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Deriving multiple-input production and utility functions from

elasticities of substitution functions∗

Saad Labyad† Mehdi Senouci‡

July 12, 2018

Abstract

For each production or utility function, we can define the corresponding elasticities of substitution functions; but

is the reverse true? This paper shows that yes, and that this link is fruitful. By inverting the system of partial differen-

tial equations defining the elasticities of substitution functions, we uncover an analytical formula which encompasses

all production and utility functions that are admissible in Arrow-Debreu equilibria. We highlight the “Constant Elas-

ticities of Substitution Matrix” (CESM) class of functions which, unlike the CES functions, does not assume uniform

substitutability among all pairs of goods. A shortcoming of our method is that it permits only to control for local

concavity while it is difficult to control for global concavity.

Keywords: Production functions, utility functions, elasticity of substitution, marginal productivity, marginal utility,

factor shares.

JEL codes: C60, D11, D20, D24, D33, E23, E25.

Introduction

Production and utility functions are the tools that neoclassical economics use to model aggrega-

tion, respectively from the technical and subjective points of view. They constitute the most impor-

tant building blocks of theory and empirics in several subfields of economics: economic growth,

macroeconomics, international trade, industrial organization, etc.. In general equilibrium theory,

the set of admissible intensive-form production functions over n ≥ 1 inputs is the set of functions

of
�

R∗+
�n →R∗+ of classC 2 that are strictly increasing with respect to each variable and strictly con-

cave. The same set describes admissible utility functions.1 We call these functions ‘aggregation

functions’ (AFs).

Despite their importance in serving theoretical and empirical representations, only a handful

of functional forms of AFs are actually used by researchers and practitioners. Cobb-Douglas and
∗We are grateful to Tahar Boulmezaoud for his careful help, comments and suggestions all along the development of this paper, as well as to

Mathieu Parenti for stimulating advice. All remaining errors are our own.
†CentraleSupelec & University of Oxford – Mathematical Institute (contact: saad.labyad@student.ecp.fr).
‡Université Paris-Saclay/CentraleSupelec/Laboratoire Genie Industriel (contact: mehdi.senouci@centralesupelec.fr).
1Of course, unlike production functions, utility functions need not be strictly positive. However, restricting to strictly positive utility functions

is not restrictive since preferences are not altered by strictly increasing transformations.
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CES2 functions vastly dominate, while the use of other specifications has remained marginal.3 As

a matter of fact, the modeler’s toolbox becomes more restrictive as the number of inputs increase.4

For instance CES production and utility functions rest on the assumption that all pairs of goods

have the same substitutability parameter, which can be a costly assumption even at moderate dis-

aggregation levels.5

AFs are most often classified according to the associated elasticity of substitution functions

(ESFs). ESFs are defined through the second-order derivatives of the AF and govern the evolu-

tion of first-order quantities as inputs vary.6 As such, ES functions carry a central information on

the associated AF.

In this paper, we show that the link between AFs and the associated ESFs is so tight that it

permits to derive an analytical formula encompassing all AFs over a finite number of arguments

(n ≥ 1). The method that we use consists in inverting the system of partial differential equations

defining the ESFs.7 We hinge on the method developed by Moysan and Senouci (2016) for one-

input AFs and extend it to any number of inputs. Doing so, we uncover a new – to the best of our

knowledge – duality result between AFs and ESFs, in the form of an analytical expression.8

All functions derived through our formula, however, are not AFs. Our formula generates func-

tions that are strictly increasing w.r.t each variable, strictly concave w.r.t. each variable, but which

might not be strictly concave. Still, we show how to control for local strict concavity around some

reference input vector, which proves enough for local uses of our formula.

The rest of the paper is organized as follows. In section 1, we recall the theorem stated in Moysan

and Senouci (2016) on one-input AFs, in section 2 we treat the case of two-input AFs before turning

to the general n-input AFs in section 3. We investigate concavity issues in section 4 and conclude

in section 5.

1 One-input aggregation functions

Let’s callN1 the set of on-input AFs :

N1 =
�

f ∈C 2 :R∗+→R
∗
+

�

� f ′ > 0; f ′′ < 0
	

All functions f ∈N1 verify: ∀x > 0, f (x )> x f ′(x ), we prove this in appendix A.1.
2Solow (1956, p. 77), Arrow et al. (1961).
3Uzawa (1962) and McFadden (1963) extended the definition of the CES function to more than two inputs. Lu and Fletcher (1968), Re-

vankar (1971) and Kadiyala (1972) defined some two-input, Variable Elasticity of Substitution (VES) production functions. Other existing functions

include the translog class (Christensen et al. (1973, 1975)), the LINEX class (Kümmel et al. (1985), Ayres and Warr (2005)) and the Isoelastic Elasticity

of Substitution class (Growiec and Mućk (2016)). See Mishra (2007) on the history of production functions.
4The usual procedure of nesting CES production functions has the drawbacks that the parameters lose their meaning of elasticities of substitu-

tion and that the analytical expression depends on the nesting order.
5Uzawa (1962, section VI) extended the multiple-input CES formula to allow for different elasticities of substitution among pairs of goods. Zh-

elobodko et al. (2012) and Parenti et al. (2017) have extended the Dixit-Stiglitz monopolistic competition framework to allow for more flexible

preferences.
6Quantities governed by the ES include relative marginal rates of substitution, relative marginal costs, competitive factor shares, etc.. See

Hicks (1932 [1963]), Robinson (1933 [1969]), Allen (1938) and Samuelson (1968).
7Lau (1976) attempted to link ESFs to cost functions.
8Our results can be seen as an extension of Arrow et al. (1961) result to any number of inputs and ES functions that are not necessarily constant

nor equal across pairs of inputs.
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For any f ∈N1, we can define functions α, Π andσ:

α(x ) = x f ′(x )
f (x ) ∈ (0, 1) (1)

Π(x ) = α(x )
1−α(x ) ∈ (0,+∞) (2)

σ(x ) =− f ′(x )( f (x )−x f ′(x ))
x f (x ) f ′′(x ) ∈ (0,+∞) (3)

For a production function, α(x ) is the competitive x share, Π(x ) is the ratio of the competitive x

share over the other factor competitive share, and σ is the ESF associated to f . σ is linked to Π

through the equation:
Π′(x )
Π(x )

=
σ(x )−1

σ(x )
1

x
(4)

By inverting equation (3), Moysan and Senouci (2016) have shown the following result:

Theorem 1. — Let f ∈N1 and let σ ∈
�

σ ∈C 0 :R∗+→R
∗
+

	

be the associated ESF. Let x̄ > 0. Then,

there exists two constants Ā > 0 and Π̄> 0 such that:

∀x > 0, f (x ) = Ā. exp









∫ x

x̄

dx ′

x ′
�

1+
exp

�

−
∫ x ′

x̄
σ−1
σ (x ′′)

dx ′′
x ′′

�

Π̄

�









(5)

Besides, Ā = f (x̄ ), Π̄=Π (x̄ ).

— Conversely, let σ ∈
�

σ ∈C 0 :R∗+→R
∗
+

	

and let Ā > 0 and Π̄ > 0. Then, function f : R∗+ → R
∗
+

defined by equation (5) is inN1.

Proof. See Moysan and Senouci (2016, p. 81).

Theorem 1 shows that to design a function f ∈ N1 amounts to (a) choose an ESF σ from the

admissible set which is non other than
�

σ ∈C 0 :R∗+→R
∗
+

	

, and (b) choose the value taken by f

(= Ā > 0) and the value taken by Π (= Π̄ > 0) at some specific input level x̄ . Consequently, (5)

constitute a ‘recipe’ for all one-input AFs.

2 Two-input aggregation functions

For the ease of understanding of the n-input case in the next section, we first treat the two-input

case in this section. We callN2 the set of two-input AFs:

N2 =
¦

f ∈C 2 :
�

R∗+
�2→R∗+

�

� f1 > 0, f2 > 0, f strictly concave
©

where fi denotes the partial derivative of function f w.r.t. the i th variable, for i ∈ {1, 2}.
We denote byN ′

2 the set of functions of classC 2 that are strictly increasing and strictly concave

w.r.t. each variable:

N ′
2 =

¦

f ∈C 2 :
�

R∗+
�2→R∗+

�

� f1 > 0, f2 > 0, f11 < 0, f22 < 0
©

Clearly,N2 ⊂N ′
2 andN ′

2 6=N2. We show now how theorem 1 can be extended to write functions

belonging toN ′
2 in terms of the associated ESFs as well as some constants.

Let f ∈ N ′
2 . Then for any (x1, x2) ∈

�

R∗+
�2

, functions f (·, x2) and f (x1, ·) belong to N1. Conse-

quently, for any (x1, x2) ∈
�

R∗+
�2

, f (x1, x2)> x1 f1(x1, x2) and f (x1, x2)> x2 f2(x1, x2).
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Let (x̄1, x̄2) ∈
�

R∗+
�2

. Applying the first part of theorem 1 to f (x1, ·) yields:

f (x1, x2) = f (x1, x̄2). exp













∫ x2

x̄2

dx ′2

x ′2

 

1+
exp

�

−
∫ x ′2

x̄2

σ2−1
σ2 (x1,x ′′2 )

dx ′′2
x ′′2

�

Π2(x1,x̄2)

!













(6)

with:

∀(x1, x2) ∈
�

R∗+
�2

, σ2(x1, x2) = −
f2

�

f − x2 f2

�

x2 f f22

�

�

�

�

�

(x1,x2)

and:

∀(x1, x2) ∈
�

R∗+
�2

, Π2(x1, x2) =
x2 f2

f − x2 f2

�

�

�

�

(x1,x2)

Remark that, by the definition ofσ2 and like in equation (4):

Π1(x1, x2) =Π1 (x̄1, x2) . exp

�

∫ x1

x̄1

σ1−1

σ1

�

x ′1, x2

� dx ′1
x ′1

�

(7)

Furthermore, f (·, x̄2) ∈N1, so we can apply theorem 1 to function f (·, x̄2) in equation (6), which

yields:

f (x1, x2) = f (x̄1, x̄2). exp













∫ x1

x̄1

dx ′1

x ′1

 

1+
exp

�

−
∫ x ′1

x̄1

σ1−1
σ1 (x ′′1 ,x̄2)

dx ′′1
x ′′1

�

Π1(x̄1,x̄2)

!













. exp













∫ x2

x̄2

dx ′2

x ′2

 

1+
exp

�

−
∫ x ′2

x̄2

σ2−1
σ2 (x1,x ′′2 )

dx ′′2
x ′′2

�

Π2(x1,x̄2)

!













(8)

Equation (8) contains the quantity Π2 (x1, x̄2)which remains unknown.

Lemma 1. Let f ∈ N2 and let functions α1 and α2 be defined by: ∀(x1, x2) ∈
�

R∗+
�2

,αi (x1, x2) =
xi fi

f (x1, x2) =
Πi

1+Πi
(x1, x2). Then, ∀(x1, x2) ∈

�

R∗+
�2

:

x2

α1

∂ α1

∂ x2
=α2(x1, x2) (σ12(x1, x2)−1) (9)

x1

α2

∂ α2

∂ x1
=α1(x1, x2) (σ12(x1, x2)−1) (10)

whereσ12(x1, x2) =
f f12
f1 f2
(x1, x2).

Proof. Immediate from log-differentiation of α1 and α2.

For convenience, let’s callβ (x1) =α2 (x1, x̄2) . From equations (7) at (x1, x̄2) and (10), functionβ (·)
is a solution to the differential equation:

β ′(x1) =β (x1)
σ12 (x1, x̄2)−1

x1

 

1+
exp

�

−
∫ x1

x̄1

σ1−1
σ1 (x ′1,x̄2)

dx ′1
x ′1

�

Π1(x̄1,x̄2)

!
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which easily integrates into:

β (x1) =β (x̄1)exp









∫ x1

x̄1

σ12

�

x ′1, x̄2

�

−1

1+
exp

�

−
∫ x ′1

x̄1

σ1−1
σ1 (x ′′1 ,x̄2)

dx ′′1
x ′′1

�

Π1(x̄1,x̄2)

dx ′1
x ′1









(11)

We can now state the central result of this section:

Theorem 2. Let f ∈N ′
2 and letσ1, σ2 andσ12 be the elasticity of substitution functions associated

to f , defined by:

∀(x1, x2) ∈
�

R∗+
�2

,



















σ1(x1, x2) = − f1( f −x1 f1)
x1 f f11

�

�

�

(x1,x2)
∈R∗+

σ2(x1, x2) = − f2( f −x2 f2)
x2 f f22

�

�

�

(x1,x2)
∈R∗+

σ12(x1, x2) = − f f12
f1 f2

�

�

�

(x1,x2)
∈R

Let (x̄1, x̄2) ∈
�

R∗+
�2

, and let Ā = f (x̄1, x̄2) ∈ R∗+, Π̄1 =
x1 f1

f −x1 f1

�

�

�

(x̄1,x̄2)
∈ R∗+, Π̄2 =

x2 f2
f −x2 f2

�

�

�

(x̄1,x̄2)
∈ R∗+, ᾱ1 =

Π̄1

1+Π̄1
∈ (0, 1), and ᾱ2 =

Π̄2

1+Π̄2
∈ (0, 1). Then, for all (x1, x2) ∈

�

R∗+
�2

:

f (x1, x2) = Ā. exp













∫

x1

x̄1

dx ′1

x ′1

 

1+
exp

�

−
∫ x ′1

x̄1

σ1−1
σ1
(x ′′1 ,x̄2)

dx ′′1
x ′′1

�

Π̄1

! +

∫

x2

x̄2

dx ′2

x ′2

 

1+
exp

�

−
∫ x ′2

x̄2

σ2−1
σ2
(x1,x ′′2 )

dx ′′2
x ′′2

�

Π2(x1,x̄2)

!













(12)

with:

Π2 (x1, x̄2) = 1

�























exp






−
∫

x1

x̄1

σ12(x ′1,x̄2)−1

1+
exp

�

−
∫ x ′1

x̄1

σ1−1
σ1

(x ′′1 ,x̄2)
dx ′′1
x ′′1

�

Π̄1

dx ′1
x ′1







ᾱ2
−1























(13)

It also holds that, for all (x1, x2) ∈
�

R∗+
�2

:

f (x1, x2) = Ā. exp













∫

x1

x̄1

dx ′1

x ′1

 

1+
exp

�

−
∫ x ′1

x̄1

σ1−1
σ1
(x ′′1 ,x2)

dx ′′1
x ′′1

�

Π1(x̄1,x2)

! +

∫

x2

x̄2

dx ′2

x ′2

 

1+
exp

�

−
∫ x ′2

x̄2

σ2−1
σ2
(x̄1,x ′′2 )

dx ′′2
x ′′2

�

Π̄2

!













(14)

with:

Π1 (x̄1, x2) = 1

�























exp






−
∫

x2

x̄2

σ12(x̄1,x ′2)−1

1+
exp

�

−
∫ x ′2

x̄2

σ2−1
σ2

(x̄1,x ′′2 )
dx ′′2
x ′′2

�

Π̄2

dx ′2
x ′2







ᾱ1
−1























(15)
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Proof. We get equations (12)-(13) directly from equations (8) and (11). Equations (14)-(15) are

obtained by symmetry in the arguments x1 and x2 – equivalently, equations (14)-(15) are obtained

by applying the same method to f (·, x2) and then to f (x̄1, ·).

So all two-input AFs admit a representation of the form of equations (12)-(13) or, equivalently,

of the form of equations (14)-(15) which, despite appearances, are equivalent.

However, the reciprocal is wrong: not all functions of the form of (12)-(13) or (14)-(15) are AFs.

For instance, differentiating equation (12) with respect to x2 we get:

f2(x1, x2) =
f (x1,x2)

x2






1+

exp

�

−
∫ x2

x̄2

σ2−1
σ2

(x1,x ′2)
dx ′2
x ′2

�

Π2(x1,x̄2)







f22(x1, x2) = − 1
σ2(x1,x2)

f2(x1,x2)
exp

�

−
∫ x2

x̄2

σ2−1
σ2

(x1,x ′2)
dx ′2
x ′2

�

Π2(x1,x̄2)

x2






1+

exp

�

−
∫ x2

x̄2

σ2−1
σ2

(x1,x ′2)
dx ′2
x ′2

�

Π2(x1,x̄2)







with Π2(x1, x̄2) like defined in equation (13). While f (x1, x2) > 0 by construction, it appears that

f2(x1, x2) might be negative since nothing ensures that 1+ exp
�

−
∫ x2

x̄2

σ2−1
σ2
(x1, x ′2)

dx ′2
x ′2

�À

Π2 (x1, x̄2) is

strictly positive, sinceΠ2(x1, x̄2) in equation (13) might be negative, or even undefined. The sign of

f22 is also undefined in this expression.

All in all, this means that equations (12)-(13) or (14)-(15) do a poor job in providing a ‘general

recipe’ for all two-input AFs.

For instance, for constantσ1 6= 1,σ2 6= 1,σ12 ∈R, our method yields:














f (x1, x2) = Ā.
�

1− ᾱ1+ ᾱ1

�

x1
x̄1

�

σ1−1
σ1

�

σ1
σ1−1

.
�

1−α2(x1, x̄2) +α2(x1, x̄2)
�

x2
x̄2

�

σ2−1
σ2

�

σ2
σ2−1

with: α2(x1, x̄2) = ᾱ2

�

1− ᾱ1+ ᾱ1

�

x1
x̄1

�

σ1−1
σ1

�(σ12−1) σ1
σ1−1

(16)

or, equivalently:














f (x1, x2) = Ā.
�

1−α1(x̄1, x2) +α1(x̄1, x2)
�

x1
x̄1

�

σ1−1
σ1

�

σ1
σ1−1

.
�

1− ᾱ2+ ᾱ2

�

x2
x̄2

�

σ2−1
σ2

�

σ2
σ2−1

with: α1(x̄1, x2) = ᾱ1

�

1− ᾱ2+ ᾱ2

�

x2
x̄2

�

σ2−1
σ2

�(σ12−1) σ2
σ2−1

(17)

It is apparent from (16) or (17) that α1(x1, x2) and α2(x1, x2) might not be confined to the (0, 1)
interval, implying that functions f defined through (16) or (17) might not be an AF over

�

R∗+
�2

.

However, as we will see in section 4, it is possible to use formulas (16) or (17) together with some

criterion over (σ1,σ2,σ12, ᾱ1, and ᾱ2) to characterize functions that are ‘local AFs’, i.e. functions

which satisfy the definition of AFs in the neighborhood of (x̄1, x̄2).

But first, we replicate in the next section the result of theorem 2 for n-input AFs.
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3 n-input aggregation functions

Let n ≥ 2. We callNn the set of two-input AFs:

Nn =
�

f ∈C 2 :
�

R∗+
�n →R∗+

�

�∀i ∈ {1, . . . , n} , fi > 0, f strictly concave
	

We denote by N ′
n the set of functions of class C 2 that are strictly increasing and strictly concave

w.r.t. each variable:

N ′
n =

�

f ∈C 2 :
�

R∗+
�n →R∗+

�

�∀i ∈ {1, . . . , n} , fi > 0, fi i < 0
	

Again,Nn ⊂N ′
n andNn 6=N ′

n .

For any function f ∈Nn , we define the elasticities of substitution functions:

∀i ∈ {1, . . . , n}, ∀(x1, . . . , xn ), σi (x1, . . . , xn ) =
fi ( f −xi fi )
−xi f fi i

�

�

�

(x1,...,xn )
∈R∗+ (18)

∀i , j ∈ {1, . . . , n}, i 6= j , ∀(x1, . . . , xn ), σi j (x1, . . . , xn ) =
f fi j

fi f j

�

�

�

(x1,...,xn )
∈R (19)

as well as each factor’s competitive share function αi and the corresponding ratios:

∀i ∈ {1, . . . , n},

¨

αi =
xi fi

f ∈ (0, 1)
Πi =

αi
1−αi

∈R
(20)

By definition, ESFsσi andσi j verify:

∀i ∈ {1, . . . , n},∀(x1, . . . , xn ) ∈
�

R∗+
�n

,
∂ Πi

∂ xi
(x1, . . . , xn ) =

σi −1

σi
(x1, . . . , xn )

Πi (x1, . . . , xn )
xi

(21)

∀i , j ∈ {1, . . . , n}, i 6= j ,∀(x1, . . . , xn ) ∈
�

R∗+
�n

,
∂ αi

∂ x j
(x1, . . . , xn ) =

�

σi j (x1, . . . , xn )−1
� α j (x1, . . . , xn )

x j
(22)

Finally, let (x̄1, . . . , x̄n ) ∈
�

R∗+
�n

. We first present a simple lemma that shall be useful in this sec-

tion.

Lemma 2. Let p ∈ N∗ and let h be a function of
�

R∗+
�p

into R∗+ of class C 1. For any i ∈
�

1, . . . , p
	

,

define function mi by mi = hi/h, where hi is the first derivative of h w.r.t. its i th variable. Then:

∀(x1, . . . , xp ) ∈
�

R∗+
�p

, h (x1, . . . , xp ) = h
�

x̄1, . . . , x̄p

�

. exp

�

p
∑

i=1

∫ xi

x̄i

mi

�

x1, . . . , xi−1, x ′i , x̄i+1, . . . , x̄p

�

�

Proof. See appendix A.2.

First, let’s apply lemma 2 to f . Let (x1, . . . , xn ) ∈
�

R∗+
�n

. By the definition ofαi , for all i ∈ {1, . . . , n},
it holds that ( fi/ f )(x1, . . . , xn ) =αi (x1, . . . , xn )/xi . Then, for all :

f (x1, . . . , xn ) = f (x̄1, . . . , x̄n ) . exp

�

n
∑

i=1

∫ xi

x̄i

αi

�

x1, . . . , xi−1, x ′i , x̄i+1, . . . , x̄n

� dx ′i
x ′i

�

(23)

The next step is then to find a formula for αi (x1, . . . , xi−1, xi , x̄i+1, . . . , x̄n ). To do so, we use equa-

tions (21)-(22).
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Lemma 3. For all i ∈ {2, . . . , n}:

αi (x1, xi−1, x̄i , . . . , x̄n ) =αi (x̄1, . . . , x̄n ) . exp

 

i−1
∑

j=1

∫ x j

x̄ j

��

σi j −1
�

α j

�

�

x1, . . . , x j−1, x ′j , x̄ j+1, . . . , x̄n

� dx ′j
x ′j

!

Proof. Let i ∈ {2, . . . , n}. Then, for all j ∈ {1, . . . , i −1}, equation (22) together with lemma 2 leads to

the stated formula.

Lemma 4. For all i ∈ {2, . . . , n}:

αi (x1, . . . , xi−1, xi , x̄i+1, . . . , x̄n ) =
1

1+









exp

 

−
∑i−1

j=1
∫

x j
x̄ j
(σi j −1)α j

�

x1,...,x j−1,x ′j ,x̄ j+1,...,x̄n
� dx ′j

x ′j

!

αi (x̄1,...,x̄n )
−1









exp
�

−
∫ xi

x̄i

σi −1
σi (x1,...,xi−1,x ′i ,x̄i+1,...,x̄n )

dx ′i
x ′i

�

Proof. See appendix A.3.

Lemma 4 links αi to the α j ’s, with j < i . Again, a reasoning by induction allows us to derive all

αi ’s.

For the ease of notation, we call ᾱi =αi (x̄1, . . . , x̄n ).
We also define for all i ∈ {1, . . . , n} the operator Γi :

Γi :C 1
�

�

R∗+
�i

,R∗+
�

×C 1
�

�

R∗+
�i

,R∗+
�

×C 1
�

�

R∗+
�i−1

,R∗+
�

×R∗+×R
∗
+ → C 1

�

�

R∗+
�i

,R∗+
�

by:

Γi (ϕ,γ,η, x0,δ) :











�

R∗+
�i → R∗+

(x1, . . . , xi ) 7→ exp

 

−
∫

xi

x0

γ(x1,...,xi−1,x ′i )−1

1+exp
�

−
∫ x ′i

x0

ϕ(x1,...,xi−1,x ′′i )

x ′′i
dx ′′i

�

.
�

η(x1,...,xi−1)
δ −1

�

.
dx ′i
x ′i

!

(24)

with the convention
�

R∗+
�0
=∅ and that all functions of ∅ into R∗+ are constant equal to 1.

We also define, for i ∈ {1, . . . , n} functionsψ(i ) ∈C 1
�

�

R∗+
�i−1

,R∗+
�

by induction:

¨

ψ(1) = 1

∀i ∈ {2, . . . , n},∀(x1, . . . , xi−1) ∈
�

R∗+
�i−1

, ψ(2)(x1, . . . , xi−1) =
∏i−1

j=1 Γ j

�

σ j−1
σ j

,σi j ,ψ( j ), x̄ j , ᾱ j

�

(25)

Lemma 5. For all i ∈ {1, . . . , n}:

αi (x1, . . . , xi , x̄i+1, . . . , x̄n ) =
1

1+exp
�

−
∫ xi

x̄i

σi−1
σi
(x1, . . . , xi−1, x ′i , x̄i+1, . . . , x̄n )

dx ′i
x ′i

��

ψ(i )(x1,...,xi−1)
ᾱi

−1
�

Proof. See appendix A.4.

We can now state the most important result of this section:
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Theorem 3. Let f ∈Nn . Then:

f (x1, . . . , xn ) = Ā.

exp

 

∑n
i=1

∫ xi

x̄i

1

1+exp
�

−
∫ xi

x̄i

σi −1
σi
(x1,...,xi−1,x ′′i ,x̄i+1,...,x̄n )

dx ′′i
x ′′i

�

�

ψ(i )(x1,...,xi−1)
ᾱi

−1
�

dx ′i
x ′i

!

(26)

where Ā = f (x̄1, . . . , x̄n ).

Proof. Immediate from equation (23) and lemma 5.

Theorem 3 states that for any AF f , f is representable in terms of its n (n +1)/2 ESFsσi andσi j

as well as n + 1 constants, out of which n are linked to the first derivatives of f – i.e. (ᾱ1, . . . , ᾱn ) –

and one is linked to the level of f – i.e. Ā = f (x̄1, . . . , x̄n ). Like in theorem 2, the i ’s can be permuted

to yield other formula – so there exists n ! formulas equivalent to (26).

However, like for theorem 2, the reciprocal of theorem 3 does not hold. It is not enough to take

n (n + 1)/2 functions plus n + 1 constants and apply formula (26) to get a function f ∈ N ′
n . The

resulting function might not belong toNn neither, and formula (26) might even be undefined.

In the next section, we show how formula (26) can be used to design functions that are AFs near

(x̄1, . . . , x̄n ).

4 A local characterization of n-input aggregation functions

As we already highlighted in the n = 2 case, formula (26) does not yield a ‘general recipe’ for all AFs.

More precisely: if one takes some ESFs (σi )i and (σi j )i 6= j and some constants Ā, (ᾱi )i , and consider

function f defined in (26); then function f is not necessarily an AF. However, although it is difficult

to use equation (26) to design functions that are global AFs, we now show that it is straightforward

to use equation (26) to get functions that are AFs around (x̄1, . . . , x̄n ).

Theorem 4. Let n ∈N, n ≥ 2. Let x̄ = (x̄1, . . . , x̄n ) ∈
�

R∗+
�n

.

For all i ∈ {1, . . . , n}, let σi ∈ C 0
��

R∗+
�n →R∗+

�

. For all i 6= j ∈ {1, . . . , n}, let σi j ∈ C 0
��

R∗+
�n →R

�

with σi j = σ j i . Let Ā > 0 and for all i ∈ {1, . . . , n}, let ᾱi ∈ (0, 1), with
∑n

i=1 ᾱi < 1. Define for all i ,

Π̄i = ᾱi/(1− ᾱi ).
We callM (x̄ ) the following symmetric matrix:

M (x̄ ) =













− 1
σ1(x̄ )Π̄1

σ12 (x̄ ) · · · σ1n (x̄ )

σ12 (x̄ ) − 1
σ2(x̄ )Π̄2

· · · σ2n (x̄ )
...

...
...

σ1n (x̄ ) σ2n (x̄ ) · · · − 1
σn (x̄ )Π̄n













Let f be the function
�

R∗+
�n →R∗+ defined in equation (26).

Assume that matrix M (x̄ ) is negative definite. Then, function f is (i ) well-defined around x̄ ;

(i i ) strictly increasing w.r.t. each variable x1, . . . , xn and (i i i ) strictly concave over some neighbor-

hood of x̄ .

Proof. See appendix A.5.
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The practical use of theorem 4 is straightforward. Imagine a modeler willing to model an AF

f ∈ Nn . Suppose that the modeler is interested in the AF only around some vector of reference

x̄ = (x̄1, . . . , x̄n ) – maybe because theory or real data points to this vector of reference. Assume that

the modeler has some a priori assumptions on the ESFs
�

(σi )i and (σi j

�

i 6= j
as well as on the values

of the constants
�

Ā and (ᾱi )i
�

. Finally, assume that the matrixM (x̄ ) is negative definite for such

assumptions on ESFs and constants.

Then, theorem 4 states that the modeler should consider f as being perfectly described by

equation (26). As long as the modeler makes only a local use of this formula – meaning that the

modeler abstains from applying formula (26) to vectors x ∈
�

R∗+
�n

that do not lie in the neighbor-

hood of x̄ – function f yielded by formula (26) is an AF. Also, by this method, all ‘local AFs’ can be

generated with the proper choice of ESFs and constants.

To illustrate the method we have in mind, we lay down a simple model of production with three

inputs: physical capital (X1), human capital (X2), raw labor (L ): Y = F (X1, X2, L ). We assume that

F has constant-returns-to-scale and we normalize by L :

y =
Y

L
= f (x1, x2) with x1 =

X1

L
, x2 =

X2

L
and f (·, ·) = F (·, ·, 1)

The competitive input shares areα1 for physical capital,α2 for human capital and 1−α1−α2 for raw

labor. For simplicity, let’s assume thatα1 does not depend on x1 and thatα2 does not depend on x2,

which amounts to assume thatσ1 ≡ 1 andσ2 ≡ 1. For the crossed ESFs, the traditional assumption

in this three-input framework is that physical capital is more complementary with human capital

than with raw labor. We take σ12 > 1, so that when x1 (resp. x2) increases, α2 (resp. α1) increases

and 1−α1 −α2 increases (idem). If in real-world data y = Ā, xi = x̄i and αi = ᾱi for i = 1, 2; then

from equation (16) the production function near (x̄1, x̄2) has to be:

f (x1, x2) = Ā
�

x1

x̄1

�ᾱ1
�

x2

x̄2

�ᾱ2

�

x1
x̄1

�ᾱ1(σ12−1)

(27)

Function f is a local AF around (x̄1, x̄2) if and only if the eigenvalues of the corresponding matrix

M (x̄ ) are strictly negative:

M (x̄ ) =

�

− 1−ᾱ1
ᾱ1

σ12

σ12 − 1−ᾱ2
ᾱ2

�

The trace ofM (x̄ ) is strictly negative, and soM (x̄ ) is negative definite if and only if:

σ2
12 <

1− ᾱ1

ᾱ1

1− ᾱ2

ᾱ2
(28)

To sum up, for σ12, ᾱ1 and ᾱ2 that satisfy constraint (28), function f defined by equation (27) is

strictly increasing in each argument and strictly concave near (x̄1, x̄2).

5 Conclusion

This paper has uncovered the link between production and utility functions on the one hand, and

the elasticities of substitution functions on the other. We brought new duality results which lead us

to a formula encompassing all production and utility functions that are admissible in the literature.
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This approach also provides a general recipe for all local production and utility functions. We hope

that modeling, especially over quite large numbers of inputs, will benefit from the results presented

here. We also keep in mind that other definitions could be taken for the elasticities of substitution

functions, which we keep in mind for future work.

A Appendix

A.1 Proof that f ∈N1 =⇒∀x > 0, f (x )> x f ′(x )

Let f ∈N1 and let x > x̄ > 0. Then: f (x ) = f (x̄ )+
∫ x

x̄
f ′ (x ′) dx ′. Since f ∈N1, f ′ is strictly decreasing, and so:

f (x ) = f (x̄ )+

∫ x

x̄

f ′
�

x ′
�

dx ′ > f (x̄ ) + (x − x̄ ) f ′(x ) (29)

Since f is strictly increasing and strictly positive, it admits a limit near 0+. Let’s call this limit l0 ≥ 0. As x̄ tends to 0+,

inequality (29) yields:

f (x )≥ l0+ x f ′(x )≥ x f ′(x )

The passage to the limit makes the inequality wide rather than strict. We now show that it is, indeed, strict.

Let x > 0 and assume f (x ) = x f ′(x ). Then, for all x̄ < x , inequality (29) implies: 0 > f (x̄ )− x̄ f ′(x ). But we also

know that f (x̄ )≥ x̄ f ′ (x̄ ). So f ′ (x̄ )< f ′(x ), which constitutes a contradiction. Consequently, ∀x > 0, f (x )> x f ′(x ).

A.2 Proof of lemma 2

We prove lemma 2 by induction on p .

• If p = 1, then h ′(x ) =m (x )h (x ) is integrable into h (x ) = h (x̄ ) .
∫ x

x̄
m (x ′) dx ′.

• Assume that lemma 2 is valid for some p ∈ N∗. Let
�

x̄1, . . . , x̄p+1

�

∈
�

R∗+
�p+1

. Let then h be a function of
�

R∗+
�p+1

into R∗+ and forall i , define mi = hi /h where hi is the first derivative of h w.r.t. the i th variable. In particular,

mp+1 = hp+1/h . Then, according to the bullet point above, for all (x1, . . . , xp+1) ∈
�

R∗+
�p+1

:

h (x1, . . . , xp+1) = h
�

x1, . . . , xp , x̄p+1

�

. exp

�

∫ xp+1

x̄p+1

mp+1

�

x1, . . . , xp , x ′p+1

�

dx ′p+1

�

Function g : (x1, . . . , xp ) 7→ h
�

x1, . . . , xp , x̄p+1

�

is a function of
�

R∗+
�p →R∗+ of classC 1 and such that∀i ∈ {1, . . . , p}, g i =

mi h . Then, by the assumption of induction, for all (x1, . . . , xp ) ∈
�

R∗+
�p

,

g (x1, . . . , xp ) = h
�

x1, . . . , xp , x̄p+1

�

= h
�

x̄1, . . . , x̄p , x̄p+1

�

. exp

� p
∑

i=1

∫ xi

x̄i

mi

�

x1, . . . , xi−1, x ′i , x̄i+1, . . . , x̄p+1

�

dx ′i

�

Hence, for all (x1, . . . , xp+1) ∈
�

R∗+
�p+1

:

h (x1, . . . , xp+1) = h
�

x̄1, . . . , x̄p , x̄p+1

�

. exp

�p+1
∑

i=1

∫ xi

x̄i

mi

�

x1, . . . , xi−1, x ′i , x̄i+1, . . . , x̄p+1

�

dx ′p+1

�

A.3 Proof of lemma 4

By equation (21):

Πi (x1, . . . , xi−1, xi , x̄i+1, . . . , x̄n ) =

Πi (x1, . . . , xi−1, x̄i , x̄i+1, . . . , x̄n ) . exp
�

∫ xi

x̄i

σi−1
σi

�

x1, . . . , xi−1, x ′i , x̄i+1, . . . , x̄n

� dx ′i
x ′i

�

Since αi =Πi /(1+Πi ), the above equation leads to:

αi (x1, . . . , xi−1, xi , x̄i+1, . . . , x̄n ) =
1

1+
exp

�

−
∫ xi

x̄i

σi −1
σi
(x1,...,xi−1,x ′i ,x̄i+1,...,x̄n )

dx ′i
x ′i

�

Πi (x1,...,xi−1,x̄i ,x̄i+1,...,x̄n )
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From lemma 3, and since 1/Πi = 1/αi −1, it holds that:

αi (x1, . . . , xi−1, xi , x̄i+1, . . . , x̄n ) =
1

1+
�

1
αi (x1,...,xi−1,x̄i ,x̄i+1,...,x̄n )−1

�

exp
�

−
∫ xi

x̄i

σi −1
σi
(x1,...,xi−1,x ′i ,x̄i+1,...,x̄n )

dx ′i
x ′i

�

= 1

1+









exp

 

−
∑i−1

j=1
∫

x j
x̄ j
(σi j −1)α j

�

x1,...,x j−1,x ′j ,x̄ j+1,...,x̄n
� dx ′j

x ′j

!

αi (x̄1,...,x̄n ) −1









exp
�

−
∫ xi

x̄i

σi −1
σi
(x1,...,xi−1,x ′i ,x̄i+1,...,x̄n )

dx ′i
x ′i

�

which completes the proof.

A.4 Proof of lemma 5

For simplicity, let’s call Ai (x1, . . . , xi ) =αi (x1, . . . , xi , x̄i+1, . . . , x̄n ).

We show by induction the following proposition H (i ), for i ∈ {1, . . . , n}:

H (i ) : Ai (x1, . . . , xi ) =
1

1+exp
�

−
∫ xi

x̄i

σi−1
σi
(x1, . . . , xi−1, x ′i , x̄i , . . . , x̄n )

dx ′i
x ′i

��

ψ(i )(x1,...,xi−1)
ᾱi

−1
�

• Equation (21) for i = 1 implies Π1 (x1, x̄2, . . . , x̄n ) =Π1 (x̄1, x̄2, . . . , x̄n ) . exp
�

∫ x1

x̄1

σ1−1
σ1

�

x ′1, x̄2, . . . , x̄n

� dx ′1
x ′1

�

, which leads

to:

A1(x1) =α1 (x1, x̄2, . . . , x̄n ) =
1

1+exp
�

−
∫ x1

x̄1

σ1−1
σ1

�

x ′1, x̄2, . . . , x̄n

� dx ′1
x ′1

�

�

1
ᾱ1
−1

�

=⇒ H (1) is true.

• Let i ∈ {1, . . . , n −1} such that for all j ≤ i , H ( j ) is true:

∀ j ≤ i , A j (x1, . . . , x j ) =
1

1+exp
�

−
∫ x j

x̄ j

σ j−1
σ j
(x1, . . . , x j−1, x ′j , x̄ j+1, . . . , x̄n )

dx ′j
x ′j

�
�

ψ( j )(x1,...,x j−1)
ᾱ j

−1
�

(30)

Using lemma 3:

Ai+1(x1, . . . , xi+1) =
1

1+

�

1
ᾱi+1

exp

�

−
∑i

j=1((σi j−1)A j )
�

x1,...,x j−1,x ′j ,x̄ j+1,...,x̄n

� dx ′j
x ′j

�

−1

�

. exp
�

−
∫ xi+1

x̄i+1

σi+1−1
σi+1
(x1,...,xi ,x ′i+1,x̄i+2,...,x̄n )

dx ′i+1
x ′i+1

�

Using equation (30), the above equation leads to:

Ai+1(x1, . . . , xi+1) =
1

1+exp
�

∫ xi+1
x̄i+1

− σi+1−1
σi+1
(x1,...,xi ,x ′i+1,x̄i+2,...,x̄n )

dx ′i+1
x ′i+1

�

.









1
ᾱi+1

∏i
j=1 exp









−
∫ x j

x̄ j

σi j

�

x1,...,x j−1,x ′j ,x̄ j+1,...,x̄n
�

−1

1+exp





∫

x ′j
x̄ j
− σi −1
σi

�

x1,...,x j−1,x ′′j ,x̄ j+1,...,x̄n
� dx ′′j

x ′′j





�

ψ( j )(x1,...,x j−1 )
ᾱ j

−1

�

dx ′j
x ′j









−1









Therefore:

Ai+1(x1, . . . , xi+1) =
1

1+exp
�

∫ xi+1

x̄i+1

σi+1−1
σi+1

�

x1, . . . , xi , x ′i+1, x̄i+1, . . . , x̄n

� dx ′i+1

x ′i+1

��

ψ(i+1)(x1,...,xi )
ᾱi

−1
�

which means that H (n +1) is true.

A.5 Proof of theorem 4

– By construction, f is well-defined around x̄ , strictly positive and of classC 2 around x̄ .

– It is also obvious by the construction of f that:

∀i ∈ {1, . . . , n}, fi (x̄ ) =
f (x̄ )

x̄i
ᾱi > 0

By continuity of fi we conclude that fi (x )> 0 for all x in some neighborhood of x̄ .

– The Hessian matrix of f around x̄ is S (x̄ ) =
�

fi j (x̄ )
�

i , j∈{1,...,n}. We now show that S is negative definite if and

only ifM (x̄ ) is negative definite.
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Lemma 6. Let S be a symmetric n ×n matrix and let λ > 0. Let S ′ be the square matrix obtained by multiplying

one column of S by λ, and let S ′′ be the square matrix obtained by multiplying one line of S by λ.

Then, S is negative definite if and only of S ′ is negative definite, and if and only if S ′′ is negative definite.

Proof. Let S be a symmetric n×n matrix and letλ> 0. Without loss of generality, let’s assume that S ′ is obtained

by multiplying the first column of S by λ, while S ′′ is obtained by multiplying the first row of S by λ:

S =













a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

an1 an2 · · · ann













, S ′ =













λa11 a12 · · · a1n

λa21 a22 · · · a2n

...
...

...

λan1 an2 · · · ann













, S ′′ =













λa11 λa12 · · · λa1n

a21 a22 · · · a2n

...
...

...

an1 an2 · · · ann













According to Sylvester’s criterion, S is negative definite if and only if its leading principal minors alternate in

signs:

S is negative definite ⇐⇒

¨

µ1 = a11 < 0, µ2 =

�

�

�

�

�

a11 a12

a21 a22

�

�

�

�

�

> 0 , . . .

«

For i ∈ {1, . . . , n} Let’s call respectively µ′i and µ′′i the i th leading principal minor of S ′ and S ′′. It is obvious that:

∀i ∈ {1, . . . , n}, µ′i =µ
′′
i =λµi

µi is the same sign as µ′i as well as µ′′i . Consequently, S is negative definite if and only if S ′ is negative definite,

and if and only if S ′′ is negative definite.

In the spirit of lemma 6, for each i , j ∈ {1, . . . , n}we multiply the i th row ofS (x̄ ) by 1/ fi (x̄ ) and the j th column of

S (x̄ )by 1/ f j (x̄ ). We also multiply all rows and columns by f (x̄ ). This proves that: S (x̄ ) is negative definite ⇐⇒
M (x̄ ) =

�

f . fi j

fi . f j
(x̄ )

�

i , j∈{1,...,n}
is negative definite.

The non-diagonal elements ofM (x̄ ) are
�

σi j (x̄ )
�

i 6= j
. The diagonal elements ofM (x̄ ) are f fi i

f 2
i
(x̄ ) =− 1

σi

f −x̄i fi
x̄i fi
(x̄ ) =

− 1
σiΠi
(x̄ ).

IfM (x̄ ) is definite negative, then by continuity f is strictly concave over some neighborhood of x̄ .
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