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Possible deep connection between 
volcanic systems evidenced by 
sequential assimilation of geodetic 
data
Mary Grace Bato1, Virginie Pinel1, Yajing Yan2, François Jouanne1 & Jean Vandemeulebrouck1

The existence of possible deep connections between nearby volcanoes has so far only been formulated 
on the basis of correlation in their eruptive activities or geochemical arguments. The use of geodetic 
data to monitor the deep dynamics of magmatic systems and the possible interference between them 
has remained limited due to the lack of techniques to follow transient processes. Here, for the first 
time, we use sequential data assimilation technique (Ensemble Kalman Filter) on ground displacement 
data to evaluate a possible interplay between the activities of Grímsvötn and Bárðarbunga volcanoes 
in Iceland. Using a two-reservoir dynamical model for the Grímsvötn plumbing system and assuming 
a fixed geometry and constant magma properties, we retrieve the temporal evolution of the basal 
magma inflow beneath Grímsvötn that drops by up to 85% during the 10 months preceding the 
initiation of the Bárðarbunga rifting event. We interpret the loss of at least 0.016 km3 in the magma 
supply of Grímsvötn as a consequence of magma accumulation beneath Bárðarbunga and subsequent 
feeding of the Holuhraun eruption 41 km away. We demonstrate that, in addition to its interest for 
predicting volcanic eruptions, sequential assimilation of geodetic data has a unique potential to give 
insights into volcanic system roots.

The rate of magma supply to volcanic systems which fundamentally controls the eruptive activity is a determinant 
piece of information mostly retrieved by geodesy and/or gas measurements. However, this key input remains 
difficult to constrain. One reason is that the ability of geodetic observations to detect or quantify magma accu-
mulation decreases with the increasing depth of storage zones involved. Despite this flaw, geodesy sometimes in 
combination with gas measurements has been essential to estimate magma flux entering subsurface reservoirs, 
proving that this supply was most probably occurring by pulse or surge of magmas1,2. Indeed, this behavior is con-
sistent with the observation that long-term pluton growth rates, inferred from isotopic studies, are much smaller 
than the minimum rates of magma supply required to ensure magma transfer through dykes3. Despite this known 
transient behavior in deep magma supply, classical methods used so far to invert geodetic data always consider 
steady-state systems with constant basal inflow4.

Another open question related to magmatic sources concerns their spatial extent at depth, whether or not a 
common deep source can be shared by different volcanic systems or distinct magmatic sources can be mechan-
ically connected at depth. Geochemical arguments based on major element compositions or ratios as well as 
isotopic compositions are commonly used to discriminate samples from different volcanic systems and address 
the question of the lateral extension of volcanic roots5,6. More recently, thanks to the improvement of deformation 
data spatial coverage brought by satellite radar interferometry, geodesy has provided some significant insights into 
the lateral extent of magmatic domains7,8. Rifting areas where long dikes are emplaced, represent ideal context to 
track lateral connections between nearby volcanic systems.

Here, we propose a new methodology suitable to retrieve magma supply changes from temporal series of 
geodetic data even with limited amount of spatial information, allowing us to evidence a possible connection 
between two nearby volcanic systems in the Icelandic Eastern Volcanic Rift Zone. While several studies have used 
real geodetic data and applied variants of Kalman Filter as an optimization or statistical interpolation tool to solve 
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problems in volcanology in the past9–11, this study is the first one to apply sequential data assimilation based on a 
dynamical model as proposed by ref.12 using a real dataset recorded on a volcano.

Bardarbunga and Grimsvotn volcanoes: Related deformation before the 2014–2015 
eruptive activity
Bárðarbunga and Grímsvötn are two subglacial basaltic volcanoes located ∼27 km apart beneath the Vatnajökull 
ice cap. They are isotopically distinct systems13 and are both sitting above the center of the mantle plume in 
Iceland14 (Fig. 1). Grímsvötn volcano hosts a 10–12 km wide and 200–300 m deep caldera complex. Geodetic 
measurements from its last eruption reveal a 1.7 km-deep shallow magma chamber15. Although, a low seismic 
velocity anomaly at around 3–4 km depth has been previously observed and identified as a magma chamber along 
with a deeper dense body inferred from gravity measurements15,16. Grímsvötn is Iceland’s most active volcano 
erupting once per decade. Its post-eruptive deformation patterns for the last three eruptions (i.e. 1998, 2004 and 
2011) are very similar and suggest a plumbing system characterized by at least two connected magma reservoirs17 
beneath the volcano. In October 1996, a subglacial eruption termed as the Gjálp eruption18 occurred between 
Grímsvötn and Bárðarbunga volcanoes. However, contrasting geochemical and geophysical analyses have 
resulted in an unresolved debate on whether the eruption was fed by Bárðarbunga or Grímsvötn13,19–21. 
Bárðarbunga volcano has an 11-by-18 km wide and 500–700 m deep elliptic caldera22 with an associated fissure 
swarm extending 115 km to the southwest and 55 km north-northeast22,23. Activity at Bárðarbunga over the last 
2000 years consists of (i) subglacial or (ii) major effusive fissure eruptions23. In August 2014, an eruptive fissure 
called Holuhraun (Fig. 1) has been reactivated between the Bárðarbunga and Askja volcanic systems23. The activ-
ity began with intense shallow seismicity that originated from Bárðarbunga and migrated toward Askja during the 
weeks that followed22. The magmatic dyke was fed by a reservoir located at ∼12 km depth beneath Bárðarbunga 
caldera22. It propagated at a distance of 41∼  km before it breached the surface resulting to the Holuhraun fissure 
eruption. The effusive eruption lasted for 6 months and produced 1.5 ± 0.2 km3 of lava, making the Holuhraun 
eruption as the largest eruption in Iceland since the 1783–1784 Laki eruption22.

Between October 2013 and August 2014, NS and EW surface displacement patterns observed at GFUM— the 
sole GPS station in Grímsvötn located on Mount Grímsfjall (Fig. 1)— shifted from a positive linear to a 
nearly-constant trend (Fig. 2). Such a change of slope has not been observed during the previous post-eruptive 
displacement time series (Figure S1). The GPS data thus clearly shows a significant change in behavior compared 
to the regular trend continuously recorded over the last 10 years (i.e. 1.5 eruptive cycle) which occurred ∼10 
months before the 2014 major rifting event.

Figure 1. Landsat-8 image taken on 06 September 2014, showing the principal volcanoes and fissure swarms 
(e.g. Bárðarbunga (Br), Grímsvötn (Gr) and Askja(As)) near the Vatnajökull icecap. The image is based on the 
mosaicked data from the National Land Survey of Iceland45,46). Fissure eruptions of Laki (1783–1784) and Gjálp 
(1996) as well as the on-going Holuhraun eruption when the image is captured are also presented. The locations 
of GFUM and DYNC GPS stations which are discussed in the main article are marked as yellow triangles. 
Inset: map of Iceland (modified after ref.17) outlining its volcanic zones (e.g. West Volcanic Zone (WVZ), East 
Volcanic Zone (EVZ), North Volcanic Zone (NVZ)) and transform zones (e.g. South Iceland Seismic Zone 
(SISZ) and Tjornes Fracture Zone (TFZ)). The Reykjanes Ridge and Reykjanes Peninsula Rift (RPR), and the 
Kolbeinsey Ridge which mark the limits of the volcanic zone are illustrated for reference. The rate of the plate 
spreading is 9.8 mm yr−1 17,47. The shaded gray area is the region covered by the Landsat-8 image in the main 
figure.
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To quantify the displacement change, we apply a simple linear regression technique using only the linear part 
of the dataset prior to the assumed change in behavior (i.e. November 2011 to October 2013) and then we use the 
resulting slope to estimate the expected displacements at the time of the rifting (i.e. 4 UTC, 16 August 2014 is 
marked as the start of the major rifting event22). We obtained significant discrepancies of up to −39 mm and 
45 mm for the EW and NS directions, respectively (see Fig. 2 and Table S1). An inflating reservoir beneath 
Bárðarbunga could not explain such discrepancies since displacement contributions toward the south and the 
east directions are expected instead (see the model displacements expected at GFUM GPS station in Table S2). 
Moreover, we find no similar trend variation at neighboring GPS stations close to Bárðarbunga volcano, in par-
ticular, the DYNC station which is 22∼  km away from Bárðarbunga (Figure S2 and Table S3). These arguments 
imply that the sudden change of behavior at GFUM, one year prior to the 2014–2015 Bárðarbunga-Holuhraun 
eruptive activity, is most likely not directly induced by Bárðarbunga’s plumbing system. Furthermore, the ratio 
between the vertical and radial displacements measured at Grímsvötn remains constant through time (see 
Figure S3) indicating that the location of the source which induced the surface displacement has not changed 
through time. Given these observations, we conclude that the change of slope observed in the radial component 
should rather be explained by some transient process affecting Grímsvötn’s shallow reservoir. One of which is a 
possible variation in the magma supply rate feeding Grímsvötn’s deep reservoir.

Model, inversion and data assimilation
We utilize the two-magma reservoir model of ref.17 (Fig. 3) which represents the source of ground deformation 
at Grímsvötn volcano. It allows us to follow the evolution of the overpressures within the two magma reservoirs 
(see Methods:Model). The dynamical model is based on simple reservoir systems embedded in a homogeneous 
elastic crust and incompressible magma. It is consistent with the temporal evolution of the post-eruptive surface 
displacement at Grímsvötn, namely, an exponential trend followed by a linear one. In the case of Grímsvötn, we 
identified six uncertain parameters of the model (see Table 1 for the description), wherein geometrical parame-
ters as well as parameters related to magma properties are expected to remain unchanged in one eruption cycle. 
Hence, we assume that all the uncertain model parameters are constant except for the basal magma inflow, Qin, 
which has a tendency to vary in time.

The model can be expressed in its analytical solution and differential form, which is convenient to implement 
for both the inversion and data assimilation. Note that for the inversion and data assimilation, only the radial 
component of the 2011 post-eruptive dataset is exploited due to uncertain glacial isostatic adjustment (GIA) 
contribution and low accuracy of the vertical component at GFUM station17.

Figure 2. GPS time series of GFUM station from 22 May 2011 to 30 Nov 2014. The actual data are in blue 
points, the red solid line is the linear fit of the points within the shaded gray area (assumed shift from linear to 
constant trend), and the black solid line represents the linear fit prior to the shaded gray area. The latter was 
extended up to the end of the dataset to estimate the expected displacements after the assumed change of slope 
(14 October 2013). The red broken lines mark the onset of the May 2011 eruption and the August 2014 rifting 
event at Grímsvötn and Bárðarbunga, respectively. The horizontal black broken line is the zero-displacement 
reference. The shaded green area covers the dataset used during the inversion (step 1 of our approach). The 
insets (orange box) provide a closer look on the data points near the time of the rifting episode. Note that the 
vertical displacement is not corrected for GIA and seasonal effects. We applied a tectonic correction for the NS 
and EW components following the estimations of ref.17.
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To ensure that the evolution of Qin can be tracked with only using the radial component of one GPS station, 
we first perform a synthetic test following the EnKF approach of ref.12. Successful results are obtained provided 
that non-evolving uncertain model parameters are well-estimated and fixed prior to data assimilation (Figure S4).

Given the results of the synthetic case, we then develop a two-step approach suitable for our problem and to 
follow the behaviour of Qin (see Figure S5 for the summary and Methods:Bayesian-based Inversion and Data 
Assimilation for details). Step-1: We apply a Bayesian-based inversion through the Markov Chain Monte Carlo 
(MCMC) algorithm to first constrain the non-evolving uncertain model parameters and obtain a prior distribu-
tion for Qin using only the initial part of the 2011 post-eruptive dataset. Step-2: We then implement the Ensemble 
Kalman Filter (EnKF)24 as a data assimilation technique, following the strategy developed by ref.12 by sequentially 
assimilating the 2011 post-eruptive radial data until before the rifting event.

Results
The best-fit values of the uncertain model parameters after step-1 are marked as green lines in Fig. 4 and are also 
summarized in Table 1. Despite the non-uniqueness, these values are consistent with the data, the physics of the 
model and the results of previous studies15,17,25, such that we are able to fix the non-evolving parameters and pro-
ceed to step-2 to follow the variation of Qin.

If no observation is used to correct the dynamical model, the result is called the “Free-run” (Fig. 5) where 
the model is only propagated forward in time. Obviously, if the model is almost a perfect representation of the 
observations wherein the model parameters are well-constrained and remain constant in time as in the case of the 
initial part of our dataset, we expect to have a good fit with the radial dataset. Note that although we only use an 
early subset of the radial displacement data for the inversion (i.e. dotted green box in Fig. 5A), the inferred best-fit 

Figure 3. Schematic sketch of the two-chamber model, modified after ref.12,17. The uncertain model parameters 
in this study are highlighted in gray. Except for the bottom magma inflow rate, Qin, which is bounded by a 
dotted box, the rest are considered as non-evolving uncertain parameters. The GFUM GPS station, with a 
distance r from the center of the volcanic system, CVS, records the displacement induced by the two reservoirs. 

= +R r Hs s
2 2 and = +R r Hd d

2 2 are the distances of the shallow and deep reservoirs from GFUM station, 
respectively.
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values of the uncertain model parameters are able to match the radial component of the dataset up to tstep = 545 d 
and appear to be consistent with the vertical component (Figure S6). It is unclear though if tstep = 545 d marks an 
episode of a true decrease in magma inflow rate or is just a part of some transient noise that affected the dataset. 
The latter case would require a lower value of Qin at tstep = 0 to fit the time series up to our assumed change of slope 
using the forward model.

The assimilation of radial displacement using the strategy that we have developed not only results to a robust 
fit to the entire dataset but also enables us to follow closely the decreasing trend of Qin (Fig. 5). We obtain a min-
imum rate of 0.007 km3 yr−1 from the ensemble of Qin estimates which corresponds to a drop of 0.039 km3 yr−1 
(85% decrease) relative to its prior value. To ensure that the decrease in Qin is a true episode after our assumed 
change of slope and is not influenced by the set of values that we fixed, we run two independent cases of data 
assimilation (see Supplementary Material). Results show that regardless of the set of non-evolving uncertain 
parameters and prior distribution of Qin, the sudden drop in the magma inflow rate is evident for all the cases after 
the assumed change of slope (Figure S7).

Another interesting result is that if we follow the similar approach to track Qin by first fixing non-evolving 
uncertain parameters, but use an inversion approach (i.e. MCMC) as a second step instead of data assimilation, 
we find that MCMC slightly detected the change in Qin, however did not yield a strong satisfactory fit with the 
data (Fig. 5). The main difference comes from the fact that with MCMC, we invert all the observations that are 
previously acquired at each given time step considering an effective constant value of Qin over the whole period 
(i.e. using the integral analytic formula). Whereas with the assimilation strategy, we apply the differential equation 
between each time step such considering an evolving magma supply rate, Qin.

Furthermore, note that in classic inversion setup, the model used to interpret the data is assumed “perfect”. In 
such case, the source of error is often only attributed to the data, either to perturbations in the acquisitions, or to 
instrument noise, or to data pre-processing or to the sum of these errors. However, in reality, models are embed-
ded with noise and are oversimplified representations of the complex system that we observe. Ref.12 illustrated 
through synthetic cases that if the dynamical model used explains the observed data well and that there is no 
transient change in the uncertain model parameters (i.e. they are constant over time), then both data assimilation 
using EnKF and inversion via MCMC can track the state variables (e.g. overpressures within the reservoirs) and 
also estimate the true values of the uncertain model parameters (e.g. basal magma inflow rate and radius of the 
deep reservoir).

However, if the uncertain model parameter varies over time, such as the case of Qin in this study, then EnKF 
will be more appropriate. In EnKF, the model error covariance, P X X X X( )( )T= − − , computed from a large 
number of perturbations of uncertain model parameters (Qin for example) is an approximation of the real model 
error. In practice, we use a large ensemble of models in order to best represent the model error. Furthermore, by 
using a multiplicative inflation (see Methods:Model) which is a tuning step in data assimilation, underestimated 
model errors related to EnKF process and/or unaccounted source of model error are compensated.

Implications of the change in magma supply rate at Grímsvötn
The estimated decrease of the magma supply rate measured at Grímsvötn corresponds to a mimimum deficit of 
0.016 km3 of magma for the Grímsvötn plumbing system when during the same period, magma accumulation 
is expected at Bárðarbunga22. Note that the missing volume of magma was calculated by integrating the inverted 
curve of EnKF-derived Qin in Fig. 5B. The volume emplaced beneath Bárðarbunga during the same period cannot 
be quantified due to the lack of geodetic data (the closest GPS point is DYNC located at more than 20 km). A 
similar anti-correlated behavior has been previously observed between isotopically different volcanic systems in 
Hawaii, namely, Kilauea and Mauna Loa volcanoes, based on their eruptive activities26. It was then interpreted as 

Parameters Prior Condition

Estimated Values

This study Prev. Studies

Geometry

ad (km), radius of the deep reservoir.  . . . .(2 2,2 52,[2 0,6 0]) 2.39 <1017

Hd (km), depth of the deep reservoir. U(10, 40) 20.56 10–3517; 
10–2025

Physics

Δρ = ρr − ρm (kg m−3), density contrast. U(100, 300) 107.66

C (m3 MPa−1 s−1), characteristic of the hydraulic connection, 
C ac

Hc

4
=

μ
, where ac is the radius of the conduit, μ is the viscosity 

and Hc = Hd − Hs is the height of the hydraulic connection.
U(0.01, 2.35) 0.99

Basal condition

Qin (km3 yr−1), deep magma inflow rate. U(0.0, 0.19) 0.046 0.01–0.0517

Initial condition

ΔPdt0
 (MPa), initial value of the overpressure in the deep reservoir. U(0, 20) 4.12

Table 1. Best-fit values of the uncertain model parameters obtained from the MCMC posterior distribution 
(Fig. 4). Except for Qin, all the other parameters are considered constant in time and are fixed to their values 
during data assimilation. Estimates from previous works are also presented. (Fixed parameters are: E = 25 GPa, 
ν = 0.25, Hs = 1.7 km, as = 2 km).
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due to stress transfer over the 35 km distance separating the two systems through pore-pressure variations in a 
thin asthenospheric melt accumulation layer. Evidences from geodetic observations for connections between vol-
canic systems have been noted before, but only for systems spaced less than 10 km apart7. Mechanisms invoked to 
explain nearby volcanic systems interactions include stress changes, lateral hydraulic connections and a common 
asthenospheric magma supply as for the Hawaiian case. In the Grímsvötn-Bárðarbunga case, we can exclude the 
stress change effect due to the large distance separating the two systems7.

Two scenarios possibly caused the decrease in magma supply to Grímsvötn between October 2013 and August 
2014 (Fig. 6): (1) the magma that feeds Grímsvötn’s mid-crustal reservoir at ∼20 km depth was transported 
toward Bárðarbunga’s volcanic system through an existing deep fracture (i.e. lateral flow hypothesis), and (2) 
there was a drop in the relative pressure difference between Grímsvötn’s mid-crustal reservoir and a much deeper 
reservoir shared by Bárðarbunga and Grímsvötn at more than 20 km depth (i.e. shared magma reservoir 
hypothesis).

For the first case, the minimum volume of magma that leaked out of Grímsvötn is 0.016 km3, assuming that 
the magma is an incompressible fluid. This assumption in our modeling approach may not be fully accurate 
because in reality, magma is a compressible fluid containing exsolved volatiles at shallow depth. Significant com-
pressibility would result in much larger erupted volumes (i.e. 4 to 5 fold higher)2,27, implying that the “missing” 
amount of magma may be as much as 0.08 km3. On one hand, several studies claimed that the true volume change 
of a penny-shaped sill is not significantly affected by magma compressibility27,28. On the other hand, ref.15 noted 
the important role of magma compressibility at Grímsvötn (i.e. the volume of the 2011 erupted magma is 10 
times of the geodetically-derived chamber volume assuming a spherical-shaped chamber), however, its effect to 

Figure 4. Posterior probability density functions (PDF) of the uncertain model parameters after MCMC 
inversion (step 1). The marginal PDF for each uncertain parameter is shown in the diagonal histogram plots. 
The green vertical lines with numbers indicate the best-fit values of the parameters. The off-diagonal contour 
plots are the joint kernel-density estimate between pairs of parameters with their corresponding Pearson 
correlation coefficients. A p-value close to ±1 implies strong correlation between the parameters.
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the calculated magma supply rate is of second order2. The lack of spatial information in our dataset may also con-
tribute to underestimating the missing magma volume since there is only one GPS time series that we can exploit 
at Grímsvötn. Indeed, our synthetic case shows the ability of EnKF to detect the sudden change in Qin given a 
spatially-limited dataset, whilst the convergence to the true value may require some time (Figure S4).

As to whether or not the “missing” magma may have reached the Bárðarbunga’s magmatic system is yet to be 
addressed. While the volume of “missing” magma is only ∼3–20% of the estimated 2014 dyke intrusion22,23, it 
could be enough to trigger a magmatic reservoir rupture beneath Bárðarbunga and initiate magma propagation 
from the storage zone. It is possible, assuming that the magma reached Bárðarbunga’s magmatic system and 
provided that its storage zone was already in a pressurized stage before this additional magma inflow. Lateral 
dyke propagation between Grímsvötn and Bárðarbunga volcanoes for the 1996 Gjalp eruption has been pre-
viously proposed19, which was further supported by a mechanical model indicating that dyke sharing between 
the two volcanoes is possible29. Recent stress field model around Bárðarbunga from the 2014–2015 Holuhraun 
rifting event also corroborates the lateral flow hypothesis, suggesting that intrusions may have occurred in the 
past releasing part of the stress caused by plate spreading but were undetected due to their subglacial nature30. 
Although, if the magma laterally migrated away from Grímsvötn but was arrested at depth, the induced stress 
change can only be very localized. High resolution geophysical imaging of the northwest Vatnajökull region may 
provide further clues and deeper insights in the future about the shallow crustal structure beneath the icecap.

Figure 5. Data-fits and Qin estimates. (A) The entire 2011 post-eruptive dataset used in this study (black) and 
the resulting data-fits by: (1) solely free-running the dynamical model (green), (2) performing MCMC based 
on a classical inversion approach/setup (blue), and (3) data assimilation via EnKF (red). The green dotted box 
covers the dataset used to estimate the non-evolving uncertain parameters (step 1). The robustness of each 
approach is depicted on how it fits the radial displacement dataset which clearly favors the EnKF method.  
(B) Estimated value of the magma inflow rate, Qin, as a function of time using: the free-run (green), EnKF 
(red) and MCMC (blue). Note that the gray and black broken lines (A and B) correspond to the points where a 
decreasing trend in Qin, tracked via EnKF, are observed. (C) The distribution of Qin used as a prior information 
for the free-run, the data assimilation and the inversion.
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One significant argument against the lateral flow hypothesis is that no increase of deep seismicity was recorded 
during the 10 months preceding the rifting event. Deep seismicity rather indicates a continuous vertical rise of 
magma 12 km to the south-east of Bárðarbunga caldera31. Another one is that the magma emitted during the 
Holuhraun eruption is compositionaly similar to the Bárðarbunga volcanic system32.

For the second case, assuming that the ascent of magma from a deep source to an upper magma chamber 
(Fig. 6) follows a Poiseuille flow33, a drop in the pressure between the common reservoir of Grímsvötn and 
Bárðarbunga (Pd,shared) and the mid-crustal reservoir of Grímsvötn (Pd,G) will decrease the magma inflow rate 
toward the latter (QG). The sudden pressure drop is due to the withdrawal of a large amount of magma in the 
shared reservoir (Pd,shared) that may have been caused by the activation or reactivation of a connection between 
Bárðarbunga (Ps,B) and the shared (Pd,shared) reservoirs. Ref.34 estimated the mantle-crust boundary in Iceland to 
be at ∼30 km depth. This mantle-crust boundary is a suitable place for the accumulation of melt which can be the 
source of magma for both Grímsvötn25 and Bárðarbunga’s magmatic systems35. As Grímsvötn and Bárðarbunga 
basalts have distinct isotopic signatures, the term of “shared reservoir” has to be considered as a magmatic domain 
similar to a porous melt accumulation layer26. Each melt-filled pore space then shares a mechanical connection 
controlled by pore pressure gradient for instance. In this case, the shared reservoir can contain different and 
non-homogenized magmatic lenses because the stress transfer can be significantly faster than the flow of melt 
within the porous zone26. Here, the lack of information regarding the temporal pressure evolution in 
Bárðarbunga’s storage zone before the rifting event prevents us to further model the connection, such that we 
cannot constrain the porous layer thickness or diffusivity.

A connection of sorts between Grímsvötn and Bárðarbunga was previously identified by ref.36. The authors 
show that the volcanic activity in the northwest Vatnajökull region since A.D. 1200 is periodic (i.e between 
130–140 yr) with low activity lasting 50–80 yr followed by high activity of similar duration. In all peaks in activ-
ity except for one, the eruptions occur at Grímsvötn. During the initial part of the 1700s, Bárðarbunga was 
observed to be responsible for the unrest while at the same time, Grímsvötn was relatively quiet. This argument 
strongly favors the shared magma reservoir hypothesis, that is, the two volcanoes are connected at depth by a 

Figure 6. Proposed schematic cross-section beneath Grímsvötn and Bárðarbunga illustrating the two possible 
deep mechanisms connecting the two volcanic systems: (1) lateral flow hypothesis and (2) shared magma 
reservoir hypothesis. GFUM and DYNC GPS stations are represented as yellow triangles. The link between 
Bárðarbunga and Holuhraun during the 2014–2015 eruption (green sketch) is shown after ref.22; however it 
does not follow the cross-section path in the inset figure.
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common reservoir controlled by dynamic stress transfer. In addition, petrological and geochemical analyses from 
Grímsvötn’s eruptive products and Holuhraun’s 2014–2015 lava all indicate magma recharge from depth25,32.

Whilst we propose two possible mechanisms that connect Grímsvötn and Bárðarbunga’s magmatic systems, 
the aforementioned arguments are much in favor of the shared magma reservoir hypothesis and provide sufficient 
evidences to conclude that magma flowed beneath Bárðarbunga starting at least 10 months before the initiation 
of the rifting event. We consequently argue that a strong interplay between the surge in magma supply in an 
already-pressurized source and the rifting episode triggered the rupture of Bárðarbunga’s magma chamber, rather 
than the reduction of the minimum principal compressive stress linked to the rifting alone as proposed by ref.37. 
Bárðarbunga’s location, being on top of Iceland’s mantle plume and in a rift zone, makes it a suitable place for the 
interplay. Subsequently, the withdrawal of magma and the gradual collapse of the caldera are both responsible for 
sustaining the eruption for up to 6∼  months22.

Lessons learned
Although geodetic observations have greatly improved over the last decades, our ability to infer the character-
istics of the deep systems underlying volcanoes remains a great challenge. On one hand, we do not have a direct 
observation of the plumbing system beneath volcanoes such that we only infer their characteristics based on 
ground surface measurements. Thus, only an oversimplified representation of their complex nature is possible. 
On the other hand, model-data fusion techniques applied to inverse problems in volcanology have remained 
under the assumption of a “perfect” model therefore largely ignoring errors related to the representation of the 
dynamics of the real system. In the case of estimating a parameter that varies through time, knowledge about the 
parameter’s true behavior is incorrect as we have shown previously when classical static inversion was used to 
track time-varying Qin.

The advantage of using sequential data assimilation over a classic bayesian-based inversion method to follow 
the evolution of the deep magma supply rate is clear and represents a first successful application of EnKF in 
volcanology. Our framework is simple, but it help us better understand subsurface processes occurring between 
magmatic reservoirs (e.g. Grímsvötn and Bárðarbunga). We thus demonstrate that in addition to the interest of 
predicting volcanic eruptions12, sequential assimilation of geodetic data based on a dynamical model has a real 
and unique potential to give insights into the deep plumbing system of volcanoes and evolution of bottom con-
ditions though time.

The sudden decrease of magma supply to Grímsvötn between 2013 and 2014 was a transient phenomenon 
caused by the accumulation of magma beneath the Bárðarbunga’s reservoir. The absence of a similar event based 
on previous post-eruptive displacement patterns at Grímsvötn suggests that the observed shift is an unusual 
event. After the 2014 rifting episode, radial displacement pattern at GFUM GPS station began increasing again, 
following a positive linear trend (Figure S1). However, it is difficult to analyze the displacements after August 2014 
due to the combined contributions of viscoelastic relaxation caused by the rifting, the migration of the dyke and 
the volcanic deformation related to Grímsvötn’s activity alone.

Our analyses suggest a strong interplay between a surge in magma supply at Bárðarbunga and the rifting epi-
sode that triggered the 2014–2015 eruptive activity which was subsequently followed by gradual caldera collapse 
resulting in the ∼6-month long eruption. This transient reduction of magma supply rate at Grímsvötn may have 
postponed the next eruption, thereby increasing the duration of the inter-eruptive period.

Methods
Model. The volcano model used in this work is based on the two-chamber model published by ref.17 with a 
slight modification to the original equations to account for initial overpressure values:
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here, the two-magma chamber model only represents the upper part of a multiple-reservoir system. Given a 
set of known but uncertain model parameters (Fig. 3), the forward model computes the evolution of the over-
pressures in the shallow and deep reservoirs which are directly related to the deformation measured at the sur-
face. We assume the following for the known parameters of our model: the shapes of the reservoirs are sills, the 
Young’s modulus, E = 25 GPa, the depth and the radius of the shallow reservoir are Hs = 1.7 km and as = 2.0 km15, 
respectively. The uncertain model parameters are classified into two: (a) constant/non-evolving (i.e. all uncertain 
parameters except Qin) and (b) time-varying (i.e. Qin).

Note that any dynamical model can be used for data assimilation, however, the interpretation we made clearly 
depends on our model choice. We used the two-reservoir model because of its ability to well explain the temporal 
evolution of the displacement recorded at Grímsvötn (i.e. exponential followed by a linear trend) after each erupted 
event. Other models considering only one reservoir fed by a deep and constant pressure source could potentially 
explain the same temporal evolution by introducing either a complexity in the encasing medium rheology (i.e. dam-
age, viscoelastic behavior38,39) and/or in the magma properties (i.e. crystallisation, degassing, compressibility39,40). 
However, there is a strong geochemical evidence for probably at least several deep reservoirs beneath the Grímsvötn 
system25. In particular, Grímsvötn lavas that are averaged from previous eruptions have a crystallisation depth of 
15 ± 5 km25 — a value consistent with the result of our inversion. Besides, the deep magma supply rate is expected 
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to fluctuate through time1–3. The facts that (1) such fluctuation is not observed during the previous eruptive cycle, 
(2) it seems to be transient and (3) it occurs simultaneously with a rifting event mobilizing a large volume of magma 
in a close volcanic system, are strong arguments in favor of the model preferred in this study. Having GPS data at a 
distance of 15 km from Grímsvötn could confirm this effect of the deep reservoir (see Figure S8).

Data. Data are analyzed using the Bernese 5.2 software41, with absolute antenna phase center offset models, 
together with precise orbits, earth rotation parameters, ocean tidal loading and atmospheric tidal loading esti-
mates. Velocities and time series were estimated in the ITRF2014 reference frame41 with discontinuities associated 
with this reference frame and expressed in terms of the plate boundary reference frame17. We followed the reso-
lution strategy with (1) an initial ionosphere-free analysis with calculation of the residuals; (2) a residual analysis; 
(3) code-based wide-lane ambiguity resolution for all baselines42, using differential code bias (DCB) files when 
available and calculation of the ionosphere-free solution with the introduction of resolved Melbourne-Wübbena 
linear combination ambiguities; (4) phase-based wide-lane (L5) ambiguity resolution for baselines <200 km and 
computation of the ionosphere-free solution with the introduction of resolved ambiguities; (5) resolution of the 
previously unresolved ambiguities for baselines <2000 km using the quasi ionosphere-free strategy of resolu-
tion; (6) direct L1/L2 ambiguity resolution for baselines <20 km with the introduction of an ionosphere model; 
(7) calculation of the normal equations; (8) a compatibility test between the daily free solution and ITRF2014 
solution, selection of compatible ITRF2014 stations and (9) transformation of the daily normal equation in the 
ITRF2014 reference frame with a six-parameter Helmert solution (three translation parameters and three rotation 
parameters) using the ITRF2014 selected stations (BARH, BOGO, EPRT, ESCU, HERT, HLFX, KARL, KHAR, 
NEWL, REDU, RIGA, SASS, SCH2, SHE2, SKE0, STAS, THU2, THU3, TRDS, VARS, VOL0). During these steps, 
site-specific troposphere parameters are estimated every two hours. Normal equations are analyzed together to 
determine accurate velocities in the ITRF2014 reference frame with the introduction of ITRF2014 coordinates 
and velocities. For time series of stations supposed to be linear (not GFUM), outliers and new discontinuities 
were detected using the “Find Outliers and Discontinuities in Time Series” tool in the Bernese 5.2 software that 
reduces, step-by-step, the discrepancy between the functional model and the time series due to statistical adjust-
ment43, taking annual and seasonal fluctuations into account. As the Bernese 5.2 software underestimates the 
daily errors given that systematic errors or mismodeled parameters are not included in the formal error41, we 
rescaled the formal errors by multiplying them by a factor of 10 to obtain a more realistic estimated error.

Note that the tectonic trend at GFUM GPS station is removed with slopes of −2.7 mm yr−1 and 7.5 mm yr−1 
for the NS and EW components, respectively17.

Bayesian-based inversion. To constrain the uncertain parameters of our model that remain constant in time 
(e.g. a H C P, , , ,d d dt0

ρΔ Δ ) and to obtain a prior distribution for the evolving one (Qin) before data assimilation, we 
perform a Bayesian-based inversion using the Markov Chain Monte Carlo (MCMC) algorithm. We follow the 
step-by-step procedure presented in Figure S5 (i.e. Step 1). In MCMC, uncertain model parameters independently 
drawn from given a priori distributions are constrained by accepting model predictions that better fit observations 
and by randomly accepting those that do not fit to avoid being trapped to a local minima44. In particular, we built our 
approach using the PyMC2 python module. The classic linear inverse problem is described as:

ε= +D G m( ) (3)

where D is the vector of observation or data, G is the forward model, m is a vector of the uncertain model param-
eters and ε is the observation error. In our case, m a H C P Q[ , , , , , ]d d d int0

ρ= Δ Δ , D is the 2011 post-eruptive GPS 
dataset (we only use the radial displacement component up to tstep = 409 d) and G is the analytical solution 
(obtained by combining equations 3, 11 and 12 of ref.12) to the forward model described in equations (1) and (2). 
In the Bayesian framework, the posterior probability associated with m is sampled based on a likelihood function, 
P(D|m), that calculates how well the data fits the model and a prior knowledge about the uncertain model param-
eters, P(m):

| ∝ |P m D P D m P m( ) ( ) ( ) (4)

Note that the errors in the resulting posterior distributions are only related to the observation error and uncer-
tainties of the prior distribution of m. Any error related to how the model, G, represents the reality is not taken 
into account. Such that in the case of a time-varying parameter, this approach is not the optimal strategy to use.

We first scale m and then we compute for the posterior distributions incorporating an Adaptive Metropolis 
(AM) step method. The latter is to avoid the problem of convergence due to possible “trade-offs” between the six 
uncertain model parameters. The AM method is a more intelligent way of fitting the parameters by block updat-
ing them using a multivariate jump distribution. We performed 2.0 × 105 individual samples with each calling 
the forward model G. To make sure we converged to a good estimate and maintain no autocorrelation, half of the 
samples are burned and the remaining samples are thinned by a factor of 100 such that we end up by having 1000 
samples. Because of the simplicity of the forward model, it only took around 30 minutes to simultaneously obtain 
the posterior distributions of the uncertain model parameters.

From the constructed posterior distribution, we pick the set of best-fit parameters by computing the misfit 
relative to the data points within the dotted green box in Fig. 5. The results are summarized in Table 1 and are 
marked using green vertical lines in the marginal distribution shown in Fig. 4.

We perform similar inversion procedure to obtain the two other set of priors that we tested: case (1) using the 
entire 2004 radial displacement dataset and case (2) adopting the values of ad, Hd and Δρ from case 1 and then 
re-estimating the uncertain parameters that could vary from one eruption to another (e.g. Qin, C, and ΔPdt0

).
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Data assimilation. We closely followed the strategy developed by ref.12 to assimilate geodetic data into a 
forward dynamical model. A step-by-step data assimilation strategy using EnKF is presented in Figure S5 (i.e. 
Step 2). The assimilation is divided into two steps: (1) the forecast step and (2) the update step (or analysis). The 
forecast step is the part where an N-ensemble of models (i.e. N = 1000) are generated using the forward dynami-
cal model given a previous or prior distribution of the state vector, X:

= +
+

X X q (5)t
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f and a: denote the forecast and analysis, respectively, : the model operator that relates the system from time ti 
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The assimilation interval is set to Δt = 1 day and we expect to have GPS data every day (i.e. frequency of 
observation, fobs = 1). A Gaussian prior for the uncertain model parameter is required by EnKF to achieve an 
unbiased and optimal estimate. However, to ensure that the predicted value is within the correct physical 
boundaries, we redefine the distribution of Qin (expressed in km3 yr−1) prior to the implementation of EnKF to 
a truncated Gaussian distribution with the mean centered on its best-fit value obtained from the inversion, the 
standard deviation is set to 0 003∼ .  km3 yr−1 and the upper and lower limits are fixed to [a = 0, b = 0.19] (see 
Fig. 5C).

In the context of data assimilation, ΔPs and ΔPd are called state variables because they are directly linked to 
the observations, while Qin is termed as an uncertain model parameter and is only updated by the covariance 
between it and the state variables during the update step. We scaled the forecast state vector, Xf, (i.e. 107 and 10−1 
for the overpressures and Qin, respectively) and then we imposed an inflation factor, ρinfl = 0.05 (i.e. Xf = (1 + ρinfl) 
Xf, see section 4.2 of ref.12) if the standard deviation of Qin at ti+1 falls below its standard deviation at t0. The latter 
is to prevent the ensemble from collapsing to a single value and also to help the filter to track the value of the 
time-varying parameter, Qin.

Once observation is available, Xf is updated by computing the Kalman Gain, K, (see equation 8 of ref.12) and 
then applying the update equation,

= + −X X K D X( ) (8)a f f

to obtain the vector of analysis, Xa. Note that the value of Qin remains unchanged if there is no observation. Since 
we only use the radial component of the displacement time series, we define the observation operator, 
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5=  and r is the distance of GFUM GPS station from the center of the vol-
canic system (e.g. 3.5 ± 0.2 km). Lastly, we use an error variance, R ( )T εε= = (0.015 m)2.

Data availability. The GPS data analysed during the current study are available from the corresponding 
author on reasonable request.
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