87e3 ± 9.05e2 Pa, C3 = 3.83e4 ± 1.63e4 Pa.30

The identification of the time parameter for the viscous contribution shows31

that it depends on the loading frequency (0.2 Hz: τ = 0.257 ± 0.042 s, 0.432

Hz: τ = 0.123 ± 0.039 s, 0.8 Hz: τ = 0.050 ± 0.025 s). Adding a viscous33

contribution significantly increases the accuracy of the identification.34

Keywords: lung parenchyma, non-linear viscoelasticity, numerical35

identification, image registration, uniaxial tensile test, compressibility36

1. Introduction37

Characterizing the mechanical behavior of lung tissues has been the sub-38

ject of several scientific studies as it is required to model the global and39

local behavior of the lung. A computational model of the whole lung could40

help understanding several phenomena related to lung diseases. For instance,41

acute respiratory distress syndrome (ARDS) is a disease that alters the me-42

chanical behavior of the lung parenchyma (Kallet and Katz, 2003). When a43

patient suffering from ARDS is mechanically ventilated to help him breathe,44

healthy and diseased areas are deformed but the compliance difference of45

these two tissues can lead to a local overstretching in the parenchyma. A46

lung model including mechanical properties of both healthy and diseased47

parenchyma could help locating and quantifying the possible overstretching48
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occurring within the parenchyma and adapting the curing protocol to avoid49

it. A comprehensive model of the lung is currently developed in our group50

including among others, structure and fluid phenomena (Wall et al., 2010).51

Lung parenchyma consists of alveolar tissue, including respiratory bron-52

chioles, alveolar ducts and terminal bronchioles. At the macroscale (a few53

cm), it can be considered as homogeneous but at the microscale (alveolar54

scale, i.e. a mm), it exhibits a foam-like structure due to the alveoli, which55

are inflated with air during breathing. Therefore, unlike most of the soft56

tissues commonly studied (e.g. abdominal organs, skin, aorta), it cannot be57

considered as incompressible at the macroscale as its main function is to be58

inflated. Most of the previous studies to characterize the lung parenchyma59

have investigated its non-linear elasticity and viscoelasticity but the com-60

pressible properties have not been characterized sufficently so far.61

To characterize lung parenchyma, the few available previous studies de-62

scribe mostly uniaxial tensile tests on tissue slices. Briefly, in terms of elas-63

ticity, either an exponential potential (Navajas et al., 1995) or a polynomial64

potential (Rausch et al., 2011) describe rather accurately the uniaxial behav-65

ior of the lung parenchyma. Gao et al. performed biaxial tensile tests and66

concluded that an exponential law was the best fit for the tissue behavior67

(Gao et al., 2006). A volumetric component of the constitutive law is only68

assessed in (Rausch et al., 2011); however the method to identify the vol-69

umetric parameters of the constitutive law only relied on the displacement70

of a single location in the sample and the measurement of this displacement71

was done by hand.72

In terms of viscoelasticity, uniaxial tensile tests were used to characterize73
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the dynamic response of the tissue. Different frameworks helped quantify-74

ing the tissue viscosity, the most common (Mijailovich et al., 1994; Navajas75

et al., 1995; Romero et al., 2011; Pinart et al., 2011; Yuan et al., 1997) being76

quasilinear viscoelasticity proposed by Fung that decouples the elastic and77

viscous phenomena and allows accounting for elastic non-linearities (Fung,78

1993). In these studies, harmonic distorsion, loss and storage moduli as well79

as elastance, resistance and hysteresivity of the tissue were computed with80

the help of a Fourier transform. These parameters allow the investigation81

of the influence of loading factors - like stress amplitude, strain amplitude,82

frequency - or pathologies - like fibrosis (Dolhnikoff et al., 1999), acute lung83

injury (Ingenito et al., 1994; Rocco et al., 2001) - on the material parame-84

ters. A review of the elastic and viscous characterization of lung tissue, in85

particular using tests on excised samples, is given in (Suki and Bates, 2011).86

Another framework is proposed by (Holzapfel and Gasser, 2001) to account87

for the three-dimensional non-linear viscoelasticity of fiber-reinforced com-88

posites: the hyperelastic potential associated with the elastic behavior of the89

tissue is modified by a viscous contribution. This framework is particularly90

suited for a direct use in nonlinear continuum mechanics based simulations,91

this is why this approach is chosen in the present paper.92

The aim of this paper is to determine a non-linear viscoelastic constitu-93

tive employing novel experimental and identification methods. The paper is94

divided into five parts: the first part covers the description of the experimen-95

tal methods, particularly the optical method to measure the displacement96

field on the sample. In the second part, the numerical model and the consti-97

tutive law proposed for the lung parenchyma are detailed. The third, fourth98
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and fifth parts are focused on the identification method, the results and the99

discussion, respectively.100

2. Uniaxial tensile tests on living PCLS101

Since the preparation of the samples and the experimental set-up are102

described in a previous paper (Rausch et al., 2011), only the main features103

are recalled here.104

2.1. Preparation of the samples105

The Precision-Cut Lung Slices (PCLS) are prepared from three isolated106

rat lungs as previously described in (Martin et al., 1996). The lungs are107

dissected from the animal, filled with an agarose solution (1.5%) via the108

trachea and put on ice to allow the agarose to cool down and solidify. The109

lung lobes are separated and cut into tissue cylinders using a coring tool.110

The obtained cylinders have a diameter of 14 mm; they are then cut into111

slices using a Krumdieck tissue slicer (Alabama Research and Development,112

Munford, AL). The thickness is set to 400 µm. The two sides of the round113

slices are trimmed with two parallel razor blades giving the tissue strip a114

width of 7.0 mm. The strips are incubated in minimal essential medium115

(MEM) and the agarose is washed out by frequently changing the medium116

within the first 4 hours and completing an overnight incubation. As shown117

in (Martin et al., 1996), the obtained PCLS are viable for three days. In118

this protocol, the rat samples are tested within 48 hours after death, which119

guarantees that the tissue is still living while being tested (Martin et al.,120

1996) ; preliminary studies showed that the mechanical properties are not121

changing within 3 days (data not shown). The samples are kept in saline122
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solution in the fridge (4◦C) until they are tested. Tab. 1 sums up the123

specimen numbers.124

Name Number of samples per frequency

0.2 Hz 0.4 Hz 0.8 Hz

G 7 5 4

I 4 4 4

J 3 3 4

Table 1: Samples description.

2.2. Experimental set up125

The samples are tested using a Bose ElectroForce 3100 uniaxial device126

(Bose Cooperation, Eden Prairie, USA). The samples are fixed onto the ma-127

chine using specifically designed clamps to prevent sliding and damage (Fig.128

1). The moving clamp displacement is recorded using the internal displace-129

ment sensor of the tensile machine (range of ± 2.5 mm with a resolution of130

12.5 µm); the other clamp is connected to the machine through a force sensor131

(range of ± 0.5 N with a resolution of 2.5 mN). Finally, a digital microscope132

is placed perpendicular to the sample plane to record the test. The images133

provided by the microscope are 640 × 480 px2.134

Images of each test are recorded to perform image registration. Such135

an optical method allows the computation of the displacement field at the136

surface of the sample. It consists in mapping images of the sample in its137

undeformed and deformed state. This mapping is based on the gray-level138

distribution of the image; it requires for the images a good resolution and139

a stable gray-level distribution which has to exhibit a random pattern. If140
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microscope

sample

clamps

light source

Figure 1: Experimental setup. The double arrow shows the tensile direction.
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the gray-levels are affected by a modification of the lightening or by light141

reflections at the surface of the sample, artifacts will occur in the computation142

of the displacement field.143

In our case, the registration procedure relies on the microstructure of144

the lung parenchyma. By using a lightening that goes partially through the145

sample, this microstructure can be visualized; hence, the application of an146

additional random pattern using paint - as it is usually necessary when using147

an optical method to compute the experimental displacement - is superfluous.148

However, due to the low density of the tissue, the light rays intensity is hardly149

lessened when going through the tissue. Putting the light source and the150

microscope directly opposite to each other on both sides of the sample leads to151

a general overexposure, as well as a modification in the overall light intensity152

in the image during the sample stretching (since the sample gets thinner while153

being stretched, the penetration of light gets stronger). The solution to have154

a good insight of the microstructure and a satisfactory light intensity for the155

images was to put the light source on one side and slightly above the sample156

(Fig. 1); therefore the light is slightly scattered which reduces reflecting157

signals. The drawback of this method is that it does not completely prevent158

the occurrence of shining points, where the light is reflected on the wet surface159

of the sample. Even if not numerous, these parasite pixels can create artifacts160

during the registration procedure. However, the image registration algorithm161

helps smoothing these possible artifacts.162
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2.3. Testing protocol163

2.3.1. Thickness measurement and placement on the machine164

The first step of the experimental protocol is to measure the actual thick-165

ness of the sample. Although the cutting tool is very accurate, the softness166

of the lung tissue and its compressibility inevitably lead to a variability in167

the thickness. To accurately measure the global sample thickness, a light168

microscope and a micrometer are used as shown in Fig. 2. Two microscopic169

slides are placed on each other and under the microscope; a pattern is drawn170

on the upper one. The microscope is focused on the pattern and the vertical171

position of the microscope plate is measured by a micrometer. The sample is172

then placed between the two microscopic slides and the water is wiped up so173

as not to create a water film between the two microscopic slides. At this stage174

the upper slide is in a higher position due to the thickness of the sample and175

the microscope does not focus on the pattern anymore. Then, the focus is176

adjusted on the upper slide pattern again; the resulting displacement of the177

microscope plate is the thickness of the sample, measured by the micrometer.178

The thickness is measured within an accuracy of 10 µm.179

Once the thickness has been measured, the sample is hydrated again180

with saline solution. It is placed on a piece of aluminum foil. The foil and181

sample are placed in the clamps which are slightly fastened until the sample182

is sufficiently fixed to be able to remove the aluminum. The two clamps are183

then more firmly fastened to prevent sliding but also possible damage of the184

tissue. Finally, the extra water content is mopped up with paper so as to185

avoid measuring artificial forces due to surface tension effects of the water186

layer.187
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thickness of the sample

1 2

microscope

micrometer

sample

Figure 2: Method to measure the thickness of the sample: first, we focus the microscope

on the upper slide without sample. Second, once the sample is put between the two slides,

the microscope is focused again on the upper slide and the displacement of the microscope

plate is measured by a micrometer. The measured displacement is the thickness of the

sample.
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The initial length of the sample, i.e. the initial distance between the188

clamps, is set to 2.0 mm.189

2.3.2. Preconditioning and tensile test190

In this work, the aim is to investigate the tissue behavior in the range191

of large strains. Preliminary tensile tests conducted on lung samples showed192

that when stretched to 50% strain and released, the sample exhibits a residual193

strain. Besides, during cycling tensile loading, the viscoelastic nature of194

the tissue leads to a transitory phase where the force-displacement cycles195

cannot be superimposed. One can assume that during breathing, the tissue196

exhibits a rather repeatable behavior from one cycle to the other. Therefore,197

a preconditioning phase is applied to the tissue to first, stabilize its residual198

strain and second, to stabilize the hysteresis loop obtained while cycling the199

sample.200

In the present case, the preconditioning includes two main steps: first,201

the sample is stretched from 0 to 0.2 mm at a constant velocity of 0.5 mm/s202

and maintained 10 s at 0.2 mm; then this phase is repeated for 0.4, 0.6 and203

0.8 mm. The tissue is then released to a stretch of 0.2 mm for 30 s. Second,204

the tissue is cycled between 0.2 and 1.2 mm for 10 cycles. The nine first205

cycles are used for preconditioning while the tenth is the actual tensile test.206

We found that nine cycles were enough to stabilize the cycle (see Sec.5.1).207

2.3.3. Reference state208

The preconditioning is performed to stabilize the residual strain; it leads209

to the definition of the stress-free reference state which is different from the210

initial state. We choose to perform the tensile test in a range that makes211
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the sample slightly buckle at the minimum stretch. Therefore, when cycling,212

the force is slightly negative (compressive force) and becomes positive. The213

state corresponding to a force equal to zero is defined as the reference state214

for the image registration procedure. In practice, the zero-force state does215

not necessarily match one of the registration images for sampling frequency216

reasons; in that case, we choose the image that corresponds to the smallest217

force to define the reference geometry of the sample. Over all the samples,218

the initial force is always below 5% of the maximal force of the test. We219

also assume that the difference between reference and initial configurations220

is small enough to consider that the initial thickness is still applicable to the221

reference configuration. Indeed, the reference state corresponds experimen-222

tally to a clamp displacement of around 0.1 mm.223

2.4. Postprocessing by image registration224

Using a full-field measurement method when testing soft material has225

several advantages. First, cutting samples of soft tissues of accurate dimen-226

sions is a difficult task; even with precision-slicing apparatus and procedure227

as described in Section 2.1, one cannot always obtain perfectly rectangular228

samples. Then, such thin samples are difficult to handle and to place in the229

clamps. The method described previously eases this procedure but we can230

for instance not perfectly control the orientation of the sample with respect231

to the loading direction. Finally, screwing the clamps to properly prevent232

sliding without damaging the sample requires some care; it can happen that233

the sample is not squeezed enough and experiences sliding during the test.234

For these reasons, it makes sense to use optical measurements additional to235

the force and global displacement information to know more accurately the236
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actual displacement of the sample during the experiment.237

Besides, the present work is focused on a compressible tissue. The identi-238

fication procedure therefore requires information about the evolution of the239

width of the sample, which is directly related to the compressibility of the tis-240

sue. Global longitudinal measurement would not be sufficient to accurately241

identify the compressibility material constant.242

As mentioned before, image registration consists in mapping two images243

of the sample that represent two different deformation states. These two244

images are called source image and target image; they both contain a scalar245

field that is a gray-level distribution over the pixels of the image. Image246

registration consists in finding the displacement field that minimizes the gap247

between the target image and the source image once it is deformed by this248

displacement field. We describe here the main features of this minimization249

procedure; more detailed information can be found in the cited papers.250

The source and target images are denoted by Is(X) and It(x) respectively251

where x and X are the spatial and material coordinates respectively.252

For a so-called forward transformation, registering the two images consists253

in minimizing the error D with respect to the transformation ϕ (Haber et al.,254

2009):255

D [ϕ(X)] =

∫

Ωx

[
Is
(
ϕ−1(x)

)
− It(x)

]2
dx (1)

where ϕ : Is 7→ It (Fig. 3) so that x = ϕ(X) = X+ u with u a spatially256

varying displacement field. The solution u∗ of the minimization is written:257
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φ

Is(X) It(x)Ω

2mm

Figure 3: Source image (left) and target image (right).

u∗ = arg min
u∈L2

D (2)

An elastic regularization R is added to ensure the well-posedness of the258

optimization problem (Modersitzki, 2004; Fischer and Modersitzki, 2008).259

The minimization is therefore:260

u∗ = arg min
u∈L2

[D [Is, It] + αR(u)] (3)

where the weighting factor α is set to 0.1 in this work.261

We minimize D using a Gauss-Newton optimization scheme (Haber and262

Modersitzki, 2006) as well as a multiresolution approach (Lester and Arridge,263

1999) (Fig. 4). First, from the pixel-size grid, i.e. the image recorded during264

the experiment, several coarser and coarser grids are successively created by265

filtering and sampling the gray-level field of the image at the one-level finer266
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scale. We obtain n levels of resolution. The minimization starts at the coarser267

level n; the result un of the minimization of D is linearly interpolated over268

the grid at level n− 1; un−1
n is used as the initial guess for the minimization269

at level n− 1. This procedure is repeated until u1 = u∗ - at the pixel level -270

is determined.271

Figure 4: Multiresolution approach to solve the minimization problem of the image regis-

tration. ui is the solution of the minimization at level i. u
j

i is the linear interpolation of

ui over level j and is the initial guess for the resolution at level j. u1 = u
∗ is the solution

of the problem. The finer grid (lower left) is the image recorded during the test.

In our case, five levels of resolution are used. The image registration272

algorithm is implemented in Matlab, as well as the post-processing of the273
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registration results (creation of the input file for the simulation).274

The overall registration procedure can be computed in two different ways:275

sequentially or incrementally. The sequential method consist in defining a276

reference image (corresponding to the reference state of the sample) and277

register all the other images (while the sample is stretched) with respect278

to this reference image. The incremental method consists in updating the279

reference image: image n + 1 is registered with respect to image n. In this280

case, the Finite Element mesh (see next section) needs to be updated at each281

new reference image: the position of the nodes of the FE-mesh at step n is282

updated using the result of the registration between images n−1 and n. Sec.283

5.2 gives a comparison of the two methods.284

The images provided by the microscope are 640 × 480 px2, corresponding285

to 15.2 × 11.4 mm2. The registration procedure guarantees an accuracy of286

a pixel size of 0.023 mm.287

3. Numerical model of the lung parenchyma samples288

3.1. Finite Element model289

The numerical identification procedure is based on the simulation of the290

experimental test and the minimization of the error between the simulated291

and the experimental displacements. In order to simulate the test, a zone of292

interest (ZOI) is defined on the reference image and a Finite Element mesh is293

created on this ZOI. The shape of the ZOI is quadrangular but not necessarily294

rectangular. The registration procedure is computed on the entire image but295

only the results in the ZOI are further used for the identification. The Matlab296

function interp2 is used to interpolate the computed displacements on the297
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nodes of the FE-mesh. The thickness that was experimentally measured is298

defined as the initial thickness of the simulated sample.299

The simulation is performed using our in-house multi-purpose research300

software platform BACI. The input data for the simulation of the test are301

the FE-mesh, the material law with the initial guess of parameters and the302

boundary conditions.303

3.2. Constitutive law304

The aim of this study is to identify a suitable visco-hyperelastic consti-305

tutive model for lung parenchyma and determine the corresponding model306

parameters. The model that we use in the present case is a generalized307

Maxwell model with different hyperelastic contributions.308

The hyperelastic contribution is described in details in (Rausch et al.,309

2011). Briefly, a hyperelastic toolbox is implemented in BACI which allows310

the combination of several different Strain Energy Functions (SEF). We only311

mention here the isotropic SEF as the lung parenchyma is isotropic. The312

SEF are of two types: coupled and decoupled. A coupled SEF is based313

on the overall strain tensor, while a decoupled SEF is split into volumetric314

and isochoric contributions. The decoupled contributions are all polyconvex315

and stress-free in the reference state, which allows to sum them up without316

further condition.317

In our case, only decoupled potentials are used due to the higher variety318

of available potentials of this form than for coupled potentials.319

The viscous contribution is based on the work of (Holzapfel and Gasser,320

2001). A viscous part is added to the hyperelastic contribution based on a321

generalized Maxwell model. In this paper, we consider the basic form of the322
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generalized Maxwell model, i.e. a dashpot in parallel with a spring. The323

general form of the potential is the following:324

ψ = ψ∞(Ii) + γ (C,Γ) (4)

where ψ∞ is the hyperelastic potential and γ is the dissipative potential.325

This theoretical framework is detailed for the isotropic case in Appendix A;326

details for anisotropic cases can be found in (Holzapfel and Gasser, 2001).327

Similar to the right Cauchy-Green strain tensor C being the kinematic328

conjugate of the elastic second Piola-Kirchhoff stress tensor S, Γ is the kine-329

matic conjugate of the fictitious stress tensor Q. These stress tensors are330

expressed by:331

S∞ = 2
∂ψ∞

∂C
(5)

Q = −2
∂γ

∂Γ
(6)

Q is a non-equilibrium stress; therefore, Q = 0 when t → ∞. The332

evolution of Q is governed by an equation of evolution:333

Q̇+
1

τ
Q = βṠ (7)

Q|t=0 = 0 (8)

where τ defines a relaxation time and β is a non-dimensional free-energy334

factor. The global stress tensor is therefore S = S∞ + Q. The elasticity335
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tensor is also expressed as the sum of an elastic summand and a viscous336

summand (Eq. 9).337

C = C
∞ + C

vis (9)

Appendix A and Appendix B sum up the formulas used to compute stress338

and elasticity tensors for the isotropic case and with the assumption that the339

viscous effect is the same for isochoric and volumetric contributions, that is340

to say that a single (τ , β) couple is used.341

The hyperelastic potentials tested in the present work are summed up in342

Tab. 2. Only isochoric potentials involving the first invariant are identified343

as it was shown in (Rausch et al., 2011) that potentials with both the first344

and the second invariants did not lead to a significant decrease of the error345

in the identification. We compared several combinations of hyperelastic po-346

tentials to find out which one gives the best fit. Tab. 3 displays the tested347

combinations.348

4. Identification method349

The identification procedure consists in minimizing the error between350

computed and experimental displacements for the last cycle, i.e. both the351

loading and unloading curves are taken into account. The input data for this352

inverse analysis are the simulation data mentioned before and the experimen-353

tal displacements at the nodes of the FE-mesh that are taken into account354

for the cost function calculation - typically all the degrees of freedom of the355

FE-mesh nodes that are not kinematically constrained (Fig. 5).356
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Vol.

Sussman-Bathe ψvsb =
κ

2
(J − 1)2

Ogden ψvo =
κ

4
(−2 ln J + J2 − 1)

Penalty ψvp = ǫ

(

Jγ +
1

Jγ
− 2

)

Iso.

Polynomial order n ψipn = cn(Ī1 − 3)n

Exponential ψie =
k1

2k2

[

e
k2

(

Ī1
3
−1

)

− 1

]

Table 2: Volumetric and isochoric hyperelastic potentials tested in this work. Parameters

in red are to be identified. Sussman-Bathe from (Doll and Schweizerhof, 2000). Ogden

from (Ogden, 1974). Penalty from (Balzani et al., 2006). Polynomial from a split and

extension of Yeoh’s potential (Yeoh, 1993). Exponential from (Delfino et al., 1997).

A ψ = ψvo + ψip1 + ψip2 + ψip3

B ψ = ψvo + ψip1 + ψip3

C ψ = ψvo + ψip1 + ψip2

K ψ = ψvo + ψip1 + ψip4

P ψ = ψvo + ψie

Table 3: Identified hyperelastic potentials.
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y

x

none
x only
x and y

Figure 5: Degrees of freedom used for the inverse analysis. The nodes at the fixed clamp

are not used. Only the x-displacement of the moving clamp nodes is used; for the other

nodes, the two degrees of freedom are used.

21



The minimization follows a pseudo-transient continuation type scheme.357

The constitutive parameters of each summand of the material law and the358

associated viscous contribution are stored in the parameter vector p; its359

size is np. For each loop of the inverse analysis, np + 1 simulations are360

performed: np simulations with only one modified element of p (p(i) = p(i)+361

a+b×p(i), where a and b are user-defined perturbation parameters) and one362

simulation with unperturbed p. These simulations allow the determination363

of the Jacobian matrix J of the problem (Eq. 10) and the computation of364

the new set of parameters p = p+∆p (Eq. 11,12)365

J =








∂u1

∂p1
· · · ∂u1

∂pnp

...
...

∂un

∂p1
· · · ∂un

∂pnp








(10)

∆p =
[
JTJ+ µdiag

(
JTJ

)]
−1

JTR (11)

R =








r1
...

rn








=








u1,sim − u1,exp

...

un,sim − un,exp








(12)

where ui is the displacement at node i. The criterion of convergence of366

the minimization is based on the gradient of the error ∇(e) where e is the367

cost function, i.e. the sum of the error at all nodes and all time steps.368

The parameters of the inverse analysis are therefore the convergence cri-369

terion, the maximum number of optimization loops, the perturbation param-370

eters a and b and an initial regularization factor µ.371
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A nested parallelization implemented in BACI allows computing these372

simulations in parallel, each simulation being itself also computed in parallel;373

regardless of np, one loop of the inverse analysis lasts as long as the longest374

of the np +1 simulations, instead of np +1 times the time of one simulation.375

For each combination of one volumetric potential and possibly several376

isochoric potentials of Tab. 2, a purely hyperelastic identification is done377

first, then the viscous contribution is added, which means that an additional378

parameter τ is to be identified - in this work we set β to 1 and do not identify379

it. The results of the first identification are used as initial guesses for the380

viscoelastic identification. During this second phase, both the hyperelastic381

and the viscous parameters are optimized.382

5. Results383

The identification results are statistically analyzed using the non-parametric384

Mann-Whitney test (Mann and Whitney, 1947); the p-factor is indicated385

when a tendency is significant.386

5.1. Force versus displacement curves387

Fig. 6 shows the evolution of the hysteresis loop during the ten cycles388

of the tensile loading. The hysteresis loop decreases and stabilizes; only the389

last cycle is taken into account for the identification.390

5.2. Comparison between sequential and incremental image registration391

The displacements obtained with the incremental and sequential methods392

are compared in Fig. 7 and 8. Fig. 7 shows that when the stretch increases393

(from image 4 to image 14 in that case), the gap between the two methods394
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Figure 6: Example of measured curve over ten cycles of tension loading (sample from rat

G, frequency: 0.4 Hz). The displacement displayed here is measured by the sensor of the

tensile machine.
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increases but remains small (less than 2% of the maximum displacement395

in x-direction). Fig. 8 shows that the incremental method gives a slightly396

better result as the new position of the FE-mesh nodes corresponds better397

to the visually expected one (the displacement of the moving clamp nodes is398

better). That is why we choose the incremental method.399
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Figure 7: Difference of the displacements computed with the incremental and sequential

image registration. At each image, average values and maximum values (over all the FE-

mesh nodes) of the gap in the x- and y-directions are normalized by the maximum value

of the x- and y-displacements respectively.
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Figure 8: Position of the FE-mesh nodes superimposed on the test picture: position

computed by the incremental (blue) and sequential (yellow) image registration methods,

for a deformed image. The moving clamp is the right one.
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5.3. Convergence of the identification procedure400

Parametric studies have been conducted to ensure that the present iden-401

tification method is robust and valid. In the following, the criterion of con-402

vergence is ∇(e) ≤ 10−6.403

Convergence using artificial data. For this study, artificial data are generated404

using one of the experiments. A test is simulated with experimental load405

conditions and an arbitrary set p̂ of material parameters. The computed406

displacements are used to create a new input file. We then proceed to identify407

the material parameters of the same law using this file from an arbitrary408

initial guess, and check that the identified parameters coincide with p̂. This409

procedure has been conducted using a hyperelastic potential of the following410

form :411

ψ = ψvo + ψip1 + ψip3 (13)

For a total number of elements from 250 to 4410, the maximal value of the412

average error on the three identified parameters is 0.00731 % (250 elements)413

which shows convergence to the right values (target values: κ = 30 kPa, C1=414

5 kPa, C3= 10 kPa; initial guess: κ = 50 kPa, C1= 0.5 kPa, C3= 5 kPa).415

These values were obtained after 9 to 11 identification loops.416

To study the convergence of the viscoelastic identification, one viscous417

constant τ is added. In that case, four parameters are to be identified (target418

values: κ = 70 kPa, C1 = 3.5 kPa, C3 = 33 kPa, τ = 0.1; initial guesses: κ =419

30 kPa, C1 = 5 kPa, C3 = 50 kPa, τ = 0.05). A single FE-mesh size of 1210420

elements is used. The identification leads to an error on the target value in421
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the order of 1 % for τ and 0.05 % for the other parameters. The convergence422

is therefore very satisfactory.423

Influence of the FE-mesh size. Fig. 9 shows the result of the identification424

of the law of Eq. (13) for different mesh sizes. All the identifications started425

from the same initial guess; they are conducted on a real test (not on gen-426

erated data from known parameters as for the previous study). When the427

number of elements increases, the identified parameters converge to their op-428

timized value, as the evolution of the error shows. The compromise between429

computational time and accuracy was set to around 1200 elements.430

Figure 9: Evolution of the identified parameters for law B (see Tab. 3) with respect to the

total number of elements, for one sample of rat G. The evolution of the error e is displayed

in red.
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Sensitivity analysis. We evaluated the sensitivity of the error to small vari-431

ations of the constitutive parameters. Fig. 10 and 11 display the evolution432

of the error for the hyperelastic law given in Eq. (13) with a variation of433

±10% around the identified value of the parameters κ, C1 and C3, and for a434

viscoelastic law (potential of Eq. (13) + viscous contribution) with a varia-435

tion of ±20% around the identified value of the time parameter τ . In both436

cases, when we look at the scales, the error map is rather flat, but it is how-437

ever slightly influenced by small variations of the parameters. In particular,438

the first order parameter (C1) has a strong influence, while C3 and κ are439

rather coupled (the error displays a valley). However, we could check that a440

minimum exists by testing different initial guesses for all the samples and by441

checking that the identification always converges to the same set of parame-442

ters. For the viscoelastic identification, there is a clear minimum of the error443

with respect to τ .444

5.4. Hyperelastic identification445

For both the hyperelastic and viscoelastic identifications, information on446

the thickness is required. The measured thickness for all the tested samples447

was 442 ± 34 µm, 503 ± 57 µm and 519 ± 70 µm for rats G, I and J respec-448

tively. For different reasons (rupture, poor quality of the image registration)449

some of these tests could not be fully post-processed.450

Volumetric potential. As mentioned in Sec.3.2, three volumetric potentials451

are tested. Fig. 12 displays the error obtained with these three volumet-452

ric potentials combined with the same isochoric potential of type B (which453

parameters are not identified), for all the samples of a single rat. We can454
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Figure 10: Sensitivity of the error to small variations of the constitutive parameters. The

sensitivity study is conducted on a sample of rat I tested at 0.2 Hz, the constitutive law

is of type B. For each graph, the respective third parameter is kept constant.
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Figure 11: Sensitivity of the error to small variations of parameter τ of a viscoelastic law.

The sensitivity study is conducted on a sample of rat I tested at 0.2 Hz, the constitutive

law is of type E. Parameters of the elastic contribution are kept constant.

see that Sussman-Bathes and Ogden potentials give equal results while the455

penalty potential is either equivalent or worse. Therefore, the volumetric456

potential used in the following parts will always be the Ogden form.457

Identification of volumetric and isochoric parameters. Fig. 13 shows the458

results obtained for each tested frequency among all the tested samples (three459

rats). We can see the comparison between the combinations of potentials460

given in Tab. 3. This shows that the performances of these forms of potential461

give rather similar results, but the exponential form (law P) gives the best462

fit for each frequency. A Mann-Whitney statistical test computed on all the463

samples shows that law C gives significantly poorer results than laws A, B464

and P.465

Tab. 4 gives the value of the identified parameters for these hyperelastic466
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Figure 12: Comparison of the performance of Ogden, Sussman-Bathe and penalty volu-

metric potentials for parenchyma samples from the same rat. The volumetric potential is

always associated to the same isochoric potential of type B (see Tab. 3).

potentials. As there is no statistical difference between the identified param-467

eters for the varying tested frequencies, the values are averaged over all the468

samples and all the frequencies. The identified value of κ is averaged over469

all the potentials as this value is independent from the form of the isochoric470

potential.471

5.5. Viscoelastic identification472

Fig. 14 displays an example of hyper- versus viscohyperelastic identifi-473

cation. For force versus displacement curves in the direction of the applied474

load, we can see that a hyperelastic potential represents the non-linearity of475

the material but only adding a viscous contribution can lead to the correct476

hysteresis.477
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Figure 13: Comparison of the performance of different forms of hyperelastic potentials for

various frequencies, among all the tested samples (12 at 0.8 Hz, 12 at 0.4 Hz, 14 at 0.2 Hz,

all from three different rats). The average ± SD of the error is displayed. * corresponds

to p ≤ 0.05.

33



Law Parameter Value Unit

κ 7.25e4 ± 2.74e4 Pa

A

C1 2.45e3 ± 8.95e2 Pa

C2 3.69e3 ± 1.96e3 Pa

C3 3.22e4 ± 1.81e4 Pa

B
C1 2.87e3 ± 9.05e2 Pa

C3 3.83e4 ± 1.63e4 Pa

K
C1 3.43e3 ± 1.05e3 Pa

C4 1.34e5 ± 8.30e4 Pa

P
k1 4.70e3 ± 1.60e3 Pa

k2 5.90 ± 1.51 -

Table 4: Identified parameters (average ± SD) for purely elastic potentials.
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experiment

hyperelastic

experiment

viscoelastic

Figure 14: Comparison of the force versus displacement curve along axis x for one sample

of rat G and for several nodes: experimental, computed with a hyperelastic constitutive

law B (κ = 57.6 kPa, C1 = 1.36 kPa and C3 = 71.9 kPa) and with a visco-hyperelastic law

E (κ = 62.4 kPa, C1 = 2.78 kPa, C3 = 41.8 kPa, τ= 0.293). The hyperelastic curve has

been smoothed not to represent some artifacts created by vibrations. The experimental

displacement is computed by image registration.
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Fig. 15 displays all the results obtained by identification of the param-478

eters of the hyperelastic potentials and of the corresponding viscoelastic479

laws. We can see the significant increase in accuracy obtained with the480

viscoelastic laws, especially when the frequency decreases. Mann-Whitney481

post-processing of the error values reveals that adding a viscous contribution482

significantly increases the quality of the identification; the p-value is below483

0.0001 for all couples of laws (A, B, C, K, L vs. D, E, F, L, M respectively).484

Figure 15: Distribution of the error obtained for all the samples for the identified hy-

perelastic potentials, with and without a viscous contribution. Laws D, E, F, L and M

(triangles) are viscoelastic laws that correspond to the hyperelastic potentials A, B, C, K,

P (circles) modified with a viscous contribution. X-axis: G, I, J are the three tested rats.

Top: tested frequencies.

Fig. 16 displays the identification results for the viscoelastic laws for the485

tested frequencies. Altogether, the performance of law F is significantly lower486

than all the other laws (the p-factor is ≤ 0.05 with respect to law D, ≤ 0.001487
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with respect to law M and ≤ 0.0001 with respect to laws E and L) . Tab.488

5 displays the identified values for the parameters of the viscoelastic laws.489

The parameters related to the elastic potentials (Ci, κ, ki) are averaged over490

all the samples and all the frequencies as the influence of the frequency is491

negligible. The obtained values are actually similar to those obtained with492

the purely elastic identification (Tab. 4) which makes sense as the latter493

values are the initial guess of the viscoelastic identification. However, τ494

significantly increases when the frequency decreases (p ≤ 0.0001); its values495

are therefore given per frequency.496

* **

*** ***

E
rr

o
r

0.8 Hz 0.4 Hz 0.2 Hz All

Figure 16: Comparison of the performance of different forms of viscoelastic potentials for

various frequencies, among all the tested samples (12 at 0.8 Hz, 12 at 0.4 Hz, 14 at 0.2

Hz, all from three different rats). * corresponds to p ≤ 0.05, ** corresponds to p ≤ 0.001,

*** corresponds to p ≤ 0.0001.
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Law Parameter Value Unit

κ 7.06e4 ± 2.93e4 Pa

D

C1 3.22e3 ± 9.53e2 Pa

C2 2.04e3 ± 2.86e3 Pa

C3 2.92e4 ± 1.52e4 Pa

E
C1 3.54e3 ± 9.48e2 Pa

C3 3.30e4 ± 1.58e4 Pa

L
C1 4.04e3 ± 1.07e3 Pa

C4 9.62e4 ± 5.09e4 Pa

M
k1 5.58e3 ± 1.69e3 Pa

k2 4.86 ± 1.42 -

Frequency Parameter Value Unit

0.8 Hz

τ

5.06e-2 ± 2.53e-2

s0.4 Hz 1.23e-1 ± 3.87e-2

0.2 Hz 2.57e-1 ± 4.22e-2

Table 5: Identified parameters for viscoelastic potentials.
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6. Discussion497

This paper presents a method to determine material parameters for the498

lung parenchyma using advanced methods from both the experimental and499

the theoretical point of view. Thanks to this method, we obtain a reliable500

viscoelastic constitutive law that is suitable for Finite Element calculations.501

The experimental protocol has been improved since (Rausch et al., 2011).502

Measuring the thickness of each sample individually revealed its non-negligible503

variability throughout the set of samples; this distribution is now taken into504

account in the simulation. The other main improvement is the use of an op-505

tical method to determine the displacement field at the sample surface. It is506

worth noticing that as the samples are really thin, we can consider that this507

surface information is sufficient to describe the behavior of the tissue. In our508

case, knowing the displacement field is of high importance as we are partic-509

ularly interested in the lateral contraction of the sample. When we optically510

check the results of the image registration by superimposing the image and511

the corresponding mesh (Fig. 8 for instance), we can see that this optical512

method applied to the natural pattern of the parenchyma gives fully satis-513

factory results, despite some light reflections at the sample surface. These514

artifacts are indeed smoothed by the Finite-Element kinematics inherent to515

the image registration method.516

The theoretical constitutive framework used in this paper is adapted from517

an existing model proposed in (Holzapfel and Gasser, 2001). It allows the518

description of the non-linear elasticity as well as the viscosity for both the519

isochoric and the volumetric components of the deformation, not only the520

isochoric one.521
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In the present work, a quantitative determination of elastic as well as vis-522

cous properties of rat lung parenchyma is provided. The order of magnitude523

of the strain in our protocol is 0 to 45 %. In this range, the non-linear elas-524

tic behaviour of lung parenchyma is equally well described by a polynomial525

potential of degree ≥ 3 associated to a linear component (degree 1) or an526

exponential potential. No significant influence of the testing frequency was527

found in the identified elastic parameters. For the volumetric aspect of the528

law, we could determine that both Ogden and Sussman-Bathe give the same529

result and that the volumetric parameter κ is rather accurately identified (c.f.530

low standard deviation). In (Rausch et al., 2011), values for the parameters531

for a law of type B are given. C1 is similar to the one of this paper, while532

κ and C3 are smaller. The explanation can come from a better description533

of the lateral contraction in the present paper, that highly influences the534

determination of κ, as well as the consideration of the actual thickness of the535

sample.536

Adding a viscous component to the identified non-linear elastic constitu-537

tive law significantly increases the quality of the identification, especially at538

low frequency where the error is cut by half compared to the purely elas-539

tic case. It allows the description of the experimentally observed hysteresis540

loop. The elastic contribution of the law is rather insensitive to the frequency,541

but the time constant τ significantly decreases with increasing frequency. It542

shows that the lower the frequency, the higher the viscous effects.543

The main limitation of this work is that the uniaxial tension loading544

mode does not correspond to the mainly volumetric deformations the tissue545

would be subjected to in reality. It is not guaranteed that the constitutive546
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law determined in this paper for an isochoric-dominated loading would not547

be influenced by a volumetric-dominated loading. Identifying the volumetric548

contribution using the width evolution is however a first step towards an549

accurate estimation of the compressible behavior of the homogeneous lung550

parenchyma.551

A possible improvement for the presented method would be to replace552

the two optimization processes (image registration and inverse analysis) by553

a single one. It would consist in improving the mechanical regularization in554

the image registration, currently purely elastic, by taking into account the555

actual material law that is to be identified. This type of mechanical/optical556

identification method is described for instance in (Réthoré, 2010) and could557

be implemented in our in-house code in a straightforward way.558

The present experimental protocol and identification method are now to559

be applied for more biological tissues. Although they are particularly adapted560

to compressible material, they could also be used for any soft biological tissue,561

possibly requiring the addition of a random pattern on the surface of the562

sample. Future work is to investigate the viscoelastic properties of human563

lung parenchyma as well as parenchyma samples altered with ARDS. These564

data could then be included into the computational model of the respiratory565

system that is developed in our group.566
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Appendix A. Computation of the elastic stress and elasticity ten-570

sors571

Appendix A.1. Kinematic quantities572

The decoupled form of the potential requires expressing modified strain573

tensors. We define F as the deformation gradient and J = det F is the vol-574

ume change. The Cauchy-Green strain tensor is therefore C = FTF. In the575

case of a decoupled hyperelastic potential, we apply a volumetric/isochoric576

multiplicative split of the deformation.577

F = J1/3F̄ (A.1)

C = J2/3C̄ (A.2)

where F̄ and C̄ are the modified deformation gradient and Green-Lagrange578

tensor respectively, representing the isochoric part of the deformation. The579

strain invariants are defined as:580







I1(C) = tr C

I2(C) = 1
2
((tr C)2 − tr C2)

I3(C) = det C

(A.3)

The modified invariants associated with the isochoric contribution are581

defined as :582

Īi = J−2/3Ii for i = 1, 3 ⇒ Ī3 = 1 (A.4)

Ī2 = J−4/3I2 (A.5)
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Appendix A.2. Hyperelastic potentials583

Decoupling an isotropic hyperelastic potential leads to the following form:584

ψ(C) = ψvol(J) + ψiso(Ī1, Ī2) (A.6)

Adding a viscous contribution to both the isochoric and the volumetric585

part of the hyperelastic potential corresponds to:586

ψ(C,Γvol, Γ̄) = ψvol(J,Γvol) + ψiso(Ī1, Ī2, Γ̄) (A.7)

where Γvol and Γ̄ are kinematic internal variables that characterize the587

non-equilibrium state of the deformation process. It can be further split the588

following way:589

ψ(C,Γvol, Γ̄) = ψ∞

vol(J) + γvol(Γvol) + ψ∞

iso(Ī1, Ī2) + γiso(Γ̄) (A.8)

For the next section, we define the following quantities:

ψi =
∂ψ∞

iso

∂Īi
, i = 1, 2 (A.9)

p =
∂ψ∞

vol

∂J
(A.10)

ψij =
∂2ψ∞

iso

∂Īi∂Īj
, i, j = 1, 2 (A.11)

Appendix A.3. Stress tensors590

According to the work of (Holzapfel and Gasser, 2001), the elastic second591

Piola-Kirchhoff stress tensors are defined by:592
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S∞

vol = J pC−1 (A.12)

S∞

iso = J−2/3
P :

[
2ψ1I+ 2ψ2(Ī1I− C̄)

]
(A.13)

where P = I− 1
3
C−1⊗C is a fourth-order projector. As mentioned before,593

the fictitious stress tensors Qvol and Qiso associated with these elastic stress594

tensors follow an evolution equation given by Eq. (7).595

Appendix A.4. Elasticity tensors596

According to the work of (Holzapfel and Gasser, 2001), the elastic con-597

tribution of the elasticity tensors are defined by:598

C
∞

vol = Jp̃C−1 ⊗C−1 − 2JpC−1 ⊙C−1 (A.14)
599

C
∞

iso =
∑

i=1,2

C
∞

iso,i (A.15)

where:

p̃ = p+ J
∂p

∂J
(A.16)

C
∞

iso,i = P : Ĉ∞

i : PT +
2

3

(

J2/3Ŝ∞

i : C
)

P̃

−
2

3

(
C−1 ⊗ S∞

iso,i + S∞

iso,i ⊗C−1
)

(A.17)

600

Ĉ
∞

i = 4J−4/3
∑

j=1,2

(ψijDi ⊗Dj + ψiDi) (A.18)

601

Di =
∂Īi
∂C̄

, Di =
∂Di

∂C̄
(A.19)

602

Ŝ∞

i = 2ψiDi, S∞

iso,i = J−2/3
P : Ŝ∞

i (A.20)
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603

P̃ = C−1 ⊙C−1 −
1

3
C−1 ⊗C−1 (A.21)

The viscous contribution can be calculated from the elastic contribution,604

see Appendix B.605

Appendix B. Computation of the viscous stress and elasticity ten-606

sors607

Appendix B.1. Fictitious stress tensor608

To solve the differential equation (7), we apply the following method:609

Q̇+
1

τ
Q = βṠ (B.1)

⇔ Q̇− βṠ = −
1

τ
Q (B.2)

(B.3)

Once the elastic stress tensor S is computed at time step n + 1, we use610

a Newton scheme to compute the fictitious stress tensor at step n+ 1, using611

the history of these tensors:612

(Q− βS)n+1 = (Q− βS)n

+ (1− θ)∆t
(

Q̇− βṠ
)

n
︸ ︷︷ ︸

−
1

τ
Qn

+θ∆t
(

Q̇− βṠ
)

n+1
︸ ︷︷ ︸

−
1

τ
Qn+1

(B.4)

⇔ Qn+1 = λ1 [λ2Qn + β (Sn+1 − Sn)] (B.5)
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with613

λ1 =
τ

τ + θ∆t
, λ2 = 1−

(1− θ)∆t

τ
(B.6)

Appendix B.2. Viscous elasticity tensor614

As described in (Holzapfel and Gasser, 2001), the overall elasticity tensor615

at time step n + 1 is calculated as the sum of the elastic tensor and the616

viscous tensor, which leads to:617

Cn+1 = (1 + δ)

[

C
∞

vol +
∑

i=1,2

C
∞

iso,i

]

n+1

(B.7)

where δ = β exp(−∆t/2τ) as we consider the viscous constants τ and β618

to be the same for isochoric and volumetric contributions.619
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