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2Université Clermont Auvergne, CNRS, Institut Pascal (UMR6602), F-63178, Aubière, France
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Abstract

Among the various existing and mathematically equiv-
alent definitions of the skeleton, we consider the set of
critical points of the Euclidean distance transform of
the shape. The problem of detecting these points and
using them to generate a skeleton that is stable, thin
and homotopic to the shape has been the focus of nu-
merous papers. Skeleton branches correspond to ridges
of the distance map, i.e. continuous lines of points that
are local maxima of the distance in at least one direc-
tion. Extracting these ridges is a non-trivial task on
a discrete grid. In this context, the average outward
flux, used in the Hamilton-Jacobi skeleton [43], and
the ridgeness measure [28] have been proposed as ridge
detectors. We establish the mathematical relation be-
tween these detectors and, extending the work in [18],
we study various local shape configurations, on which
closed-form expressions or approximations of the av-
erage outward flux and ridgeness can be derived. In
addition, we conduct experiments to assess the accu-
racy of skeletons generated using these measures, and
study the influence of their respective parameters.

1 Introduction

Question: What did the skeleton say while riding his
Harley Davidson motorcycle?
Answer: Bone to be wild!

Owing to its efficiency in representing shapes, and
despite its intrinsic instability to contour deforma-
tions, the skeleton, or medial axis [11], is extensively
used for shape matching, classification and indexing.
Among several advantageous properties over the
shape contour itself, it lends itself to the design of
shape features with a certain degree of invariance to
articulated deformations and reorganization of shape
parts [6, 41]. In addition to thinness and homotopy
to the shape, a desirable property of the skeleton
in the context of shape recognition is stability. A
number of recent methods focus on computing a
skeleton that captures the main parts of the shape

while being stable over global transformations or
small local contour deformations [16, 23, 28, 34].
These advantageous features are exploited in shape
recognition and matching methods [6, 33, 42, 48].

The choice of a skeletonization algorithm for a
given shape depends on the available representation
of the shape. When the data available is the border
sampled in Rn∈{2,3} - typically, a polygon when n = 2
or a triangulated mesh when n = 3 - one would use
Voronoi diagram-based algorithms [2, 13, 30, 37]. On
the other hand, when the data available is a discrete
shape, i.e. a subset of Zn∈{2,3}, it is preferable to
choose from thinning procedures [4, 10, 26, 38], which
iteratively remove border points with topological con-
ditions, and/or distance-based methods [5, 20, 22, 25],
which typically detect local maxima of the Euclidean
distance transform. Furthermore, distance-based and
thinning methods are not mutually exclusive, as some
methods combine both aspects, e.g. [40, 43]. This is
also the case of the methods studied in this paper.

Several equivalent definitions of the continuous
skeleton exist. Among these, one definition is that
it is the set of centers of maximally inscribed balls.
Let Ω ⊂ Rn∈{2,3} be a shape in a n-dimensional image.
The distance transform D : Ω → R+ maps a point to
the Euclidean distance to its nearest point on the shape
border ∂Ω:

D(x) = min
y∈∂Ω

‖x− y‖

The skeleton S is the subset of Ω containing centers
of maximal balls, or equivalently, balls having at least
two distinct contact points on the shape border [23].
The radius of the maximal ball centered at a skeleton
point s being D(s), the skeleton is defined as

S = {s ∈ Ω | ∃p, q ∈ ∂Ω,p 6= q,

‖s− p‖ = ‖s− q‖ = D(s)}

Starting from the shape border, if one considers the
evolution of a curve in the inward normal direction,
the skeleton is the set of locations where fronts collide,
namely shocks [44]. Equivalently, skeleton branches
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correspond to ridges, or crest lines, of the distance
map. In other words, skeleton points are local maxima
of D in at least one direction, and ∇D is undefined at
these points.

The extraction of ridges of the Euclidean distance
map, which is the focus of this paper, dates as far
back as [5]. The problem was initially addressed in
a discrete ad hoc manner, in which a set of discrete
kernels were designed to extract ridges. Later, it was
formulated in a consistent, continuous framework in
the Hamilton-Jacobi skeleton [43], where the Average
Outward Flux (AOF), a measure of local divergence
of the distance map, was used to distinguish skeleton
points from non-skeleton points. The AOF measure
was combined with an homotopy-preserving thinning
process. Starting from the border, points are itera-
tively removed by ascending order of AOF, in absolute
value. Points with strong AOF being located on local
maxima of the distance map, the obtained skeleton is
consistent in the Euclidean sense. Numerous works
build upon the Hamilton-Jacobi skeleton, such as
3D centerline extraction [12], shock graphs for shape
matching [42] and the curvature-density correction
of [45]. Theoretical values of the AOF, known as flux
invariants, were studied in [18], for a number of local
configurations of planar shapes.

We recently introduced the ridgeness measure
in [28]. In this method, candidate skeleton points
are extracted by filtering the Euclidean distance map
with a negative Laplacian of Gaussian (LoG) kernel.
Local maxima of the distance map have thus strong
ridgeness. In [28], we applied hard thresholding to
remove points with insufficient ridgeness. This results
in significantly lower complexity in comparison to
iterative thinning, but to the detriment of connec-
tivity, as hard thresholding may disconnect skeleton
branches. In order to guarantee homotopy to the
shape, a reconnection step was added, based on a
criterion combining ridgeness and centers of maximal
balls.

Both AOF and ridgeness are, roughly speaking,
differential operators applied on the distance map.
Among other ridge detectors of distance transforms,
is the skeleton strength map [19, 27, 31]. It is defined
as a divergence-like measure of the diffused gradient
field ∇D, which is the solution of a partial differential
equation. Unlike AOF or ridgeness, the skeleton
strength map is the solution of a time-iterative
process. Since we focus on ridge detectors for which
analytical solutions can be derived for specific shape
configurations, we do not include this measure in the
current study.

To generate a skeleton relevant for recognition
tasks, a common processing step is the pruning and/or
hierarchization of skeleton branches [7, 29, 48].
Meaningful branches, generated from significant shape

parts, should typically be favored over branches aris-
ing from contour details. As regards distance-based
skeletonization algorithms, the ridge detection step
is crucial, as it affects the amount of branches to be
pruned afterwards. In their respective methods, the
AOF and the ridgeness are thresholded at some stage.
Points selected by this thresholding step are retained
as candidate skeleton points. A loose thresholding
will retain many points, resulting in a possibly high
amount of undesirable branches, while an excessive
thresholding might remove significant branches. Both
measures have a parameter, related to their spatial
extent, which impacts the detection. Thus, a princi-
pled way of determining the threshold, both according
to the spatial parameter and the desired degree of
branching, by means other than simple empirical
study, would be of significant value.

We believe that studying the behavior of the skele-
ton measures can provide insights on how to choose
their thresholds appropriately. We therefore conduct
an analytical study of the measures on a set of lo-
cal theoretical shape configurations (regular skeleton
points, endpoints, etc). We make multiple contribu-
tions. First, we establish the mathematical relation
between the AOF and our ridgeness measure. Then,
for the AOF, we provide mathematical derivations ex-
tending the flux invariants of Dimitrov et al [18]. We
express this particular contribution more explicitly in
Section 2, once the AOF is defined. As regards the rid-
geness, we provide completely new invariants 1. Some
configurations, like ligatures [24, 32, 39] - connections
between skeleton branches - are often problematic in
skeleton extraction and skeleton-based shape match-
ing. Unlike other local shape configurations, the case
of ligature was not studied in [18]. Therefore, we pro-
vide an analysis of AOF and ridgeness measures for
this particular case. Finally, we report the experiments
that we conducted on a shape dataset, in which we vary
parameters and thresholds to corroborate our deriva-
tions, and compared the performances of AOF-based
and ridgeness-based skeletons.

2 Ridge detection in distance
maps

The AOF and the ridgeness are local detectors of ridges
of D. As they imply first and second order differentia-
tion, at a point x where D is twice differentiable, the
Laplacian, divergence of gradient and Hessian matrix
are linked as follows:

div ∇D(x) = ∆D(x) = tr(HD(x))

1Throughout the paper, we refer to detailed mathematical
derivations in appendices, which are provided in a supplementary
document
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2.1 Average outward flux

In a given region B, the outward flux of a vector field v
is the amount by which vectors of v point towards the
exterior of B. Naturally, the outward flux of ∇D is
close to zero in regions located on linear slopes of D
(non-skeleton points), whereas it becomes highly neg-
ative on ridges of D (skeleton points). Siddiqi et al
[43] defined the skeleton likeliness as the AOF of ∇D,
i.e. the outward flux in region B(x) centered at x,
normalized by the length of the boundary of B(x):

aof(x) =
1

|∂B(x)|

∫
∂B(x)

∇D · n ds (1)

where ds is an element of the boundary ∂B(x) of the
region B(x) and n is the outward normal along this
boundary. Via the divergence theorem,

aof(x) =
1

|∂B(x)|

∫
B(x)

div ∇D(y) dy

=
1

|∂B(x)|

∫
B(x)

∆D(y) dy
(2)

In [43], region B is chosen as a ball of constant radius r.
In the 2D case, using Eqs. (1) and (2), the AOF is writ-
ten as an integral over the circle of radius r, spanned
by angle θ:

aof(x, r) =
1

2π

∫ 2π

0

∇D
(
x+

[
r cos θ
r sin θ

])
·
[

cos θ
sin θ

]
dθ

(3)
The AOF is highly negative for skeleton points and
close to zero for non-skeleton points. The skeletoniza-
tion procedure, described in Algorithm 1, performs
flux-ordered thinning, using a max-heap, relying on a
criterion based on simple points [10], so that thinness
and homotopy to the input shape are maintained. End-
points such that aof(x, r) < thaof are automatically
kept as skeleton points. As soon as a point p has been
processed, propagation is performed on its 8-connected
neighborhood, defined as

N8(p) = {q ∈ Z2 | ‖q − p‖∞ = 1}

This algorithm theoretically operates
in O(|Ω| log |Ω|) iterations - due to the fact that
thinning in ordered with respect to the AOF measure -
but is close to O(|Ω|) in practice. Skeletons generated
with this procedure are studied in Section 4.

2.2 Ridgeness

The n-dimensional Gaussian, with isotropic covariance
matrix Σ = σ2I, where I is the n × n identity matrix
and σ the standard deviation, is

Gσ(x) =
1

(2π)
n/2

σn
exp

(
−‖x‖

2

2σ2

)
The n-dimensional Laplacian of Gaussian (LoG) filter
is

∆Gσ(x) =
1

(2π)
n/2

σn+2

(
‖x‖2

σ2 − n

)
exp

(
−‖x‖

2

2σ2

)

Algorithm 1: AOF-ordered max heap-based thin-
ning [43]

Input:
Ω ⊂ Z2 : discrete shape
r ∈ R+: radius
Output:
S ⊂ Z2: skeleton
Variables
H : max-heap sorted w.r.t aof
E ⊂ Z2: set of skeleton endpoints

1 begin
2 S := Ω
3 E := ∅
4 foreach point p ∈ ∂Ω do
5 insert(p,H)
6 end
7 while notEmpty(H) do
8 p := extractTopElement(H)
9 if isSimple(p) then

10 if isEndpoint(p) and aof(p, r) ≤ thaof

then
11 Add p to E
12 else
13 Remove p from S
14 foreach neighbor q ∈ N8(p) ∩ S do
15 if isSimple(q) and q /∈ E then
16 insert(q,H)
17 end

18 end

19 end

20 end

21 end

22 end
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In [28], we defined the ridgeness, at a given scale σ,
as the negative of the LoG-filtered distance transform:

rdg(x, σ) = − (D ∗∆Gσ) (x) (4)

where ∗ is the convolution operator over Rn. Assuming
that the distance function is extended over the entire
domain Rn,

rdg(x, σ) = −
∫
Rn
D(y)∆Gσ(x− y)dy (5)

or, if D is twice differentiable,

rdg(x, σ) = −
∫
Rn

∆D(y)Gσ(x− y)dy (6)

In our initial method [28], the skeleton construc-
tion uses two thresholds on the ridgeness map,
namely thrdg−low and thrdg−high. Hard thresholding
is performed with respect to thrdg−low, chosen slightly
above 0, in order to remove all points that are un-
likely to be skeleton points, in linear time. The initial
purpose was to avoid the log-linear complexity of the
ordered thinning as in Algorithm 1. However, small
branches connected by weak ligatures, as described in
Section 2.3, can be lost, as skeleton ligature points can
have very weak ridgeness. This impediment drastically
reduces the range of thrdg−low for which an accurate
skeleton can be obtained. After thresholding, a thin-
ning pass is performed. Finally, the thin skeleton is
pruned with a criterion using, among others, the sec-
ond threshold thrdg−high. We now believe that the
ridgeness-based skeleton can be generated more sim-
ply, in the same way as the AOF-based one. Indeed,
a similar homotopy-preserving iterative thinning can
be applied, with a single threshold thrdg. The adap-
tation of Algorithm 1 to the ridgeness measure will be
described in Section 4.1.

2.3 Shortcomings and contributions

We now introduce our contributions on the backdrop
of the limitations of existing work. In [43], Siddiqi et
al. do not report a value for thaof , which is used for
marking skeleton endpoints in Algorithm 1. In [12, pp
220], thaof is selected using an empirical approach only,
such that 25− 40% of the AOF map has values below
it. They report a value of −5.0 for all experiments.
In [18, pp 840], a threshold value is given with respect
to the minimum object angle 2 allowed for skeleton
endpoints, but no explicit formula, involving the
AOF parameter r, is given. Similarly, in [28], we
only provided an empirical approach to determine
threshold(s) on ridgeness. Our position in the current
paper, however, is that the thresholds can be chosen
by taking into account theoretical values on specific
shape configurations, and can be expressed with
respect to their respective parameters r and σ.

2The notion of the object angle is explained in Section 3

Figure 1: Shortcomings of ridges on ligatures and
branch extremities. (Left) Distance map and (right)
Ridgeness map. Ligatures create undesirably weak
ridges (dashed green ellipse) whereas branch extrem-
ities create undesirably strong ridges (dashed red el-
lipses)

Theoretical values of the AOF were calculated
in [18, 45] for an infinitesimal r, i.e. as a limit when r
tends to 0. They were not calculated for a general r.
Moreover, they were calculated for skeleton points
only, but not at locations neighboring skeleton points.
We extend the work in [18] by providing invariants for
any r. For some particular types of skeleton points, we
perform further extension by generalizing the measure
to points near skeleton points. Doing so, we formalize
the variation of AOF as the considered points get
farther from the skeleton. Since we establish the
relation between AOF and ridgeness, we are able to
provide equivalent results for the ridgeness.

In addition, we provide a model for ligature skele-
ton points, induced by connections between branches,
which was not studied in [18]. In general, skeleton
points are located on significant ridges of D. How-
ever, there exist non-skeleton points with undesirably
high - in absolute value - AOF or ridgeness (typically,
points in branch extremities) and, conversely, skeleton
with undesirably low AOF or ridgeness (typically, lig-
ature points). This phenomenon is depicted in Fig. 1.
Note that the presence of undesirably strong ridges
near branch extremities is amplified by discretization
artifacts. Ligature points are problematic [24, 32, 39],
as they are weak ridges of D, that should nevertheless
be kept as part of the skeleton.

3 Theoretical values for AOF
and ridgeness

We use a novel approach to study the various skeleton
points, inspired by the classifications in [18, 21, 39].
We consider the following types:
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• regular skeleton points

• peak points

• end points

• ligature points

• junction points

We calculate theoretical values of the AOF in Eq. (3),
and ridgeness in Eqs. (5) for local shape configurations
corresponding to these types of skeleton points. For
some configurations, integrals can be calculated explic-
itly, while other configurations require approximations
of D so that closed-form expressions can be obtained.
A useful property, that will be used subsequently, is
the rotation-invariance of the AOF and ridgeness. To
be more precise, aof(x, r) and rdg(x, σ) do not change
if the shape is rotated with center x. The following
derivations are valid for any orientation of the skeleton
branch under study. As will be derived, the AOF and
ridgeness have the advantageous property of being
independent of the local thickness of the shape, i.e. of
the absolute value of D(x). They rather depend on
the local geometry of the shape borders.

As the ridgeness measure implies convolution of D
with an infinite support kernel, the distance map is ex-
tended outside the object, so that it is defined every-
where. We thus consider the signed distance transform

D(x) =


min
y∈∂Ω

‖y − x‖ if x ∈ Ω

− min
y∈∂Ω

‖y − x‖ if x /∈ Ω
(7)

To begin with, we establish the link between the two
measures.

Proposition 1. The AOF and ridgeness at point x
are related as follows:

rdg(x, σ) = − 1

σ4

∫ ∞
0

ρ2 exp

(
− ρ2

2σ2

)
aof(x, ρ) dρ

(8)

Proof. The proof is given in Appendix A.1

In what follows, we omit the second parameter for
AOF and ridgeness. Thus it is assumed that

aof(x) = aof(x, r)
rdg(x) = rdg(x, σ)

3.1 Regular skeleton point

Let γ : [0, 1] → R2 be a parametrization of the shape
contour ∂Ω. The parameterization is continuously

differentiable and positively oriented, so that
γ′(u)

‖γ′(u)‖

and
γ′(u)⊥

‖γ′(u)‖
are the unit tangent and inward normal

vectors, respectively, at position u. Consider a skeleton
point s, as the center of a maximal disk tangent to

s

γ1

γ2

n1

n2

α

t

Figure 2: Regular skeleton point.

the contour at two points γ1 and γ2. We denote
by n1 and n2 the unit normal vectors at γ1 and γ2,
respectively. This regular skeleton point configuration
is illustrated in Fig. 2.

The distance between a point x and a line with ori-
gin p and unit direction vector v is (x−p)·v⊥. Thus, if
we locally approximate parts of the contour around γ1

and γ2 with straight lines, distance D in the neighbor-
hood of s is

D(x) = D(s) + min((x− s) · n1, (x− s) · n2) (9)

The unit direction of the skeleton branch is

t =
n1
⊥ − n2

⊥

‖n1 − n2‖

Let α be the object angle, as introduced in [18], which
is half the angle formed by the two inward unit normal
vectors. Note that n1 ·n2 = cos(2α) and ‖n1 − n2‖ =
2 sinα. When the two contour parts are parallel, the

object angle is
π

2
. For every point x located on the

skeleton, i.e. ∃ k s.t. x = s + kt, D is not differen-
tiable. However, we can still derive the expressions
of the gradient and Laplacian of D, using identity

min(x, y) =
x+ y − |x− y|

2

∇D(x) =
1

2
(n1 + n2

−sgn((x− s) · (n1 − n2))(n1 − n2))

∆D(x) = −δ((x− s) · (n1 − n2)) ‖n1 − n2‖2
(10)

where δ is the Dirac distribution, implying that the
gradient and Laplacian should be understood in the
sense of distributions (weak derivatives).

As will be derived, the AOF and ridgeness at skele-
ton point s depend on object angle α. In what follows,
we calculate the AOF and ridgeness measures for any
point x in the vicinity of s. As we will see, in absolute

5



value, both are decreasing functions of
∣∣(x− s) · t⊥∣∣,

the distance between x and the nearest point on the
skeleton.

3.1.1 Average outward flux

Proposition 2. The AOF at a point x in the neighbor-
hood of a regular skeleton point s, with object angle α,
is

aofregular(x) =


−2 sinα

πr

√
r2 − ((x− s) · t⊥)2

if
∣∣(x− s) · t⊥∣∣ < r

0 otherwise
(11)

Proof. The proof is given in Appendix A.2

As a geometric interpretation, notice that

2

√
r2 − ((x− s) · t⊥)2 is the length of the line

segment resulting from the intersection of the disk and
the skeleton branch. As a particular case, when the
point is the skeleton point s,

aofregular(s) = − 2

π
sinα (12)

as found in [18]. A notable property is that the AOF
at regular skelton point is independent of r. The
most salient regular skeleton point is obtained when

the two contour parts are parallel, i.e. α =
π

2
, which

gives aofregular(s) = − 2

π
.

3.1.2 Ridgeness

Proposition 3. The ridgeness at a point x in the
neighborhood of a regular skeleton point s, with object
angle α, is

rdgregular(x) =

√
2π sinα

πσ
exp

(
− ((x− s) · t⊥)2

2σ2

)
(13)

Proof. The proof is given in Appendix A.3.

It is easy to see from Eq. (13) that the ridgeness
decreases with a Gaussian profile as x gets farther from
the skeleton branch. As a particular case, when the
point is the skeleton point s,

rdgregular(s) =

√
2π

πσ
sinα (14)

Again, the highest ridgeness value appears when
the two contour parts are parallel, which leads

to rdgregular(s) =

√
2π

πσ

3.2 Peak point

If Ω is a disk, there exist only one skeleton point s at its
center, which is a local maximum of D. The distance
function is then

D(x) = D(s)− ‖s− x‖ (15)

which is non-differentiable at s. Otherwise, for any x 6=
s,

∇D(x) =
s− x
‖s− x‖

∆D(x) = − 1

‖s− x‖

(16)

This case is depicted in Fig. 3(a). It is of little prac-
tical use in itself, as the shape to be skeletonized
is rarely a disk. However, in Section 3.3, we de-
rive the more general endpoint case from the current
case. For calculating both AOF and ridgeness at x,
we switch to a polar coordinate system, centered at x
s.t. s = x + [R cosβ,R sinβ]T, and show that aof
and rdg are decreasing functions (in absolute value)
of distance R = ‖x− s‖.

3.2.1 Preliminary notes on elliptic integrals

We define special functions that arise when deriving
the AOF and ridgeness of points in the neighborhood

of a peak point. Given an argument ψ ∈
[
0,
π

2

]
and

a modulus k ∈ [0, 1], F(ψ, k) and E(ψ, k) are Legen-
dre’s incomplete elliptic integrals of the first and second
kind [15, p. 486], respectively, defined as

F(ψ, k) =

∫ ψ

0

1√
1− k2 sin2 θ

dθ

E(ψ, k) =

∫ ψ

0

√
1− k2 sin2 θdθ

(17)

A particular case arises when ψ =
π

2
, which leads to

the so-called complete elliptic integrals of the first and
second kind, respectively:

K(k) = F
(π

2
, k
)

E(k) = E
(π

2
, k
)

(18)

These integrals have no closed-form expressions. They
can be numerically evaluated using Landen’s transfor-
mation, related to the arithmetic-geometric mean [15,
p. 493]. Moreover, closed-form approximations and
bounds for them have been extensively studied [1, 3,
14, 36]. These bounds should be understood in the
pointwise sense, i.e. w.r.t k. Let A be the generalized
mean of two real numbers a and b, also known as the
power mean,

Ap(a, b) =


(
ap + bp

2

) 1
p

if p 6= 0

√
ab if p = 0
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Figure 3: Peak point. (a) Distance (b) Average outward flux with r = 2 (c) Ridgeness with σ = 2

Special cases include the geometric mean (p = 0) and
the arithmetic mean (p = 1). We also define the loga-
rithmic mean:

L(a, b) =


0 if a = 0 or b = 0

a if a = b

a− b
log a− log b

otherwise

According to [14, 46], the following inequality holds:

A0(a, b) < L(a, b) < A1(a, b) < Ap(a, b) with p > 1
(19)

Introducing the complementary modulus k′ =√
1− k2, bounds for the complete elliptic integral of

the first kind are [14, 1, 36]:

π

2Ap(1, k
′)
< K(k) <

π

2A0(1, k′)
with p ≥ 1

2

Note that a sharper upper bound can be found in [14]:

K(k) <
π

2L(1, k′)

The following bounds for E are due to [8, 9, 47]:

π

2
Ap(1, k

′) < E(k) <
π

2
A2(1, k′) with p ≤ 3

2

We denote the following lower and upper bounds for K
and E involving generalized and logarithmic means:

LpK(k) =
π

2Ap(1, k
′)

with p ≥ 1

2

U0
K(k) =

π

2A0(1, k′)

UL
K(k) =

π

2L(1, k′)

LpE(k) =
π

2
Ap(1, k

′) with p ≤ 3

2

UE(k) =
π

2
A2(1, k′)

The sharper lower bound LpK(k) is obtained with p =
1/2, while the sharper lower bound LpE(k) is obtained
with p = 3/2.

3.2.2 Average outward flux

Using polar coordinates centered at x and Eqs. (3) and
(16), we obtain the following result:

Proposition 4. The AOF at a point x, at dis-
tance R = ‖x− s‖ from a peak skeleton point s is

aofpeak(x) =
1

π

∫ π

0

−r +R cos θ√
r2 +R2 − 2rR cos θ

dθ (20)

Proposition 5. The AOF at a point x, at dis-
tance R = ‖x− s‖ from a peak skeleton point s can
be expressed using complete elliptic integrals as

aofpeak(x) =
1

πr
((R− r)K(k)− (R+ r)E(k)) (21)

with k =
2
√
rR

R+ r
.

Proof. The proofs for the two previous propositions are
given in Appendix A.5.

Note that k is the ratio between the geometric and
arithmetic means of r and R, which verifies, according
to Eq. (19),

2
√
rR

R+ r
≤ 1

Let us compute bounds with k =
2
√
rR

R+ r
. In our case,

the complementary modulus is

k′ =
√

1− k2 =
|R − r|
R+ r

Using identities a + b + |a− b| = 2 max(a, b) and a +

7



b− |a− b| = 2 min(a, b), we obtain

L1/2
K

(
2
√
rR

R+ r

)
=

π(R+ r)

max(R, r) +
√
|R2 − r2|

L1
K

(
2
√
rR

R+ r

)
=

π(R+ r)

2 max(R, r)

U0
K

(
2
√
rR

R+ r

)
=

π(R+ r)

2
√
|R2 − r2|

UL
K

(
2
√
rR

R+ r

)
=

π(R+ r)

4 min(R, r)
log

(
R+ r

|R − r|

)

L3/2
E

(
2
√
rR

R+ r

)
=

π

25/3

(√
(R+ r)3 +

√
|R − r|3

)2/3

R+ r

L1
E

(
2
√
rR

R+ r

)
=

πmax(R, r)
2(R+ r)

UE

(
2
√
rR

R+ r

)
=

π
√
R2 + r2

2(R+ r)

Proposition 6. The AOF at a point x, at dis-
tance R = ‖x− s‖ from a peak skeleton point s is
bounded as

Laofpeak
< aofpeak(x) < Uaofpeak

with

Laofpeak
=

1

πr
((R− r)UK(k)− (R+ r)UE(k)) if R ≤ r

1

πr
((R− r)LpK(k)− (R+ r)UE(k)) if R > r

(22)
Uaofpeak

=
1

πr
((R− r)LpK(k)− (R+ r)LpE(k)) if R ≤ r

1

πr
((R− r)UK(k)− (R+ r)LpE(k)) if R > r

(23)
where UK is either U0

K or UL
K.

If one chooses U0
K and p = 1 for both LpK and LpE,

one obtains the bounds with the simplest expressions:

L1
aofpeak

=


− 1

2r

(√
r2 −R2 +

√
r2 +R2

)
if R ≤ r

1

2r

(
R2 − r2

R
−
√
R2 + r2

)
if R > r

U1
aofpeak

=


R2

2r2 − 1 if R ≤ r

1

2r

(√
R2 − r2 −R

)
if R > r

The previous lower and upper bounds are rather loose.

Choosing UL
K, L1/2

K and L3/2
E , much sharper bounds

are obtained, which we denote by L2
aofpeak

and U2
aofpeak

.

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0

0 2 4 6 8 10R

aofpeak
L1

aofpeak

U1
aofpeak

L2
aofpeak

U2
aofpeak

−r/(2R)
r

Figure 4: Average outward flux and corresponding
bounds at distance R from a peak skeleton point, ver-
sus R (with r = 2)

Their expressions, which are tedious, can be easily de-
rived from Eqs (22) and (23). The bounds are plotted
versus R, with r fixed, in Fig. 4.

The analytical expressions of the bounds are intri-
cate. It appears that the second-order Taylor expan-
sion of D gives a suitable approximation to aofpeak as

soon as R is large enough. Let D̃ be the second-order
Taylor approximation of D in the neighborhood of x:

D̃(y) = D(x) + (y − x)T∇D(x)

+
1

2
(y − x)THD(x)(y − x)

D(y) = D̃(y) +O(‖y − x‖3)

(24)

The approximate AOF is

ãof(x) =

1

2π

∫ 2π

0

∇D̃
(
x+

[
r cos θ
r sin θ

])
·
[

cos θ
sin θ

]
dθ

(25)

Proposition 7. The second-order approximation of
the AOF at a point x, at distance R = ‖x− s‖ from a
peak skeleton point s is

ãofpeak(x) = − r

2R

Proposition 8. The AOF at x is asymptotically equiv-
alent to its second-order approximation

aofpeak(x) ∼ ãofpeak(x) (as ‖x− s‖ → +∞)

Proof. The proofs for the two previous propositions are
given in Appendix A.6

We observe from Fig. 4 that this approximation is
accurate as soon as R >> r.
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3.2.3 Ridgeness

We rewrite Eq. (6) in the polar-coordinate system cen-
tered at x,

rdg(x) =

−
∫ ∞

0

∫ 2π

0

ρGσ(ρ)∆D

(
x+

[
ρ cos θ
ρ sin θ

])
dθdρ,

(26)
where Gσ(ρ) is a shorthand notation for

Gσ(ρ cos θ, ρ sin θ) =
1

2πσ2 exp

(
− ρ2

2σ2

)
Combining Eqs. (26) and (16), we obtain the following
result:

Proposition 9. The ridgeness at a point x, at dis-
tance R = ‖x− s‖ from a peak skeleton point s is

rdgpeak(x) =

2

∫ ∞
0

ρGσ(ρ)

∫ π

0

1√
ρ2 +R2 − 2ρR cos θ

dθdρ
(27)

Proposition 10. The ridgeness at a point x, at dis-
tance R = ‖x− s‖ from a peak skeleton point s can
be expressed using the complete elliptic integral of the
first kind as

rdgpeak(x) =

2

πσ2

∫ ∞
0

ρ

R+ ρ
K

(
2
√
ρR

R+ ρ

)
exp

(
− ρ2

2σ2

)
dρ

(28)

Proof. The proofs for the two previous propositions are
given in Appendix A.7.

Since the term Gσ(ρ)
ρ

R+ ρ
is positive in [0,+∞),

Proposition 11. The ridgeness at a point x, at dis-
tance R = ‖x− s‖ from a peak skeleton point s is
bounded as

Lrdgpeak
< rdgpeak(x) < Urdgpeak

with

Lrdgpeak
=

2

πσ2

∫ ∞
0

ρ

R+ ρ
LpK

(
2
√
ρR

R+ ρ

)
exp

(
− ρ2

2σ2

)
dρ

(29)

Urdgpeak
=

2

πσ2

∫ ∞
0

ρ

R+ ρ
UK

(
2
√
ρR

R+ ρ

)
exp

(
− ρ2

2σ2

)
dρ

(30)
where UK is either U0

K or UL
K.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10R

σ

rdgpeak
L1

rdgpeak

U1
rdgpeak

L2
rdgpeak

U2
rdgpeak

1/R

Figure 5: Ridgeness and corresponding bounds at dis-
tanceR from a peak skeleton point, versusR (with σ =
2)

No closed-form expression can be found for Eq. (28),
for either its lower or upper bounds. In Fig. 5,
numerical integration was performed to plot rdgpeak

and its bounds versus R. Loose lower and upper
bounds L1

rdgpeak
and U1

rdgpeak
were obtained with L1

K

and U0
K, respectively. Sharp lower and upper

bounds L2
rdgpeak

and U2
rdgpeak

were obtained with L1/2
K

and UL
K, respectively.

As for the AOF, the second-order Taylor expansion
of D̃ gives a suitable approximation to rdgpeak as soon
as R is large enough. The approximate ridgeness is
obtained using Eqs (24) and the polar transformation
of Eq. (5):

r̃dg(x) =

−
∫ ∞

0

∫ 2π

0

ρ∆Gσ(ρ)D̃

(
x+

[
ρ cos θ
ρ sin θ

])
dθdρ,

(31)
where ∆Gσ(ρ) is a shorthand notation for

∆Gσ(ρ cos θ, ρ sin θ) =
1

πσ4

(
ρ2

2σ2 − 1

)
exp

(
− ρ2

2σ2

)
,

Proposition 12. The second-order approximation of
the ridgeness at a point x, at distance R = ‖x− s‖
from a peak skeleton point s is

r̃dgpeak(x) =
1

R

Proposition 13. The ridgeness at x is asymptotically
equivalent to its second-order approximation

rdgpeak(x) ∼ r̃dgpeak(x) (as ‖x− s‖ → +∞)

Proof. The proofs for the two previous propositions are
given in Appendix A.8

As for the AOF, we observe from Fig. 5 that this
approximation is accurate as soon as R >> σ.
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Figure 6: Endpoint. (a) Distance (b) Average outward flux with r = 2 (c) Ridgeness with σ = 2

3.3 Endpoint

The endpoint configuration, illustrated in Fig. 6(a), is
described as a mix of properties of the regular skeleton
point in Section 3.1 and the peak point in Section 3.2.
As in the case of the regular skeleton point, the skele-
ton branch forms an object angle α, which is half the
angle formed by the two inward unit normal vectors n1

and n2. The skeleton branch has unit tangent vector

t =
n1
⊥ − n2

⊥

‖n1 − n2‖
.

We assume that the branch extremity forms an arc of
angle 2α with center s. In what follows, we focus on
deriving the AOF and ridgeness at s, as functions of α.
The shape branch is split into 3 open subregions. Ω1 is
the region bounded by line segments sγ1, sγ2 and the
arc from γ1 to γ2. Ω2 is the region above the skeleton
branch and on the left of line sγ1, whereas Ω3 is the
region below the skeleton branch and on the left of the
line sγ2. In the current case, we consider a piecewise
definition of the distance,

D(x) =

 D(s)− ‖x− s‖ if x ∈ Ω1

D(s) + (x− s) · n1 if x ∈ Ω2

D(s) + (x− s) · n2 if x ∈ Ω3,
(32)

and its resulting gradient, which is undefined on the
common boundaries of Ω1, Ω2 and Ω3,

∇D(x) =


s− x
‖s− x‖

if x ∈ Ω1

n1 if x ∈ Ω2

n2 if x ∈ Ω3.

(33)

3.3.1 Average outward flux

Proposition 14. The AOF at the endpoint s of a
skeleton branch, with object angle α, is3

aofend(s) = − 1

π
(α+ sinα) (34)

Proof. The proof is given in Appendix A.9.

3A similar result was already stated in [18]

For any point x ∈ Ω1 s.t. the disk of radius r
and center x is fully included within Ω1, aofend(x) =
aofpeak(x). It can be observed from Fig. 6(b) that the
AOF in Ω1 has a behavior similar to the one obtained
for the peak point case. Its absolute value decreases in
O(1/ ‖x− s‖).

3.3.2 Ridgeness

Proposition 15. The ridgeness at the endpoint s of a
skeleton branch, with object angle α, is

rdgend(s) =

√
2π

2πσ
(α+ sinα) (35)

Proof. The proof is given in Appendix A.10.

Again, it can be observed from Fig. 6(c) that the rid-
geness in Ω1 has a behavior similar to the one obtained
for the peak point case.

3.4 Ligature point

In Fig. 7(a), a thin branch connects to a thick branch,
which creates a ligature. As partially described in Sec-
tion 2.3, a ligature is a skeleton branch created by the
junction of two shape branches. Unlike a regular skele-
ton branch, it does not arise from a shape branch it-
self. The junction creates two corners p and q. Let `
be the line passing through p and q. Let us denote
the two branches by Ω1 and Ω2, on the right and left
of `, respectively. The ligature is included into Ω2 and
is located on the bisector of p and q, regardless of the
orientation of branch Ω1. Its unit tangent vector is

t =
(p− q)⊥

‖p− q‖
.

Assuming that t is directed towards Ω2, any ligature
point verifies

s =
p+ q

2
+At

with A ≥ 0. Midpoint (p + q)/2 is referred to as
the ligature junction. Let B be the half-thickness of

10
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Figure 7: Ligature point. (a) Distance (b) Average outward flux with r = 2 (c) Ridgeness with σ = 2 (color scales
for the AOF and ridgeness are similar to the ones in Fig. 6)

branch Ω1 at the junction,

B =
‖p− q‖

2
.

Let us assume that the thickness of Ω2 is much greater
than B. For any point in the neighborhood of a ligature
point s,

D(x) = min(‖x− p‖ , ‖x− q‖), (36)

and, for the ligature point itself,

D(s) = ‖s− p‖ = ‖s− q‖ =
√
A2 + B2.

We calculate the AOF and ridgeness of a ligature
point s, assuming that distance A is reasonably small
compared to the thickness of Ω2. In other words, s is
far enough from the opposite border of Ω2, so that p
and q are considered as the only local borders. As will
be derived, AOF and ridgeness are decreasing func-
tions, in absolute value, of distance A. Hence, in what
follows, the distance to borders R, and angle β both
depend on A:

R(A) =
√
A2 + B2

β(A) = tan−1 B
A

(37)

3.4.1 Average outward flux

As an additional requirement, the following AOF is
valid only if A ≥ r and B ≥ r.

Proposition 16. The AOF at ligature point s, at a
distance A from the ligature junction, is

aof ligature(s) =

1

π

∫ π

0

r −A cos θ − B sin θ√
r2 +A2 + B2 − 2r(A cos θ + B sin θ)

dθ

(38)

Proposition 17. The AOF at ligature point s, at a
distance A from the ligature junction, can be expressed
with complete and incomplete elliptic integrals as

aof ligature(s) =
1

πr[
(R+ r)

(
2E(k)− E

(
β

2
, k

)
− E

(
π

2
− β

2
, k

))
−(R− r)

(
2K(k)− F

(
β

2
, k

)
− F

(
π

2
− β

2
, k

))]

with k =
2
√
rR

R+ r
, and R = R(A) and β = β(A).

Using the Taylor expansion D̃ of Eq. (24), we can
calculate an approximate AOF.

Proposition 18. The second-order approximation of
the AOF at ligature point s, at a distance A from the
ligature junction is

ãof ligature(s) =
1√

A2 + B2

(
r

2
− 2B

π

)
Proposition 19. The AOF at ligature point s is
asymptotically equivalent to its second-order approxi-
mation

aof ligature(s) ∼ ãof ligature(s) (as A → +∞)

Proof. The proofs for the two previous propositions are
given in Appendix A.12

3.4.2 Ridgeness

Since the ridgeness is calculated on an infinite domain,
it should be assumed that the following expressions are
accurate if A and the thickness of Ω2 are large enough,
so that A > nσ (usually, n = 3). Using a transfor-
mation of definition (5) in the polar-coordinate system

11



centered at x,

rdg(x) =

−
∫ ∞

0

∫ 2π

0

ρ∆Gσ(ρ)D

(
x+

[
ρ cos θ
ρ sin θ

])
dθdρ,

(39)
we obtain the following result:

Proposition 20. The ridgeness at ligature point s, at
a distance A from the ligature junction, is

rdgligature(s) = −2

∫ ∞
0

ρ∆Gσ(ρ)∫ π

0

√
ρ2 +A2 + B2 − 2ρ(A cos θ + B sin θ) dθdρ

(40)

Proposition 21. The ridgeness at ligature point s, at
a distance A from the ligature junction can be expressed
using complete and incomplete elliptic integrals of the
second kind as

rdgligature(s) =
4

πσ4

∫ ∞
0

(
1− ρ2

2σ2

)
exp

(
− ρ2

2σ2

)
(R+ ρ)

(
2E(k)− E

(
β

2
, k

)
− E

(
π

2
− β

2
, k

))
dρ

(41)

with k =
2
√
ρR

R+ ρ
and R = R(A) and β = β(A), as

defined in Eq. (37).

Proof. The proofs for the two previous propositions are
given in Appendix A.13.

Using the Taylor expansion D̃ of Eq. (24), we can
calculate an approximate ridgeness.

Proposition 22. The second-order approximation of
the ridgeness at ligature point s, at a distance A from
the ligature junction is

r̃dgligature(s) =
1√

A2 + B2

(
B
√

2π

σπ
− 1

)

Proposition 23. The ridgeness at ligature point s is
asymptotically equivalent to its second-order approxi-
mation

rdgligature(s) ∼ r̃dgligature(s) (as A → +∞)

Proof. The proofs for the two previous propositions are
given in Appendix A.14

The AOF and ridgeness are illustrated in Figs. 7b
and 7c, respectively. Note that their color scales are the
same as for Figs. 6b and Fig. 6b. In accordance with
Propositions 18 and 22, it can be observed that the
AOF and ridgeness become weaker as the considered
ligature point gets farther from the ligature junction.

p1
p2

p3

p4

p5

Rs α1

α2

α3 α4

α5

Figure 8: Junction point

3.5 Junction point

We consider a simplified model of a junction of n
branches, such that the n corners {pi}i=1...n formed by
the branches are all equidistant to the junction skeleton
point s, as depicted in Fig. 8. We focus on the AOF
and ridgeness at junction point s. Note that any point
located on a line segment between s and the midpoint
of two successive corners, (pi + pi+1)/2, is a ligature
point. The distance from s to any corner is denoted
by R. In the neighborhood of s, the distance is:

D(x) = min
i=1...n

Di(x)

Di(x) = ‖x− pi‖
(42)

Switching to polar coordinates, corners are defined as

pi = s+ [R cosβi,R sinβi]
T (43)

where βi is the absolute angle formed by the line from s
to pi and the horizontal axis. We denote by αi the rela-
tive angle formed by s and the two successive corners pi
and pi+1, thus

αi = βi+1 − βi.

In the subsequent parts of this section, we show that
the AOF and ridgeness only depend on the spatial lay-
out of the corners and distance R - which is linked to
the thicknesses of the branches - but does not depend
on the geometry of the branch borders.

3.5.1 Average outward flux

Hereafter, we assume that R > r.

Proposition 24. The AOF at junction point s at dis-
tance R from n corners forming angles (αi)i=1...n is

aof junction(s) =

1

π

n∑
i=1

∫ αi
2

0

r −R cos θ√
r2 +R2 − 2rR cos θ

dθ
(44)
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Proposition 25. The AOF at junction point s at dis-
tance R from n corners forming angles (αi)i=1...n can
be expressed with complete and incomplete elliptic in-
tegrals as

aof junction(s) =

1

πr

n∑
i=1

[
(R+ r)

(
E(k)− E

(π
2
− αi

4
, k
))

−(R− r)
(

K(k)− F
(π

2
− αi

4
, k
))]

(45)

with k =
2
√
rR

R+ r
.

Proof. The proofs for the two previous propositions are
given in Appendix A.15

Using the Taylor expansion D̃ of Eq. (24), we can
calculate an approximate AOF.

Proposition 26. The second-order approximation of
the AOF at junction point s, at distance R from n
corners forming angles (αi)i=1...n, is

ãof junction(s) = − 1

π
s2 +

r

2R

(
1− 1

2π
s1

)
where s1 and s2 are the sums of angles αi and their
halves, respectively:

s1 =

n∑
i=1

sinαi

s2 =

n∑
i=1

sin
(αi

2

) (46)

This result should be put in perspective with the in-
variant obtained in [18] for junction points. Indeed, the

term − 1

π
s2 was also found by them. We extend their

result with an additional term taking r into account.

Proposition 27. The AOF at junction point s is
asymptotically equivalent to its second-order approxi-
mation

aof junction(s) ∼ ãof junction(s) (as R → +∞)

Proof. The proofs for the two previous propositions are
given in Appendix A.16

3.5.2 Ridgeness

Again, it should be assumed that the following expres-
sions are accurate if the thickness of the junction is
large enough, i.e. R > nσ (usually, n = 3). Starting
from the polar LoG-based expression of the ridgeness
of Eq (39), it follows that:

Proposition 28. The ridgeness at junction point s at
distance R from n corners forming angles (αi)i=1...n is

rdgjunction(s) = −2

∫ ∞
0

ρ∆Gσ(ρ)

n∑
i=1

∫ αi
2

0

√
r2 +R2 − 2rR cos θ dθ dρ

(47)

Proposition 29. The ridgeness at junction point s at
distance R from n corners forming angles (αi)i=1...n

can be expressed using complete and incomplete elliptic
integrals of the second kind as

rdgjunction(s) =
4

πσ4

∫ ∞
0

(
1− ρ2

2σ2

)
exp

(
− ρ2

2σ2

)
n∑
i=1

(R+ ρ)
(

E(k)− E
(π

2
− αi

4
, k
))

dρ

(48)

with k =
2
√
ρR

R+ ρ
.

Proof. The proofs for the two previous propositions are
given in Appendix A.17.

Proposition 30. The second-order approximation of
the ridgeness at junction point s, at distance R from n
corners forming angles (αi)i=1...n, is

r̃dgjunction(s) =
1

σ
√

2π
s2 −

1

R

(
1− 1

2π
s1

)
with s1 and s2 as defined in Eq. (46).

Proposition 31. The ridgeness at junction point s is
asymptotically equivalent to its second-order approxi-
mation

rdgjunction(s) ∼ r̃dgjunction(s) (as R → +∞)

Proof. The proofs for the two previous propositions are
given in Appendix A.18

4 Experiments

4.1 Implementation details

Given a binary input image containing the shape Ω,
the Euclidean distance map D is computed thanks to
the steerable algorithm of [17, 35] which operates in
O(|Ω|). Then, for every p in the outer 8-connected
border, i.e. the set of background pixels with at
least one 8-connected neighbor in Ω, D is set to 0.
Eventually, D is extended below 0 in the background,
according to Eq. (7), within a radius of r + 1 for the
AOF-based skeleton, and 3σ+1 for the ridgeness-based
skeleton. We thus obtain a truncated signed distance
function, which is smooth on the object contour,
avoiding border artefacts on the AOF and ridgeness
maps.

In Algorithm 1, line 4, boundary ∂Ω is discretized as
the 8-connected inner border, i.e. the subset of pixels
in Ω having at least one 8-connected neighbor in the
background. For the ridgeness-based skeleton, we use
the same procedure, up to minor modifications. Specif-
ically, in the ridgeness-ordered thinning procedure, H
is a min-heap sorted w.r.t to ridgeness, and the condi-
tion in line 10 should be replaced by

isEndpoint(p) and rdg(p, σ) ≥ thrdg

13



Figure 9: AOF-based skeleton for shape with irregular border. Left: final skeleton, Center: AOF, Right: thresh-
olded AOF. Top row: r = 1, bottom row: r = 4

Figure 10: Ridgeness-based skeleton for shape with irregular border. Left: final skeleton, Center: ridgeness, Right:
thresholded ridgeness. Top row: σ = 1, bottom row: σ = 4

14



Figure 11: Overview of the synthetic shape dataset

η = 0 η = 1 η = 2 η = 3

Figure 12: Synthetic shape n◦5 at different noise levels η with AOF-based skeletons (ridgeness-based skeletons are
visually equivalent and are not depicted)

4.2 Influence of scale parameters: anal-
ysis on regular skeleton points

We performed several numerical experiments to cor-
roborate our derivations and to assess the applicability
of the theoretical AOF and ridgeness values. We first
give a short overview of the influence of parameters r
and σ, and their respective thresholds, on the final
skeleton. The choice of thresholds thaof and thrdg

in the AOF-based and ridgeness-based thinning
procedure is crucial, as they control the amount of
pixels that will be retained as skeleton endpoints, i.e.
starting points for branches, according to lines 10
and 11 in Algorithm 1. Thresholds should be chosen
as far as possible in the light of the previously derived
analytical expressions.

In [18, pp 840], it was suggested that thaof be chosen
with respect to a minimal object angle. However, no
explicit formula was provided, nor was a relation es-
tablished with respect to a particular theoretical shape
configuration. Following their suggestion, it seems nat-
ural to derive a threshold according to a minimal ob-
ject angle with respect to the regular skeleton point
configuration described in Section 3.1, as it is the type
of skeleton point most commonly encountered. Object
protusions generating branches with an object angle
below this minimal angle should be considered as in-
significant. Choosing the threshold according to the

minimal object angle gives a clear geometrical inter-
pretation of what a significant object part is. Hence,
Eqs. (12) and (14) were used as a basis:

thaof = − 2

π
sinα0

thrdg =

√
2π

πσ
sinα0

where α0 is the minimal object angle that a shape part
should form in order to generate a skeleton branch.

Following [18, pp 840], we used α0 =
π

6
= 30◦ in the

current experiment. AOF and ridgeness-based skele-
tons were computed on a shape with moderate noise,
such that, at a fine scale, protusions and indentations
on the shape border are expected to generate branches.
Results are depicted in Figs. 9 and 10. The left, center
and right columns contain skeletons, AOF/ridgeness
and thresholded AOF/ridgeness maps, respectively.
For each measure, two scales r, σ ∈ {1, 4} are tested
and thresholds are set accordingly. Note that thaof

only depends on α0 and is thus left unchanged when r
varies. Conversely, thrdg is set according to α0 and σ.
Note that the color scale of the AOF map, in the
center column of Fig. 9, is inverted so that it can be
easily interpreted and compared to the ridgeness map.

In the right columns of Figs. 9 and 10, black pix-
els correspond to all p for which aof(p,R) ≤ thaof or
rdg(p, σ) ≥ thrdg. Note that this thresholding does
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not correspond to the final skeleton, as it has gaps and
is not thin. A visual inspection shows that a skele-
ton branch emanates from each connected component
of these selected pixels. For both AOF and ridgeness,
the amount of connected components of thresholded
pixels diminishes as the scale is increased. Simultane-
ously, the thickness of the central connected compo-
nents, arising from the most significant shape parts,
increases. This corroborates the expressions of AOF
and ridgeness of points near regular skeleton branches,
in Eqs. (11) and (13). Let p be a point in the vicinity
of the skeleton branch and d its distance to the near-
est regular skeleton point. We derive the conditions
according to which p is selected as a candidate skele-
ton point, i.e. aof(p,R) ≤ thaof or rdg(p, σ) ≥ thrdg,
with respect to d and a given α, the object angle of

the considered branch. We assume that α ∈
[
α0,

π

2

]
.

Regarding the AOF, according to Eq. (11), p satisfies
aof(p,R) ≤ thaof if

− 2

πr
sinα

√
r2 − d2 ≤ − 2

π
sinα0,

which implies

d ≤ r

√
1− sin2 α0

sin2 α
. (49)

Similarly, regarding the ridgeness, plugging the in-
equality rdg(p, σ) ≥ thrdg into Eq. (13) leads to

√
2π

πσ
sinα exp

(
− d2

2σ2

)
≥
√

2π

πσ
sinα0

which implies

d ≤ σ

√
−2 log

(
sinα0

sinα

)
. (50)

According to Eqs (49) and (50), at a fixed object an-
gle α, the distance d below which pixels will be thresh-
olded as candidate skeleton points increases as r or σ
gets larger, in agreement with our observation.

4.3 Quantitative study of accuracy

We study and compare quantitatively the accuracy
of skeletons generated using the AOF-based and
ridgeness-based thinning procedures, under varia-
tions of parameters and thresholds. Quantifying the
accuracy of the skeletonization algorithms requires
images where the expected structures of skeletons are
known. For this purpose, we created a dataset of 20
synthetic shapes. Various curved centerlines were
first manually generated. These centerlines were then
dilated by using circular masks with smoothly varying
radii along their entire length. This allows expected
skeleton branches to be known beforehand. The
expected skeleton branches correspond to the initial
centerlines, except in junction areas, which thus need
to be corrected. For each shape, the ground-truth

Figure 13: Accuracy of AOF-based skeleton for syn-
thetic shape n◦5 at noise level η = 3. In the zoomed
part, blue pixels belong to the computed skeleton,
whereas red pixels belong to the ground truth skele-
ton

reference skeleton was generated by correcting these
junction areas using those of the AOF-based skeleton
with r = 2 and thaof value selected as in Section 4.2.
An overview of this dataset is shown in Fig. 11.

In order to study the influence of contour noise
on the choice of parameters r and σ, and their
respective thresholds, the shapes were corrupted with
additive white Gaussian noise at different intensities.
We achieved this by moving contour points along
their unit normal vector, with an offset randomly
drawn from a zero-mean Gaussian with standard
deviation η. A particular shape of the dataset at
noise levels η ∈ {0, 1, 2, 3} is depicted in Fig. 12. Note
that η = 0 corresponds to the initial uncorrupted
shapes, from which the ground-truth skeletons are
extracted.

Accuracy is measured based on the similarity be-
tween the extracted skeleton and the ground-truth
skeleton. We use the Modified Hausdorff distance
(MHD) in the Euclidean sense:

MHD(P,Q) =

max

 1

|P |
∑
p∈P

min
q∈Q
‖p− q‖ , 1

|Q|
∑
q∈Q

min
p∈P
‖q − p‖


where P and Q are non-empty subsets of Z2 (the ex-
tracted skeleton and the ground-truth skeleton). The
discrepancy between the extracted and ground-truth
skeleton is illustrated in Fig. 13.

In addition to the AOF-based and ridgeness-based
skeletons, we report results obtained with corrected
AOF of Torsello and Hancock [45], as well as the In-
teger Medial Axis by Hesselink and Roerdink [22]. On
the one hand, the AOF arises from the divergence
of ∇D, or equivalently, the curvature of the front prop-
agating along ∇D [43]. According to [45], the error in
calculating the AOF is related to the pixel resolution
but is also proportional to the curvature. Hence, they
developed a method that alleviates the contribution of
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Figure 14: Modified Hausdorff distance between ground truth skeleton and computed skeleton, for the individual 20
synthetic shapes, at 4 different noise levels
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AOF CC-AOF rdg IMA
η = 0 0.034 0.040 0.046 0.094
η = 1 0.584 0.582 0.583 0.632
η = 2 0.711 0.703 0.695 0.760
η = 3 1.333 1.346 1.101 1.359

Table 1: Modified Hausdorff distance between ground
truth skeleton and computed skeleton, averaged over
the 20 synthetic shapes, at 4 different noise levels. For
each noise level, the lowest and highest MHD are high-
lighted in blue and red, respectively

the curvature to the error, by taking into account vari-
ations of curvature density. This led to the correction
of curvature density effects on the AOF, that is sub-
sequently referred to as CC-AOF. On the other hand,
the Integer Medial Axis (IMA) algorithm is based on
a discrete modeling of the shape. In addition to D,
it uses the feature transform, which maps each shape
point to the set of closest boundary points:

FT(x) = {y ∈ ∂Ω | ‖x− y‖ = D(x)}

The AOF and ridgeness-based skeletonization methods
include pruning natively. The pruning level is con-
trolled by thaof and thrdg, respectively. Similarly, the
IMA integrates pruning in the criterion used to select
skeleton points. This criterion implies the distance
between feature transform points of neighboring shape
points. Three pruning modes are proposed, depending
on the form of the function of this distance: constant
pruning, linear pruning and square-root pruning.
Constant and linear pruning criteria depend on a
parameter γ, which is varied in the experiments4.

Radius r and scale σ were both varied from 1 to 5
with a step of 0.1. Threshold thaof was varied from −1
to 0 with a step of 0.02, whereas threshold thrdg

was varied from 0 to 1 with a step of 0.02. For the
IMA, the best results were obtained with the constant
pruning mode, with parameter γ varying from 10
to 50. For each couple (r, thaof) (and correspondingly,
(σ, thrdg) and γ), the AOF, CC-AOF, ridgeness and
IMA skeletons were generated from the 20 shapes at
the 4 different noise levels.

In Fig. 14, the MHD is graphically represented on
a per-shape basis. For each shape at each noise level,
we retained the configurations of (r, thaof), (σ, thrdg)
and γ that resulted in the most accurate skeleton. It
is not straightforwad to bring out a clear trend from
Fig. 14, except that the IMA skeleton gives lower accu-
racy than the three other ones at noise level η = 0. CC-
AOF seems to give the best results at noise level η = 0,

4For the CC-AOF, we used the skeleton module by
F.-X. Dupé integrated in D. Tschumperlé’s CImg library:
https://github.com/dtschump/CImg. For the IMA, we used our
own C++ translation of the Java implementation available at
http://wimhesselink.nl/imageproc/skeletons

whereas the ridgeness-based skeleton seems to deal bet-
ter with noisy shapes. Note that the y-scale in Fig. 14
is different across noise levels. To get an overall view of
the performances, results listed in Fig. 14 are averaged
in Table 1. On noisy shapes, it is observed that the
ridgeness-based skeleton outperform AOF-based ones.
It is slightly more accurate at noise level η = 2 and
significantly better at noise level η = 3. This is ex-
pected from the LoG filtering embedded in the rid-
geness measure, which integrates regularization of the
distance map into the ridge-detection process.

The previous experiments considers the skeletoniza-
tion algorithms with their most favorable parameter
tuning, but does not report their behavior with respect
to the parameters. In Fig. 15, the MHD is averaged
over the 20 shapes, for each couple (r, thaof) of the AOF
(top row) and CC-AOF (middle row) and each cou-
ple (σ, thrdg) of the ridgeness (bottom row), at differ-
ent noise levels. The IMA having only one parameter,
equivalent plots could not be obtained, hence we did
not include it into this study. Notice that, in the top
and middle rows, values of thaof increase downwards.
First, it can be seen from the general appearance of the
MHD surfaces that accuracy smoothly evolves with re-
spect to parameters and thresholds. For the AOF and
ridgeness, large Regions of Accurate Skeletons (RAS),
with characteristic shapes, are observed. Unsurpris-
ingly, as a general trend, accuracy falls as the noise level
increases. In each plot, the area above the RAS corre-
sponds to over-pruned skeletons, generated with AOF
and ridgeness maps that were thresholded too hard. In
this case, the skeleton is almost empty, all candidate
skeleton points being filtered out. Conversely, the area
below the RAS is related to under-pruned noisy skele-
tons with undesirable branches, due to loose thresh-
olding. For the ridgeness, hyperbola-shaped RAS are
observed, indicating that the optimal threshold is an
inverse function of scale σ, which supports, among
others, our derivations that led to Eqs (14) and (35).
As claimed in [45], the correction of curvature den-
sity effects, as a postprocessing step in the CC-AOF,
makes the AOF significantly less sensitive to param-
eter tuning. The interpretation is that it filters out
noisy branches while reinforcing the AOF on desired
branches. No area of empty skeletons can be observed,
unlike in the AOF.

5 Conclusion

The AOF and ridgeness measures depend on the lo-
cal geometry of the shape borders. Closed-form ex-
act expressions could be obtained for regular skeleton
points and their neighboring points, as well as for skele-
ton endpoints. As regards peak points, ligatures and
junction points, exact expressions using elliptic inte-
grals and simpler closed-form approximations based on
the Taylor expansion of the distance function were de-
rived. We established a strong relationship between
the spatial parameter (r or σ) and the corresponding

18



1 2 3 4 5

-1

-0.8

-0.6

-0.4

-0.2

0

η = 0

r

thaof

1 2 3 4 5

-1

-0.8

-0.6

-0.4

-0.2

0

η = 1

r

thaof

1 2 3 4 5

-1

-0.8

-0.6

-0.4

-0.2

0

η = 2

r

thaof

1 2 3 4 5

-1

-0.8

-0.6

-0.4

-0.2

0

η = 3

r

thaof

1 2 3 4 5

-1

-0.8

-0.6

-0.4

-0.2

0

η = 0

r

thaof

1 2 3 4 5

-1

-0.8

-0.6

-0.4

-0.2

0

η = 1

r

thaof

1 2 3 4 5

-1

-0.8

-0.6

-0.4

-0.2

0

η = 2

r

thaof

1 2 3 4 5

-1

-0.8

-0.6

-0.4

-0.2

0

η = 3

r

thaof

1 2 3 4 5

1

0.8

0.6

0.4

0.2

0

η = 0

σ

thrdg

1 2 3 4 5

1

0.8

0.6

0.4

0.2

0

η = 1

σ

thrdg

1 2 3 4 5

1

0.8

0.6

0.4

0.2

0

η = 2

σ

thrdg

1 2 3 4 5

1

0.8

0.6

0.4

0.2

0

η = 3

σ

thrdg

0
1

5

20

Figure 15: Modified Hausdorff distance between ground truth skeleton and computed skeleton, averaged over all
shapes, versus parameter and threshold, at 4 different noise levels. Top row: AOF, middle row: CC-AOF, bottom
row: ridgeness
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ideal threshold, based on an analysis of regular skele-
ton points and their neighboring points. This was val-
idated by experiments on a shape dataset with known
ground-truth skeletons. As a possible extension to this
work, AOF and ridgeness measures could be studied
for theoretical configurations of 3D shapes. Further in-
vestigation could be conducted on the corrected AOF.
In that case, approximate analytical solutions to the
transport equation (6) in [45] would be necessary.
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