
HAL Id: hal-01866160
https://hal.science/hal-01866160v1

Submitted on 26 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Two-Way Automata over Locally Finite Semirings
Louis-Marie Dando, Sylvain Lombardy

To cite this version:
Louis-Marie Dando, Sylvain Lombardy. Two-Way Automata over Locally Finite Semirings. 20th
International Conference on Descriptional Complexity of Formal Systems (DCFS), Jul 2018, Hallifax,
NS, Canada. pp.62-74, �10.1007/978-3-319-94631-3_6�. �hal-01866160�

https://hal.science/hal-01866160v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Two-way Automata over Locally Finite

Semirings

Louis-Marie Dando and Sylvain Lombardy

LaBRI UMR 5800, Université de Bordeaux, INP Bordeaux, CNRS
Bordeaux, FRANCE

{louis-marie.dando,sylvain.lombardy}@labri.fr

Abstract. Two-way transducers or weighted automata are in general
more powerful than one-way ones. We show that two-way automata over
locally finite semirings may have undefined behaviour. We prove that it
is decidable whether this behaviour is defined, and, if it is, we show that
two-way automata over locally finite semirings are equivalent to one-way
automata.

1 Introduction

Weighted two-way automata and transducers have been recently intensively
studied for their interest in verification [3]. Their expressiveness is in general
larger than the expressiveness of one-way models. We consider in this paper
two-way automata over locally finite semirings. Finite or locally finite semirings
occur in many models, like distributive lattices or fuzzy logic. One-way automata
over these semirings have been studied for many decades. For instance, the first
proof of the limitedness problem [4] relies on automata on the idempotent semir-
ing {0, 1, ω,∞} (where 1 means “something” and ω means “a lot”).

It is folklore that every one-way automaton over a locally finite semiring is
equivalent to a deterministic finite automaton where the weight of the run only
depends on the state where the run stops. For two-way automata over locally
finite semirings, the situation is not as simple. For instance, if the weights belong
to Z/2Z, then the weight of an input depends on the parity of the number of
accepting runs; since in a two-way automaton, there may exist an infinite number
of runs accepting some input, this weight may be not defined.

For every two-way automaton over a locally finite semiring, we build an
automaton that describes the potentially infinite family of weights of runs on
every input. From this object, knowing which infinite sums are defined in the
locally finite semiring is sufficient to decide whether the behaviour of the two-
way automaton is defined. We also prove that every two-way automaton over
a locally finite semiring with a defined behaviour is equivalent to a one-way
automaton.

In Section 2, we consider locally finite semirings. In particular, we study how
the additive order allows to encode infinite sums. In Section 3, we introduce
weighted two-way automata over locally finite semirings and we show that they

can be normalized in such a way that the weight of every run only depends on the
final state, and the move of the input head is fully characterized by the current
state. In Section 4, we use an extension of crossing sequences [6, 7] to convert a
two-way automaton into a one-way automaton. It leads to a deterministic one-
way automaton where each final state describes the (potentially infinite) family
of weights of runs of the two-way automaton on the input. It is then decidable
whether the weight of every input is defined, and, if it is, then the deterministic
automaton can be turned into a (deterministic) one-way automaton equivalent
to the two-way automaton.

2 Locally Finite Semirings

A semiring (K,+, .) is a set K endowed with two associative operations: a com-
mutative addition and a multiplication that is distributive over the addition.
Moreover, the semiring contains at least two distinct elements which are respec-
tively neutral for each of these operations: 0K for the addition and 1K for the
multiplication; it is also required for 0K to be an annihilator for the multiplica-
tion.

A semiring K is locally finite if, for every finite subset F of K containing both
0K and 1K, the semiring generated by F is finite.

Moreover, we assume that K is endowed with a partially defined operator for
countable sums:

∑

I x, where I is a countable set and x = (xi)i∈I a family of
elements of x. If I is finite, then

∑

I x is always defined and equal to the sum of
elements of x. We also assume that two families equal up to a permutation have
the same sum.

In this paper, we deal with weighted automata where a finite number of
elements of some locally finite semiring occur. These elements generate a finite
semiring. In the sequel, we assume that the semiring K is finite.

Example 1. Let (L,∨,∧) be an infinite distributive lattice; L is a semiring with
∨ as addition and ∧ as multiplication. 0L is the minimum element of L and 1L
is the maximum element. The infinite sum of a family of elements of L is the
supremum of this family; if it exists. In lattices, the supremum of families with
a finite number of distinct elements is always defined. ⊓⊔

Example 2. Let K1 = {o, i, x} be the finite semiring where o is the zero, i is
the unit, i + i = o, and r + x = r.x = x for every r in {i, x}. Intuitively, this
semiring allows to count values modulo 2, and x stands for values where the
parity information is lost. In K1, the sum of any family which contains at least
one x is defined and equal to x, and a family that does not contain any x is
summable if and only if the number of occurrences of i is finite. ⊓⊔

Since K is finite and families are unordered, a family is totally characterized
by the number of occurrences of each element of K. Hence, we represent such a
family s by a vector v in (N∪{∞})K such that, for every x in K, vx is the number
of occurrences of x in s. The evaluation of v is the sum of s if it is defined. Notice

that if s and s′ are two families respectively represented by vectors v and v′,
then the union of s and s′ is represented by v + v′.

In Section 4.3, a one-way deterministic K-automaton equivalent to a two-way
K-automaton is built. The states of this automaton store vectors representing
families. In order to build a finite number of states, we need to define a finite
set of representatives. Two vectors v and v′ in (N ∪ {∞})K are equivalent if for
every vector u, v+u and v′ +u have the same evaluation. This property will be
required during a determinization step.

We show that every vector in (N ∪ {∞})K is equivalent to a vector where
finite entries are bounded. We consider the natural external product : for every
(k, x) in N × K, k.x is the sum of k elements x. Likewise, if it is defined, the
infinite sum of x is denoted ∞.x.

Definition 1. Let x be an element of a locally finite semiring K. The additive
order of x is the minimal couple (nx, px) of integers (with px > 0) verifying

∀k > nx, (k + px).x = k.x . (1)

The additive order of x is always defined in a locally finite semiring. Actually, the
set {k.x | k ∈ N} is finite and the sequence s = (k.x)k∈N is ultimately periodic:
if si = sj , then for every k si+k = i.x+ k.x = j.x+ k.x = sj+k. Thus, px is the
minimal distance between two occurrences of the same value in s and nx is the
smallest i such that si appears infinitely often in s.

If (nx, px) is the order of x, then for every (m, q) with m larger than or equal
to k and q multiple of px, it also holds ∀k > m, (k + q).x = k.x. The additive
order of a finite semiring is then the minimal pair which is admissible for every
element of the semiring.

Definition 2. Let K be a finite semiring. The additive order of K is the couple

(max{nx | x ∈ K}, lcm{px | x ∈ K}), (2)

where lcmX is the least common multiple of elements of X. For every k in
N ∪ {∞}, the value of k modulo (n, p) is defined as

kmod(n, p) =

{

k if k < n or k = ∞

n+ ((k − n)mod p) otherwise.
(3)

Hence, kmod(n, p) is in J0;n + p − 1K ∪ {∞} and if the additive order of a
finite semiring K is (n, p), then for every x in K, k.x = (kmod(n, p)).x.

If (n, p) is the additive order of K, then every vector v in (N∪{∞})K is equiv-
alent to the vector where each entry is considered modulo (n, p). The number
of distinct vectors modulo (n, p) is equal to (n+ p+ 1)|K| (some entries may be
equal to ∞).

In the sequel, Nn,p is the semiring J0;n+ p− 1K∪ {∞} where the operations
between finite integers are modulo (n, p).

Example 3. The additive order of elements of K1 (Example 2) is: order(o) =
(0, 1), order(i) = (0, 2), and order(x) = (1, 1). Hence, the additive order of K1 is
(1, 2): for every element k in K1, k = 3.k. ⊓⊔

3 Two-way Automata

3.1 Definition and Behaviour

We follow in this paper the definition of two-way weighted automata given in [5].
Contrary to the classical definition of two-way finite automata [7, 6], the move
of the reading head does not depend on the transitions but on the states. This
model was first used in [1] and was there proved to be equivalent to the classical
one.

Definition 3. Let K be a locally finite semiring, A an alphabet and � a special
symbol, called endmarker, which does not belong to A. A two-way K-automaton
over A is a tuple (F,B,E, I, T), where
– F is the set of forward states, B the set of backward states; Q = F ∪ B is
the set of states;
– E : Q× (A ∪ {�})×Q −→ K is the transition weight function;
– I : F −→ K and T : F −→ K are the initial and the final weight function.
The set of transitions is the support of E, the set of initial states is the support of
I, and the set of final states is the support of T . For every transition e = (p, a, q),
λ(e) = a is the label of e, σ(e) = p its source, and τ(e) = q its target.

For every state p, we note δ(p) = 1 if p is in F and δ(p) = −1 if p is in B. The
head of a two-way automaton can not go beyond endmarkers, hence for every
pair (p, q) of states, if δ(p)δ(q) = 1, then E(p,�, q) = 0K.
A run of length k in the automaton is a triple (p, (ei)i∈J1;kK, q), where p and q are
in F and (ei)i∈J1;kK is a sequence of transitions such that, for every i in J1; k−1K,
τ(ei) = σ(ei+1); if k > 0, then p = σ(e1) and q = τ(ek); otherwise p = q.
This run admits a label w = w1 . . . wn in A∗ if there exists a mapping π : J1; kK →
J0;n+ 1K such that π(1) = 1, π(k) = n, and
– for every i in J2; kK, π(i) = π(i− 1) + δ(σ(ei)),
– for every i in J1; kK, λ(ei) = wπ(i) if π(i) is in J1;nK, and λ(ei) = � otherwise.
The function π is the position mapping, giving the position of the reading head
during the computation.

The run (p, (ei)i∈J1;kK, q) meets k + 1 states. The sequence of these states is
defined by p0 = p and pj = τ(ej) for every j in J1; kK. The position of the j-th
state of the run is defined by pos(0) = 0, and

∀j ∈ J1; kK, pos(j) =

{

pos(j − 1) if δ(pj) 6= δ(pj−1)

pos(j − 1) + δ(pj) otherwise
(4)

The positions of states and transitions are related; for every j ∈ J1; kK, pos(j) =
π(j) if δ(pj) = 1, and pos(j) = π(j)− 1 otherwise.

The weight of a run (p, (ei)i∈J1;kK, q) is Ip.
(
∏k

i=1 E(ei)
)

.Tq. The weight of a
word w in a two-way weighted automaton is defined if the family of the weights
of runs with label w is summable.

→

p

→

q

←

r

→

s

→

t
i

x

a, b

a

b,�

a
a

b

b

a, b

(a) The two-way K1-automaton A1.

� b a �

→

p
→

p
→

q

←

r

→

q

←

r

→

s

b a
�

a

�

a

x

π 0 1 2 3

pos 0 1 2

(b) A run of A1 over the word ba

Fig. 1. A two-way K1-automaton and one of its runs.

Definition 4. An automaton is valid if for every word w the weight of w in
the automaton is defined, and two automata are equivalent if, for every word
w, either the weight of w is undefined in both automata, or the weight of w is
defined in both automata and is equal.

Remark 1. If B = ∅, then the two-way K-automaton is actually one-way, and
every one-way K-automaton can be described as a two-way K-automaton where
B = ∅.

Example 4. Let A1 be the two-way K1-automaton of Figure 1. The final weight
of the states is represented by an arrow outgoing from states. States p, q, s and
t are forward, r is backward. States p, q and r are not final, which means that
their final weight is equal to 0K1

= o. The weight of every transition is 1K1
= i:

it is a characteristic automaton.
Figure 1(b) shows a run of A1. State p appears at position 0 and 1. State r

appears twice at the same position; this is an unmoving circuit : the part of the
run between the two occurrences of r can be repeated in order to get longer runs
over the same word. ⊓⊔

Remark 2. In the sequel, we state results for two-way automata over finite semir-
ings. If A is a two-way automaton over a locally finite semiring K, then it can be
considered as an automaton over the finite semiring K

′ where K
′ is the semiring

generated by the weights occurring in A.

3.2 Characteristic and δ-normalized Two-way Automaton

Like for one-way automata, we show here that two-way automata with weights
in a finite semiring are equivalent to characteristic two-way automata where
the weight of the run only depends on the final state. In our model, in such an

automaton, the weights of all transitions as well as initial weights are all equal
to 1K.

Proposition 1. Let A be a two-way automaton over a locally finite semiring.
There exists a characteristic two-way automaton B equivalent to A.

Actually, through a run, the product of weights spans over a finite set and this
can be stored in states. Hence, if K is the finite semiring generated by the weights
of A, then states of B belong to Q×K.

Figure 1(b) shows that transitions during a run can be classified into four
types: forward transitions, backward transitions, and forward and backward half-
turns. We consider now δ-normalized two-way automata, where the type of a
transition depends on its source.

Definition 5 ([2]). A two-way automaton A = (F,B,E, I, T) is δ-normalized
if F and B are respectively partitioned into F = F+ ∪ F− and B = B+ ∪ B−,
such that every final state is in F+ and, for every state p and every transition
(p, a, q), q is in F if and only if p is in F+ ∪B+.

Example 5. The automaton A1 of Figure 1 is δ-normalized. Actually, F+ =
{p, s, t}, F− = {q}, B+ = {r} and B− = ∅. ⊓⊔

Proposition 2 ([2]). For every two-way K-automaton A, there exists an equiv-
alent δ-normalized K-automaton B.

To convert A into B, every state of A is split into two copies, the outgoing tran-
sitions that go to a forward state are assigned to the first copy, those that go to
a backward state are assigned to the second one. This construction applied to a
characteristic automaton gives a characteristic automaton.
From now on, we assume that two-way automata are characteristic and δ-
normalized.

4 Counting Paths

To convert two-way K-automata into one-way automata, we use a variant of the
method of crossing sequences initiated in [6]. Nevertheless, the method must be
improved in order to keep records of the number of paths.

More precisely, let (n, p) be the order of K. The algorithm builds a (one-
way) deterministic automaton B, where each state is a crossing sequence (that
may have states repeating at most once). B is then used to build a one-way
automaton. The idea is to build from B an automaton that ”counts” (modulo
(n, p)) the number of runs with a given weight ending in the last state of a
crossing sequence.

4.1 Crossing Sequences

Definition 6. Let ρ be a run with label w in a two-way automata, and let
(pj)j∈J0;kK be the sequence of states met by ρ. For every i in J0; |w|K, the crossing
sequence of ρ at position i is the subsequence of states pj such that pos(j) = i.

Example 6. On Figure 1(b), crossing sequences are (p), (p) and (q, r, s, r, s).

Remark 3. Crossing sequences are sequences of states with odd length. More
precisely, the first state is in F , and there is an alternation of states in F and B.
Using a regular expression, we can say that crossing sequences are in (FB)∗F .

If a crossing sequence of ρ contains (at least) two occurrences of the same
state, it means that during the run, the automaton comes back to the same state
with the input head at the same position; we call this an unmoving circuit. Such
a circuit can be removed from ρ in order to obtain a valid run for the same
input. On the other hand, it can be iterated to produce an infinite number of
valid runs. In a characteristic automaton, all these runs have the same weight.

In the classical crossing sequence construction [6], reduced crossing sequences,
that are crossing sequences without repetitions, are considered; we have to con-
sider also crossing sequences with 1 repetition in which no state appears more
than twice, in order to detect unmoving circuits.

Proposition 3 ([2]). Let ρ be a run of a δ-normalized two-way K-automaton
over a word w, and let (ci)i∈J0,|w|K be the list of the crossing sequences of ρ. Then
ρ is characterized by w and (ci)i∈J0,|w|K.

Notice that this proposition is independent from the weights on transitions
and that it is true whether or not the two-way automaton is characteristic.
We describe briefly how, starting with two consecutive crossing sequences ci−1

and ci, it is possible to build the unique list of transitions in position i which is
consistent with these crossing sequences, and the i-th letter of w denoted a.

The algorithm scans sequences ci−1 and ci. If the current state p of ci−1 is
in F+, there is a transition from p to the current state q of ci; if it is in F−,
there is a transition from p to the next state p′ of ci−1. The algorithm deals then
with the next states. If the current states are in B, the analysis is based on the
nature of the current state in ci. This process produces the list of transitions in
position i in the run. It is formally described in [2].

If ci−1 and ci are not successive crossing sequences of a run, the algorithm
may fail or build a list of triples which are not transitions of the automaton.

Definition 7. Let A = (F,B,E, I, T) be a δ-normalized two-way K-automaton,
and let c1 and c2 be two potential crossing sequences in (FB)∗F .

– The sequence c2 is a successor of c1 by the letter a if the analysis applied to
c1 and c2 succeeds and returns a list of transitions of A with label a.

– c1 = (pi)i∈J1;2h+1K is an initial crossing sequence if p1 is initial, and, for
every i in J1;hK, (p2i,�, p2i+1) is a transition of A.

– c1 = (pi)i∈J1;2h+1K is an final crossing sequence if p2h+1 is final, and, for
every i in J1;hK, (p2i−1,�, p2i) is a transition of A.

Let S be the infinite one-way automaton of crossing sequences of the δ-
normalized two-way K-automaton A. Its states are the elements of (FB)∗F . A
state c is initial if c is an initial crossing sequence, it is final if c is a final crossing
sequence, and there is a transition from c to c′ with label a if c′ is a successor
of c by a. This automaton accepts the same words as A, and there is a bijection
between runs of S and runs of A. S can be turned into a K-automaton: for
every final crossing sequence c = (pi)i∈J1;2h+1K, the final weight of c can be set
as the final weight of p2h+1 in A. This gives an infinite one-way K-automaton
equivalent to A. Notice that the K-automaton of crossing sequences of a two-
way K-automaton A is not always equivalent to A, in particular if K is not
commutative. Here, the fact that A is characteristic is crucial.

To convert two-way automata (without weights) to NFA, it is sufficient to
restrict S to states without any repetition; this is a classic construction of one-
way NFA from two-way NFA.

We want to check whether there is an infinite number of runs that end in a
given state. As we have seen, as soon as a run has an unmoving circuit, this circuit
can be iterated to get an infinite number of runs. Therefore, it is unnecessary
to keep track of crossing sequences with more than two occurrences of the same
state. If a crossing sequence c of a run ρ contains three times the same state,
then the unmoving circuit between the first and the second one (or between the
second one and the third one) can be removed; the resulting path has still an
unmoving circuit.

Lemma 1. Let A be a δ-normalized characteristic two-way K-automaton, and
let ρ be a run on A. If ρ admits a crossing sequence at position i in wich a state
p appears more than two times, then there exists a run ρ′ in which p appears
only twice in the crossing sequence at position i, and ρ′ and ρ end in the same
state.

Each crossing sequence with 1 repetition is the witness of an infinite number
of runs with the same weight. Lemma 1 tells that every run of A is either a run
without any unmoving circuit, or a run which admits such a witness.

4.2 Automaton of Crossing Sequences with One Repetition

Let A = (F,B,E, I, T) be a two-way K-automaton. Let C1 (resp. C2) be the
sequences of (FB)∗F where each state appears at most once (resp. twice). Let
(n, p) be the order of the finite semiring generated by the coefficients of A. Let
B be the one-way automaton over Nn,p with states R = C1 ∪ C2 defined by:

– if c is an initial crossing sequence, then c is an initial state of B, with weight
1 if c is in C1 and ∞ if c is in C2;

– if c′ is a successor of c by a, then (c, a, c′) is a transition of B, with weight
∞ if c is in C1 and c′ in C2, and weight 1 otherwise;

p
q
r
s

q
r
q
r
s

t

a, b

b

a

b

a | ∞

b

a, b

Fig. 2. The Nn,p-automaton B1 of crossing sequences of A1.

– if c is a final crossing sequence, then c is final in B, with weight 1.

The only interesting part of B is its trim part formed with states that can
actually occur in some runs. Thus, our construction only requires to build the
accessible part of B.

Automaton B is a variant of the crossing sequence automaton.
On the one hand, there is a bijection between runs with weight 1 in B and

runs without unmoving circuits in A. On the other hand, every run in B with
weight ∞ is the witness of an infinite number of runs in A ending in the same
state. Notice that some runs of A may admit several witnesses, but all these
witnesses show that there are infinitely many runs for the same final state. A
run of B ends in a final crossing sequence; the weight of the corresponding run
in A is given by the last state of this crossing sequence.

Example 7. Four different crossing sequences may appear in the runs of A1; this
leads to the automaton B1 on Figure 2. The weight of every transition in this
automaton is equal to 1, except the transition that goes to the crossing sequence
with repetitions where the weight is equal to ∞. For instance, this automaton
shows that there is an infinite number of runs over a in A1 that start in state p
and stop in state s. ⊓⊔

4.3 Gathering Runs with the Same Label

On some locally finite semirings, the automaton B is sufficient to decide whether
the two-way automaton is valid and to build an equivalent one-way automaton.
In these cases (Case 1 and 2), the last step of the algorithm can be avoided; it
leads to a simpler construction.

Case 1: Every infinite sum is defined. A non deterministic characteristic one-
way K-automaton C equivalent to the two-way K-automaton can be built from
the automaton B of crossing sequences with 1 repetition. The weight of a run is
∞ as soon as the weight ∞ is met (otherwise it is 1); this information can be
stored in the states of C that belong to R× {1,∞}, where R is the set of states
of B. The accessible part of C is inductively defined as:

– if p is initial in B with weight k, then (p, k) is initial in C;

– if (p, a, q) is a transition in B with weight k and (p, r) is a state of C, then
((p, k), a, (q, k.r)) is a transition of C;

– if p is final in B, then p is a final crossing sequence whose last state is final
with weight x in K; every state (p, k) of C is final with weight k.x.

Case 2: No infinite sum is defined. The two-way K-automaton is valid if and
only if no transition with weight ∞ appears in any run of B. If there is no such
transition, then the previous construction applies.

Case 3: Some infinite sums are defined, some are not. To decide whether
the family of weights of all runs labelled by a given word is defined, all these
runs must be gathered. We use a determinization-like algorithm to build an
automaton that computes, for each word w, the number (modulo (n, p)) of runs
that end in each final crossing sequence. The determinization D of B gathers
the vectors corresponding to all runs on every input. Each state of D is a vector
in NR

n,p, where R is the set of states of B.

– the initial vector of D is I, where Ic is the initial weight of c in B;
– if X is a state of D, then the succesor of X by letter a is the state Y defined

by:

Yc′ =
∑

c∈R

Xc.E(c, a, c′). (5)

– A state X is final if there exists a final crossing sequence c such that Xc is
different from 0.

We consider the projection π from the final crossing sequences of R onto F
which maps c onto the last state of c; this projection allows to map every final
state X of D onto a vector v in NF

n,p:

∀f ∈ F, vf =
∑

c∈R,c final,π(c)=p

Xc. (6)

For every word w, if the run on w in D ends in state X, then for every c, Xc is
the number (modulo (n, p)) of runs on w in A whose last crossing sequence is c.
Hence, vf is the number (modulo (n, p)) of runs on w in A that end in state f .

Therefore, the weight of w in A is equal to the evaluation of v; if this evalu-
ation is not defined, then the weight of w in A is not defined. If, for every final
state X of D, the evaluation of the corresponding vector is defined, this weight
can be assigned to X as a final weight. This turns D to a characteristic and
deterministic one-way K-automaton equivalent to A.

Theorem 1. Over locally finite semirings, the validity of two-way automata is
decidable, and every valid two-way automaton is equivalent to a one-way au-
tomaton.

The construction follows the algorithm outlined in this paper. Given a two-way
automaton A over a locally finite semiring semiring, we can first consider it
as an automaton over K, the finite semiring generated by the weights of the

p : 1

p : 1
t : 1

p : 1
t : 2

p : ∞
t : 1

p : ∞
t : 2

p : ∞
t : ∞

p : 1
X : ∞
Y : 1
t : 1

p : 1
X : ∞
Y : 1
t : 2

p : 1
X : ∞
Y : 1

p : ∞
X : ∞
Y : ∞
t : 1

p : ∞
X : ∞
Y : ∞
t : 2

p : ∞
X : ∞
Y : ∞
t : ∞

b

a

a

a

a

a

a

b

b

b

b

b
b

b

a

a

a

a

b

b

a

b

a

Fig. 3. The determinization of B1.

automaton. A δ-normalized characteristic two-way K-automaton A′ equivalent
to A is then constructed. The automaton of crossing sequences with 1 repetition
of A′, B, allows to compute the number of runs that stop in each state. The end
of the algorithm depends on the cases described in Section 4.3. In Cases 1 and 2
the validity is directly decidable on B and a one-way K-automaton equivalent to
A can also be derived from B. In Case 3, a determinization step is required. As
explained above, this deterministic automaton allows both to decide the validity
and to build a one-way K-automaton equivalent to A, if there exists one.

Remark 4. The fact that the weight of a word w is defined in A only depends
on the state ending the run over w in D. Hence the language of words with an
undefined weight is regular.

Example 8. We denote X = (q, r, q, r, s) and Y = (q, r, s); hence the states of
automaton B1 are p, t, X and Y . The states of the determinization of B1 are

vectors in N
{p,t,X,Y }
n,p ; the determinization is drawn on Figure 3. Only non zero

entries are written in each state. The initial state is not final since it does not
contain any final crossing sequence.

We replace now each vector in N
{p,t,X,Y }
n,p by the corresponding vector in

NK1

n,p (the entry corresponding to o is not shown since it does not influence the
evaluation). Consider for instance the vector [p : 1, X : ∞, Y : 1, t : 1]. p is not a
final crossing sequence and does not contribute; the last state of X and Y is s
with final weight x, hence, x appears with multiplicity ∞+1 = ∞ and the final
weight of t is i; finally, the family of weights for this state is [x : ∞, i : 1] and the
final weight is ∞.x+1.i = x. We obtain the automaton of Figure 4. Notice that
states with vector 2.i are not final since i + i = o = 0K. The construction fails
because one state corresponds to the vector ∞.i and the infinite sum of i is not
defined, thus no final weight can be defined for this state. For every word leading
to this state (for instance abb), there is in A1 an infinite number of runs and the
weight of each of these runs is equal to i. Therefore, the two-way automaton A1

is not valid. ⊓⊔

i : 1

i : 2

x : ∞
i : 1

x : ∞
i : 2

x : ∞

i : 1

i : 2

x : ∞
i : 1

x : ∞
i : 2

i : ∞
x : ∞
i : ∞

i

x

x

x

i

x

x

? x

b

a

a

a a

a

a

b

b

b

b

b
b

b

a

a

a

a

b

b

a

b

a

Fig. 4. The automaton A1 is not valid.

5 Conclusion

This paper describes an algorithm to decide whether a two-way K-automaton is
valid, and, if it is, to build an equivalent one-way K-automaton. The construc-
tion involves several steps. The first two – getting a characteristic K-automaton
and then a δ-normalized K-automaton – have low state complexity: respectively
|K||Q| and 2|Q|. In contrast, the last two have huge complexity. The state com-
plexity of the automaton of crossing sequences with 1 repetition is in 2O(|Q| log |Q|)

and the determinization is in (n + p)|Q|, where Q is the set of states of the au-
tomaton on which each construction is applied and (n, p) is the order of the finite
semiring of weights. Finally the state complexity of the construction is a double
exponential.

This work encompasses all locally finite semirings. It is an open question to
know whether there exist in general a more efficient construction. For particular
classes of semirings, this construction can certainly be improved.

References

1. Birget, J.C.: Concatenation of inputs in a two-way automaton. Theor. Comput. Sci.
63(2), 141–156 (1989). https://doi.org/10.1016/0304-3975(89)90075-3

2. Carnino, V., Lombardy, S.: On Determinism and Unambiguity of Weighted Two-way
Automata. In: AFL’14. EPTCS, vol. 151, pp. 188–200 (2014)

3. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Log. 2(2), 216–254 (2001)

4. Leung, H.: Limitedness theorem on finite automata with distance functions: an
algebraic proof. Theoret. Comp. Sci. 81(1, (Part A)), 137–145 (1991)

5. Lombardy, S.: Weighted two-way automata. In: NCMA’15. books@ocg.at, vol. 318,
pp. 37–47. Österreichische Computer Gesellschaft (2015)

6. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 114–125 (1959). https://doi.org/10.1147/rd.32.0114

7. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198–200 (1959). https://doi.org/10.1147/rd.32.0198

