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Abstract

This paper brings an identified model for a 6 degrees of freedom (dof) industrial robot, the Denso VP-6242G robot,

with an end-effector composed of a spherical handle, fixed on a force sensor. This robot is intended to experiments

in the field of Physical Human-Robot Interactions (PHRIs), for co-manipulation purposes. The control algorithms that

are necessary to achieve a good PHRI, require a good knowledge of the robot dynamical model, especially the inertia

matrix which should be positive definite whatever the configuration of the robot. However, most of industrial robots are

supplied without any datasheet containing the inertial parameters nor Computer-Aided-Design (CAD) model. Hence,

we propose to apply an identification procedure to experimental data, based on the Inverse Dynamic model Identification

Method (IDIM). To ensure the positive definiteness of the inertia matrix, the used optimization step addresses the problem

of nonlinear Weighted Least Squares (WLS), derived from the mathematical formulation of the identification problem,

under a set of nonlinear constraints in the parameters. A validation step permits to check the efficiency of this approach

for the Denso robot.

keywords: Industrial Robot; Closed-Loop Identification; Constrained Optimization.

1 Introduction

In control engineering field, most of the advanced nonlinear control techniques require the knowledge of the system’s
dynamical model. It is the case for many control problems concerning industrial robot manipulators, for which good
trajectory tracking has to be carried out. Many works about Physical Human-Robot Interactions (PHRI) rely on the prin-
ciple of trajectory tracking. This is for example the case in [Jlassi et al., 2014] where the authors have addressed the
co-manipulation problem which consists in achieving a master-slave relationship between an industrial robot and a human
operator (HO). A dynamical model contains kinematic and dynamic parameters. The kinematic parameters are known
as the parameters of the Modified Denavit-Hartenberg convention (MDH) [Khosla and Kanade, 1985]. It is not difficult
to extract these latter based on the robot datasheet provided by the manufacturers. However, dynamic parameters, which
are inertial and friction parameters, are rarely available in such datasheet. Moreover, it is hard, say impossible, to get
an accurate Computer-Aided-Design (CAD) model in order to obtain a good approximation of some inertial parameters.
Then, the only way to get a good dynamical model is the use of identification techniques applied to experimental data,
that can be found in [Walter and Pronzato, 1997]. This topic has received a great attention by the robotics community
during the last thirty years. Several important issues have been addressed by researchers. A non exhaustive list of issues
can be found in [Swevers et al., 2007]. Among them, the obtaining of a dynamical model is of utmost importance be-
cause it determines the number of parameters to be estimated. This issue has lead the researchers to distinguish between
the notions of link inertial parameters and base parameters, as introduced in [Gautier and Khalil, 1990, Gautier, 1990].
Basically, the base parameters are a kind of parameters’ regrouping within the motion equations, that allows to for-
mulate these motion equations as a linear relation in these parameters. This turns out to be useful when deriving an
algorithm of parameters’ estimation. Another issue concerns the experimental design, including the robot excitation
[Jin and Gans, 2015, Gautier and Khalil, 1991]. Most of people suggested a data acquisition in closed-loop, using a joint-
position control with a simple proportional controller designed to ensure a desired trajectory tracking. Even if the closed-
loop feature creates some correlations between the noise affecting the measurements and the other signals within the
closed-loop structure, this approach turns out to be quite efficient in the parameters’ estimation if the measured signals are
well post-processed with a suitable filtering [Janot et al., 2014, Brunot et al., 2017]. The desired trajectories are almost
always designed as periodic functions, corresponding to a sum of sinusoids with appropriate features, while guaranteeing
an acceptable Signal-to-Noise-Ratio (SNR) during the acquisition. This allows the inputs to meet the expected excitation
properties for the parameters’ identifiability. Finally, the estimated parameters’ computation method is closely related to
the kind of model used for identification. The Inverse Dynamic model Identification Method (IDIM) is the most popular
one since it provides an equivalent formulation of the torques that is linear in the base parameters. Hence, the Least

Université Paris-Sud XI
UFR des Sciences d’Orsay 2/13

Laboratoire des Signaux & Systèmes
Pôle Automatique & Systèmes



Squares (LS) approach can easily be performed [Swevers et al., 2007, Jin and Gans, 2015]. Most of works have rather
used the Weighted Least Squares (WLS) technique to prevent the effects of inaccurate data. To this end, the data are
averaged over one period and weighted by the covariance matrix of the torque measurements, computed by taking into ac-
count all the recorded periods. Nevertheless, there is no guarantee that the estimated parameters lead to a positive definite
inertial matrix [Yoshida and Khalil, 2000].

In this paper, we propose to combine a nonlinear WLS estimation technique under a set of nonlinear constraints in
the dynamic parameters, that ensures the inertia matrix to be positive definite. The paper is organized as follows, Section
2 introduces the basics on robot identification, and explains the constrained nonlinear WLS approach. Then, Section 3
proposes the application to the Denso VP-6242G robot. Finally, some conclusions are proposed in Section 4.

2 Basics on robot identification

Consider the general case of a rigid robot having n revolute joints, with n serial links and a fixed base. The kinematic pa-
rameters are assumed to be well known. The dynamic parameters stands for the inertial parameters of the links as defined
in [Yoshida and Khalil, 2000], and the usual Coulomb & viscous friction coefficients as indicated in [Swevers et al., 2007].
A parametric equation of motion in these parameters can be formulated, in continuous time, as:

M(q,θ)q̈+N(q, q̇,θ) = τ, (1)

where q, q̇ and q̈ denote the (n× 1) vectors of joint positions, velocities and accelerations respectively, called kinematic
joint variables; τ is the (n×1) vector of the joint torques; M(q,θ) denotes the (n×n) inertia matrix which is symmetric
and positive definite; N(q, q̇,θ) is the (n× 1) vector that gathers the Coriolis, centrifugal, gravity and friction torques.
Both terms depend on the dynamic parameters’ vector denoted θ , of dimension (nθ ×1), in a linear manner. It is assumed
that all the components of q and τ are measured with noisy sensors.

2.1 Choice of the parameters for the IDIM approach

The IDIM consists in rewriting the left side of (1) as a linear relation in θ as follows:

τ = D(q, q̇, q̈)θ . (2)

where D is a (n×nθ ) matrix that only depends on the kinematic joint variables of the robot, called the measurement matrix
[An et al., 1985]. By using the same notations as in [Khalil and Creusot, 1997] for the link i, we can define the following
dynamic parameters:

- xxi, xyi, xzi, yyi, yzi, zzi are the components of the inertia tensor matrix iIi around the origin Oi of the link frame Ri;

- mxi, myi, mzi are the first moments;

- mi is the mass of the link;

- Fsi, Fvi are the Coulomb and viscous friction coefficients of a friction model linear in these parameters.

The above parameters are gathered in the following vector

θi
T =

[
xxi xyi xzi yyi yzi zzi

mxi myi mzi mi Fsi Fvi

]
.

(3)
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where T denotes the transpose operator. The first ten parameters of θi are called the inertial parameters for the link i, as
indicated in [Yoshida and Khalil, 2000]. Then, θ is built by concatenating the θi (i = 1, ...,n).

In [Gautier and Khalil, 1990, Gautier, 1990], the authors have proposed to determine which are the parameters that
have no influence on the dynamics of the robot. They derived some rules for the regrouping of the inertial parameters
and the corresponding relationships. The regrouped inertial parameters are called minimum inertial parameters. The new
parameters’ vector is called the base parameter vector, denoted by θB, and contains nθB components. Relation (2) can
thus be rewritten as

τ = DB(q, q̇, q̈)θB, (4)

where DB is a (n×nθB) matrix, with nθB < nθ .

2.2 Closed-loop data acquisition and excitation signals

For the sake of keeping the robot integrity, it is better to excite the robot while mastering its configuration at each
sampling time, in order to avoid self collisions or collisions of the robot with its environment. Hence, a joint posi-
tion feedback control with a simple proportional controller, with suitable adjusted gain, is performed to follow a given
trajectory in joint space that meets a number of desired requirements. In identification, the choice of the excitation
signal is important, because it should “excites all the parameters” to identify. A signal with this feature is called a
Persistent Excitation Signal (PES). A PES used to identify nθB parameters must contains at least nθB sinusoids of differ-
ent frequencies [Gautier and Khalil, 1988], [Gautier and Khalil, 1991], [Lennart, 1971]. Moreover, the desired trajectory
should be designed so that it is periodic during a long time range in order to ease the statistical analysis of the results
[Swevers et al., 2007], each period being built to be a PES and the number of periods should be greater than n. Finally, the
amplitudes of the PES should be within an allowable range of motion, in order to comply with the robot safety limits, and
it should maximize the Signal-to-Noise-Ratio (SNR) for each measured output signal needed for the robot identification.
One can easily design such PES with the requested properties and uses them for the robot identification as desired trajec-
tories for the joint positions. If the proportional gains of the position feedback control are high enough, then the tracking
errors between the measured and the desired joint positions become small enough to ensure that the measured positions
will have properties close to the ones of the desired trajectories.

2.3 Signal processing

In general, the measured (joint torques and positions) and computed (joint velocities and accelerations) data are noisy.
These data can not be directly used in identification because of the closed-loop feedback control that might create correla-
tions between the noises and the signals of the closed-loop system. This can introduce some unknown biases in the values
of the identified parameters [Brunot et al., 2017]. To avoid this undesirable effect, the data are filtered before being used
by the estimation algorithms. This is done off-line thanks to a low-pass filter with a unit gain at low frequencies and a
frequency cut-off set a decade after the highest existing frequency in the desired trajectories. In practice, a forward plus
backward filtering of the noisy data is performed in order to get a zero-phase filtering of these data. Furthermore, since
the applied excitation signals contain many periods, an average period of each signal is computed over all the available
periods in order to reduce the computational burden of the estimation algorithm. Given a periodic signal in discrete time,
denoted by x(k), with P full periods and K samples per period. The average period of x(k), denoted by x̄(k), is obtained
through the relation

x̄(k) =
1
P

p=P

∑
p=1

x(k +K(p−1)). (5)

Finally, it may sometimes be useful to undersample the data if the sampling frequency is too high compared to the
frequency bandwidth of interest.
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Let q̂ and τ̂ be the joint positions and torques after applying the whole signal processing described before; ˙̂q and ¨̂q are
the resulting joint velocities and accelerations, suitably computed by numerical differentiation. The data are assumed to
check the following relation at sample time k, derived from (4)

τ̂(k) = DB
(
q̂(k) , ˙̂q(k) , ¨̂q(k)

)
θB +ρ (k) , (6)

where ρ is an (n× 1) vector of error terms, gathering the noises and the unmodelled dynamics. It is assumed to have a
zero-mean, and uncorrelated samples. The sets of N samples retained after the whole signal processing described above
are used to define:

Y :=


τ̂(1)

...

τ̂(N)

, W :=


DB
(
q̂(1), ˙̂q(1), ¨̂q(1)

)
...

DB
(
q̂(N), ˙̂q(N), ¨̂q(N)

)
, R :=


ρ(1)

...

ρ(N)

, (7)

where Y , R are (nN×1) vectors, and W is (nN×nθB) matrix. Then, (6) leads to

Y = W θB +R, (8)

which is an overdeterminated set of linear equations in the unknown parameters in θB.

The conditioning number associated with the regressor matrix W allows to measure the sensitivity of the solution θB

to the noises affecting the measurements of τ , q and eventually q̇ and q̈. Therefore, the post-processed data should reduce
the conditioning number, to ensure the convergence of the identification process towards an unbiased vector of parameters
[Gautier and Khalil, 1991, Janot et al., 2014].

2.4 Estimation of the base parameter vector

For a full rank regressor matrix W , and a zero-mean additive independent Gaussian noise for R, an estimation θ̂B of θB

can be obtained by solving the following WLS minimization problem [Swevers et al., 2007]:

θ̂B = argmin
θB
‖W T

Σ
−1/2 (Y −WθB) ‖2 (9)

whose optimal solution is given by

θ̂B = CW T
Σ
−1/2Y, (10)

where Σ denotes the covariance matrix of the actuator torque data and C :=
(
W T Σ−1/2W

)−1
is the covariance matrix of the

estimated parameters’ vector. The matrix Σ is a block diagonal matrix composed of N matrices of dimension (n×n) and
denoted Σk, corresponding to the covariance matrix of the actuator torques computed at the sample time k. Its expression
is given by:

Σk =
1

(P−1)

P

∑
p=1

(
Tp (k)− τ̂ (k)

)(
Tp (k)− τ̂ (k)

)T
, (11)

where Tp(k) stands for the pth period at the sample time k of the torque measurements τ , on which has been applied only
the filtering and the decimation steps. The computation of θ̂B using the relation (10) is very tractable, but this solution does
not ensure that the corresponding inertial matrix is positive definite. In the sequel, we consider this additional constraint
to the problem in (9), which becomes:

θ̂B = argmin
θB
‖W T

Σ
−1 (Y −WθB) ‖2

such that M(q, θ̂B) > 0 ∀q.
(12)
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The problem (12) consists in minimizing the squared norm of the weighted error between the measured and computed
joint torques, under the constraint that the corresponding inertia matrix is always positive definite, i.e. with positive
eigenvalues, whatever the robot configuration. A sufficient condition for the inertial matrix to be positive definite for
each configuration of the manipulator is given in [Yoshida and Khalil, 2000]. The authors have proved that constraints on
physical parameters of the links composing the manipulator, lead to an inertia matrix which is positive definite. The link
constraints in [Yoshida and Khalil, 2000] are: {

mi > 0, i = 1, ...,n
iIgi > 0,

(13)

where mi and iIgi are the mass and the inertia tensor matrix around the center of mass gi of the link i. The relation between
iIi and iIgi is given by [Yoshida and Khalil, 2000]:

iIi = iIgi +mi
(
rT

i riE3− rirT
i
)
, (14)

where ri =
[
xi yi zi

]T
is the vector from Oi to gi, and E3 is the (3×3) identity matrix.

Let us denote the link inertial parameters mentioned in subsection 2.1 by θIi . The base parameters vector θB is a
function of θIi , Fsi and Fvi (i = 1, . . . ,n), whose expression can be derived analytically. Hence,

θB = f
(
{θIi ,Fsi,Fvi}i=1,...,n

)
. (15)

Let us define the link physical parameters θPi as the vector whose components are the elements of iIgi , ri and mi. Some
components of θIi are also included in θPi , like mi. However, other components of θIi depend linearly (like mri) or
nonlinearly (like iIi) in the components of θPi . By denoting h the general relation derived from (14), between the vectors
θIi and θPi , it follows:

θIi = h(θPi), i = 1, . . . ,n. (16)

Using the relations (15) and (16), the base parameters vector θB can be rewritten as a nonlinear function, denoted by g, of
ϑi

T :=
[
θPi

T Fsi Fvi

]
:

θB = g({ϑi}i=1,...,n). (17)

According to [Yoshida and Khalil, 2000], to have a positive definite inertia matrix, it is sufficient that all mi and iIgi

contained in the equation (17) satisfy the condition (13). However, the set of admissible mi and iIgi is not unique. In
[Yoshida and Khalil, 2000], it is called virtual parameters. The problem (12) is transformed into a Constrained WLS
(CWLS) optimization new problem in the unknown parameter vector ϑ T =

[
ϑ1

T · · · ϑn
T
]
:

ϑ̂ = argmin
ϑ
‖W T

Σ
−1 (Y −Wg(ϑ)) ‖2

such that

{
mi > 0, iIgi > 0,

Fsi > 0, Fvi > 0, i = 1, ...,n.

(18)

The constraint on the estimated inertia tensor matrix is equivalent for this last to have all its eigenvalues positive. The
estimated values of Fsi and Fvi can only be positive, which justifies the addition of constraints on these parameters in
(18). To finish the procedure, the estimated vector ϑ̂ is substituted into (17) to obtain the corresponding estimation of the
base parameter vector θ̂B, needed to build the estimated inertia matrix. Because of its nonlinear feature, it is worth noting
that the optimization problem in (18) may contain several local minima. It should then be tackled by global optimization
solvers. The global minimum seeking may be a tedious task.
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2.5 Validation

To check the validity of the estimated parameters by the proposed procedure, these parameters are used to reconstruct the
joint torques which are compared with the measured ones. For this purpose, the post-processed kinematic joint variables
are used as inputs for the inverse dynamic model in (2) with the estimated parameters. This validation step is necessary
to have an information about the confidence interval of the estimated parameters, and at the same time, about the model
validity.

3 Case study : Denso VP-6242G robot

3.1 Dynamic identification model of the robot

The Denso VP-6242G robot is a manipulator with six revolute joints, depicted in Fig. 1.

Figure 1: VP-6242G Denso robot.
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Figure 2: Robot frames for MDH convention.

A force sensor is fixed between a spherical handle, devoted to PHRI experiments, and the end-effector. The
dynamic model is computed by using the parameters of the Modified Denavit-Hartenberg convention (MDH)
[Khalil and Kleinfinger, 1986]. Figure 2 shows the frames attached to each joint of the robot according to this convention.
Table 1 shows the MDH parameters of the Denso VP-6242G robot, extracted from Fig. 2. By using the SYMORO+ software
package [Khalil and Creusot, 1997, Khalil et al., 2014] with these parameters, the dynamical model of the robot for the
identification is obtained. The base parameters vector θB is of dimension (48× 1), and the regressor matrix DB is of
dimension (6×48).
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Table 1: Kinematic parameters of the Denso robot.
i αi di ri θi i αi di ri θi

1 0 0 l1z q1 4 −π

2
−l3x l3z + l4 q4

2
π

2
0 0 q2 +

π

2
5

π

2
0 0 q5

3 0 l2 0 q3−
π

2
6 −π

2
0 l5 q6

3.2 Excitation signals

The used excitation signals, for each axis, have been designed as a sum of 55 basic sinusoids of same amplitudes, randomic
phases and different frequencies. Each resulting sum was scaled to comply with its corresponding range of joint motion
(see Table 2), set to keep the robot safe. The frequencies have been chosen to be integer multiples of a fundamental
frequency. The number of sinusoids has been taken greater than the number of base parameters to identify in order to
ensure the PES’s feature [Walter and Pronzato, 1997, Lennart, 1971]. In addition, the higher frequency was constrained
by the limit frequency, defined by:

fi =
Aq̇,i

2πAq,i
,

where Aq,i and Aq̇,i are the maximum allowed amplitudes for the joint position and velocity of the joint i. The Aq,i are
determined to avoid the collisions between the robot and its environment, and the self collisions between some parts of
the robot. The Aq̇,i are derived from the actuator positioning time characteristic given in the Denso Robot datasheet, that
gives a relation between positioning time and motion angle, for a given load carried by the end-effector. To enhance
the estimation reliability, the periodic excitation signals have been built with 12 periods, with 380 sec per period, and a
sampling time of 10−3 sec. The duration of one period depends on the fundamental frequency and on the limit frequency.
Each initial joint position is set to the center of its corresponding joint motion range. In addition, the movement starts and
stops with zero joint velocities and accelerations. For this, a phase of immobility of 4 sec is appended at the beginning
and at the end of the periodic signals. During these phases, the robot remains at the initial position. A connection phase
of 5 sec is also appended to connect the initial joint positions of the robot with the excitation signals. The total excitation
time is 4578 sec. Table 2 presents the joint motion range [qi,m,qi,M], the amplitudes Aq,i and Aq̇,i, the limit frequency fi,
and the proportional gain Kpi of the joint-position controller for each axis Ji.

Table 2: Parameters used to generate the inputs.

Axis [qi,m,qi,M] [◦] Aq,i [◦] Aq̇,i [◦/s] fi [Hz] Kpi

J1 [−135,+135] 135 ±168.7882 0.1989 1.2838

J2 [−45,+90] 67.5 ±126.4223 0.2981 1.6683

J3 [−90,−40] 25 ±168.3147 1.0715 4.4711

J4 [−155,+155] 155 ±202.1053 0.2075 1.3116

J5 [−90,+90] 90 ±205.1282 0.3627 1.7577

J6 [−160,+160] 160 ±203.6364 0.2025 1.6678

Université Paris-Sud XI
UFR des Sciences d’Orsay 8/13

Laboratoire des Signaux & Systèmes
Pôle Automatique & Systèmes



Table 3: Features of the motors of the Denso VP-6242G robot
Axis J1 J2 J3 J4 J5 J6

Kci 0.38 0.38 0.22 0.21 0.21 0.21
Gri 120 160 120 100 100 100

3.3 Data processing

First, the measurements of the joint currents and positions are recorded. To obtain the joint torques, the joint currents
are multiplied by their corresponding torque constants Kci and motor gear ratios Gri , presented in Table 3. Then, the
data are filtered by using a zero-phase filtering through a low-pass Butterworth filter of order 1 with a cut-off frequency
set to 10 Hz. Joint velocities and accelerations are computed by a suitable numerical differentiation of the filtered joint
positions. To reduce the noises due to numerical differentiation, the resulting velocity and acceleration signals are also
filtered in the same way. In a third step, the data corresponding to the phases of immobility and connection are withdrawn
in order to keep only the periodic parts of the data. The data are then averaged over the 12 periods. In a last step, since
the sample frequency (103 Hz) is higher than the filter cutoff frequency (10 Hz), the data are undersampled with a factor
of 10, which reduce the size of the useful data, but also the sample frequency of these data to 102 Hz. This frequency
remains comfortably higher than the highest frequency contained in the filtered data (Tab. 2). Hence, the data should not
be affected a lot by this decimation factor. A zoom between the instants 1200 and 1400 sec of the signals of measured
joint position and torque, and calculated velocity and acceleration of the joint 1, before (blue) and after (red) filtering are
shown by the figure 3. We can observe that the noisy measurements are correctly filtered. We conclude that the choice
of the filter parameters (cut-off frequency and order) is adequate. The important error in the joint acceleration signal is
interpreted by a significant noise associated with this signal, as it results from a double differentiation of the joint position.
We consider that these post-processed data can be used in the sequel of the identification procedure.

3.4 Parameters estimation

Once the regressor matrix W , the covariance matrix of the torque data Σ and the torque vector Y has been constructed,
the condition number of W was checked as well as its full rank feature. In the case of the VP-6242G Denso robot, ϑ

is of dimension (66× 1). The estimation of the parameter vector ϑ was performed by solving the CWLS optimization
problem in (18). For this, we used the Matlab function fmincon that allows to find a minimum solution of the constrained
nonlinear multivariable problem.

The table 4 shows two sets of numerical values of the base parameter vector θB estimated by solving the WLS problem
in (10) and the CWLS one in (17) & (18). The third column of the table presents the standard deviation σ of the estimated
parameter vector, defined as the squared root of the diagonal elements of the matrix C.
The standard deviation σ of each parameter in Tab. 4 is small enough compared to the corresponding estimated value. It
means that we can be confident in the parameter estimation.
The table 5 shows, for each link i, the virtual mass mi and the minimum eigenvalue of the virtual inertia tensor matrix iIgi .
This table shows that the condition (13) is satisfied, ensuring a positive definite inertia matrix derived from the estimated
parameters.

3.5 Torque reconstruction

Torque reconstruction is a step for checking the validity of the estimated parameters, and at the same time the corre-
sponding dynamical model. For this, a different set of measurement than the one exploited for the identification is used.
These new data were obtained by using a new input signal but with the same features as the one used for the identification
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(PES + periodic. . . ). The feedback control is used with the same proportional gains. The obtained signals are different
compared to those obtained during the identification. The post-processed joint torques are compared with those resulting
from the application of the corresponding joint variables (q, q̇ and q̈) on the dynamical model of the robot, using the iden-
tified parameters. In Fig. 4, the measured torques after filtering are compared with those calculated using the identified
parameters.

The figures in Fig. 4 illustrate a good quality of reconstruction of the torques. The dynamical model of the robot and
the identified parameters can be considered acceptable and used to apply control techniques.

4 Conclusion

In this paper, we were interested in identifying the dynamic parameters of the industrial manipulator robot Denso VP-
6242G. To this end, we used a nonlinear weighted least squares formulation of the identification problem under nonlinear
constraints in the dynamic parameters. The identified parameters and the dynamic model of the robot were validated by
the torque prediction approach. The identification method appeared to be efficient in giving parameters that lead to a
positive definite inertia matrix. Future works will concern the use of the identified model of the Denso robot to achieve a
PHRI for a co-manipulation purpose, as proposed in [Jlassi et al., 2014].
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Figure 3: Data for axis 1 before (blue) and after (red) filtering (left), and the corresponding signal errors (right).
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Table 4: Numerical values of θB and standard deviation of parameters σ .

θB CWLS WLS σ θB CWLS WLS σ

zzr1 7.10 9.05 3.64e−2 yz4 −0.06 −0.07 2.83e−3

Fs1 49.75 49.38 7.68e−3 zzr4 0.06 −0.86 5.71e−3

Fv1 150.81 151.39 2.78e−2 mx4 0.30 0.24 7.84e−4

xxr2 −5.96 0.20 4.46e−2 myr4 0.20 0.20 6.08e−4

xy2 −1.01 −1.22 2.15e−2 Fs4 24.63 24.62 4.75e−3

xzr2 −1.17 −1 1.35e−2 Fv4 21.55 21.17 1.13e−2

yz2 −0.97 −0.81 2.19e−2 xxr5 0.22 0.29 4.87e−3

zzr2 17.29 17.71 2.56e−2 xy5 0.01 0.013 2.42e−3

mxr2 18.67 18.77 2.54e−3 xz5 −0.02 −0.01 1.73e−3

my2 0.28 0.31 1.22e−3 yz5 0.01 0.01 2.06e−3

Fs2 63.64 64.61 1.12e−2 zzr5 0.56 0.59 1.96e−3

Fv2 185.75 180.34 4.80e−2 mx5 0.13 0.13 4.58e−4

xxr3 9.04 −0.32 2.89e−2 myr5 2.12 2.11 4.79e−4

xyr3 0.41 2.27 1.91e−2 Fs5 20.45 20.40 3.79e−3

xz3 0.05 0.10 5.68e−3 Fv5 29.29 29.12 9.64e−3

yz3 0.04 0.04 5.97e−3 xxr6 −0.07 −0.08 2.34e−3

zzr3 4.37 4.20 4.14e−3 xy6 0.03 0.03 1.24e−3

mxr3 −5.16 −4.98 1.24e−3 xz6 0.02 0.02 1.27e−3

myr3 8.77 8.79 1.30e−3 yz6 0.00 0.00 1.36e−3

Fs3 54.78 54.87 8.10e−3 zz6 0.00 0.05 2.29e−3

Fv3 87.92 86.78 2.95e−2 mx6 0.10 0.10 4.04e−4

xxr4 −0.21 0.13 7.32e−3 my6 −0.05 −0.05 3.51e−4

xy4 0.19 0.19 3.34e−3 Fs6 19.08 19.11 3.91e−3

xz4 0.23 0.21 2.81e−3 Fv6 15.74 15.51 7.91e−3

Table 5: Checking of the constraints in (13).
Link 1 2 3 4 5 6

λmin
{

iIgi

}
0.01 0.01 0.01 0.01 0.01 0.01

mi 6.22 2.07 17.99 20.95 1.93 38.45
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Figure 4: The filtered measured and computed torques.
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