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Luc Robbiano †and Qiong Zhang ‡§

September 6, 2018

Abstract

In this paper we analyze the long time behavior of a wave equation with local Kelvin-Voigt

Damping. Through introducing proper class symbol and pseudo-differential calculus, we obtain

a Carleman estimate, and then establish an estimate on the corresponding resolvent operator.

As a result, we show the logarithmic decay rate for energy of the system without any geometric

assumption on the subdomain on which the damping is effective.
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1 Introduction

In this paper, we consider a wave equation with local Kelvin-Voigt damping and analyze long time

behaviour for the -solution of the system. Let Ω ⊂ R
d be a bounded domain with smooth boundary

Γ = ∂Ω. Denote by ∂n the unit outward normal vector on boundary Γ. The PDE model is as follows.




ytt(t, x) − div [∇y(t, x) + a(x)∇yt(t, x)] = 0 in (0,∞)× Ω,

y(t, x) = 0 on (0,∞)× Γ,

y(0, x) = y0, yt(0, x) = y1 in Ω,

(1.1)

where the coefficient function a(·) ∈ L1(Ω) is nonnegative and not identically null.

The natural energy of system (1.1) is

E(t) =
1

2

[ ∫

Ω

(
| ∇y(t) | 2 + | yt(t) | 2

)
dx

]
. (1.2)

A direct computation gives that

d

dt
E(t) = −

∫

supp a

a(x) | ∇yt(t) | 2dx. (1.3)
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Formula (1.3) shows that the only dissipative mechanism acting on the system is the viscoelastic

damping div [a∇yt], which is only effective on supp a.

To rewrite the system as an evolution equation, we set the energy space as

H = H1
0 (Ω)× L2(Ω), (1.4)

with norm

‖Y ‖H =
√
‖∇y1‖2L2(Ω) + ‖y2‖2L2(Ω), ∀ Y =

(
y1, y2

)
∈ H. (1.5)

Define an unbounded operator A : D(A) ⊂ H → H by

AY =
(
y2, div (∇y1 + a∇y2)

)
, ∀ Y =

(
y1, y2

)
∈ D(A),

and

D(A) =
{(
y1, y2

)
∈ H : y2 ∈ H1

0 (Ω), div (∇y1 + a∇y2)
)
∈ L2(Ω)

}
.

Let Y (t) = (y(t), yt(t)). Then system (1.1) can be written as

d

dt
Y (t) = AY (t), ∀ t > 0, Y (0) = (y0, y1). (1.6)

It is known from [20] that if supp a is non-empty, the operator A generates a contractive C0

semigroup etA on H and iR ⊂ ρ(A), the resolvent of A. Consequently, the semigroup etA is strongly

stable. Moreover, if the entire medium is of the viscoelastic type (i.e. supp a = Ω), the damping

for the wave equation not only induces exponential energy decay, but also restricts the spectrum of

the associated semigroup generator to a sector in the left half plane, and the associated semigroup

is analytic ([13]). When the Kelvin-Voigt damping is localized on a subdomain of Ω, the properties

of system is quite complicated. First, it has been proved that properties of regularity and stability

of 1-d system (1.1) depend on the continuousness of coefficient function a(·). More precisely, assume

that Ω = (−1, 1) and a(x) behaviours like xα with α > 0 in supp a = [0, 1]. Then the solution

of system (1.1) is eventually differentiable for α > 1, exponentially stable for α ≥ 1, polynomially

stable of order 1
1−α for 0 < α < 1, and polynomially stable of optimal decay rate 2 for α = 0 (see

[19, 22, 25, 27]). For the higher dimensional system, the corresponding semigroup is exponentially

stable when a(·) ∈ C 2(Ω) and supp a ⊃ Γ ([21]). However, when the Kelvin-Voigt damping is local

and the material coefficient a(·) is a positive constant on supp a, the energy of system (1.1) does

not decay exponentially for any geometry of Ω and supp a ([9, 28]). The reason is that the strong

damping and non-continuousness of the coefficient function lead to reflection of waves at the interface

γ
.
= ∂(supp a) \ Γ, which then fails to be effectively damped because they do not enter the region of

damping. It turns out that the Kelvin-Voigt damping does not follow the principle that “geometric

optics" condition implies exponential stability, which is true for the wave equation with local viscous

damping ([2]).

Recently, [29] proves the polynomial stability of system (1.1) when a(·) ≡ a0 > 0 on supp a and

supp a satisfies certain geometry conditions. Then, a natural problem is: how about the decay rate

if supp a 6= ∅ is arbitrary? In [1], a is assumed discontinuous along a (d − 1)–manifold, supp a is

arbitrary and the rate of the decay of semi-group is estimated by (log t)−k for a data in D(Ak). In

this paper, we analyze the logarithmic decay properties of the solution to (1.1) when a is smooth

and supp a is arbitrary. The main result reads as follows.

Theorem 1.1. Suppose that the coefficient function a(·) ∈ C∞
0 (Ω) is nonnegative and supp a ⊂ Ω

is non-empty. Then the energy of the solution of (1.1) decays at logarithmic speed. More precisely,
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one has that there exists a positive constant C such that

‖etAY0‖H ≤ C

[log(t+ 2)]
4k
5

∥∥∥Y0
∥∥∥
D(Ak)

, ∀ t > 0, Y0 = (y0, y1) ∈ D(Ak). (1.7)

Our approach is based on the results duo to [7], which reduced the problem of determining the

rate of energy decay to estimating the norm of the resolvent operator along the imaginary axis, see

also [10, 18], etc. Our argument divides naturally three steps. First, in Section 2, we show some

preliminaries including definitions and classical results about symbol, pseudo-differential calculus,

and commutator estimate, etc. Then in Section 3, we prove corresponding Carleman estimates.

Finally, in Section 4, we present a resolvent estimate and obtain Theorem 1.1. This theorem is a

consequence of a resolvent estimate. The proof is given in Section 4. The method was developed in

([4, 5, 6, 16, 18, 26] and the references cited therein).

Throughout this paper, we use ‖ · ‖V and (· | ·)V to denote the norm and inner product on L2(V ),

where V ⊂ R
d if there is no further comments. When writing f . g (or f & g), we mean that

there exists a positive constant C such that f ≤ Cg (or f ≥ Cg). For j = 1, 2, · · · , define operators

Dj = −i∂xj
, D = (D1, · · · , Dd), D2 =

d∑
j=1

D2
j and Da(x)D =

d∑
j=1

Dja(x)Dj .

2 Preliminaries

We shall prove Theorem 1.1 by Weyl-Hörmander calculus, which was introduced Hörmander ([12,

15]). In this section, some definitions and results on the class of symbol and pseudo-differential

calculus are given.

2.1 Symbol and Symbolic calculus

For any (x, ξ) ∈ R
d × R

d, λ ∈ R and τ > 0, we introduce the metric

g = gx,ξ = λdx2 + µ−2dξ2, where µ2 = µ(τ, ξ)2 = τ2 + | ξ | 2, (2.1)

and the weight

ν = ν(x, λ) =
√
1 + λ2a(x)2. (2.2)

Note that and gx,ξ(X,Ξ) = λ |X | 2 + µ−2(τ, ξ) |Ξ | 2 for all X,Ξ ∈ R
d. Then we have the following

results.

Lemma 2.1. Assume that there exist positive constants C and λ0 such that λ ≥ λ0 and τ ≥
max{ Cλ, 1 }. It holds

(i) The metric g = gx,ξ defined by (2.1) is admissible, i.e., it is slowly varying and temperate.

(ii) The weight ν = ν(x, λ) defined by (2.2) is admissible, i.e., it is g-continuous and g-temperate.

Proof. (i) From Definition 18.4.1 in [12], the metric gx,ξ defined by (2.1) is slowly varying if there

exist δ > 0 and C > 0 such that

gx,ξ(y − x, η − ξ) ≤ δ implies gy,η(X,Ξ) ≤ Cgx,ξ(X,Ξ), ∀ x, y, ξ, η,X,Ξ ∈ R
d,

where the constants δ and C are independent on the parameters λ and τ .

Suppose 0 < δ ≤ 1/4 and

gx,ξ(y − x, η − ξ) = λ | y − x | 2 + (τ2 + | ξ | 2)−1 | η − ξ | 2 ≤ δ.
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Then, we have
τ2 + | ξ | 2 ≤ τ2 + 2 | ξ − η | 2 + 2 | η | 2

≤ τ2 + 2δ(τ2 + | ξ | 2) + 2 | η | 2.

This implies that τ2 + | ξ | 2 ≤ 4(τ2 + | η | 2). Consequently,

gy,η(X,Ξ) = λ |X | 2 + (τ2 + | η | 2)−1 |Ξ | 2 ≤ λ |X | 2 + 1

4
(τ2 + | ξ | 2)−1 |Ξ | 2 ≤ gx,ξ(X,Ξ).

Therefore, g is slowly varying.

For a given metric gx,ξ, the associated metric gσx,ξ is defined by gσx,ξ = (τ2 + | ξ | 2)dx2 + λ−1dξ2.

The metric gx,ξ is temperate if there exist C > 0 and N > 0, such that

gx,ξ(X,Ξ) ≤ Cgy,η(X,Ξ)
(
1 + gσx,ξ(x − y, ξ − η)

)N
, ∀ x, y, ξ, η,X,Ξ ∈ R

d, (2.3)

where the constants C and N are independent on the parameters λ and τ (Definition 18.5.1 in [12]).

For the metric g = gx,ξ defined by (2.1), (2.3) is equivalent to

λ |X | 2 + (τ2 + | ξ | 2)−1 |Ξ | 2

≤ C
(
λ |X | 2 + (τ2 + | η | 2)−1 |Ξ | 2

)(
1 + (τ2 + | ξ | 2) |x− y | 2 + λ−1 | ξ − η | 2

)N
.

(2.4)

First, assume that τ2 + | η | 2 ≤ 4(τ2 + | ξ | 2). It follows that

(τ2 + | η | 2) ≤ C(τ2 + | ξ | 2)
(
1 + λ−1 | ξ − η | 2

)N
, C > 0, N > 0. (2.5)

Then it is easy to obtain (2.4) from (2.5).

Secondly, consider the case τ2 + | η | 2 > 4(τ2 + | ξ | 2). Then

| η | > 2 | ξ |, | η | >
√
3τ, (2.6)

and

| ξ − η | > 1

2
| η | >

√
3

2
τ >

√
3

2
Cλ. (2.7)

It follows from (2.6) and (2.7) that

λ−1 | ξ − η | 2 >
√
3

2
C | ξ − η | >

√
3

4
C | η | .

Consequently,
(
1 + λ−1 | ξ − η | 2

)2
>

3

16
C2 | η | 2 > 3

32
C2( | η | 2 + 3τ2).

This together with τ2+ | ξ | 2 ≥ 1 yields that there exists a positive constant C such that (2.5) holds

with N = 2.

(ii) It is known from Definition 18.4.2 in [12] that a weight ν(x) is g-continuous if there exist

δ > 0 and C > 0 such that

gx,ξ(y − x, η − ξ) ≤ δ implies C−1ν(x) ≤ ν(y) ≤ Cν(x), ∀ x, y, ξ, η ∈ R
d.

where the constants δ and C are independent on the parameters λ and τ . Since the weight ν(x)

defined by (2.2) does not depend on ξ, the above condition is reduced to

λ |x− y | 2 ≤ δ implies C−1ν(x) ≤ ν(y) ≤ Cν(x), ∀ x, y ∈ R
d.
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The weight ν(x) is g-temperate if there exist C > 0 and N > 0 such that

ν(y) ≤ Cν(x)
(
1 + gσy,η(x− y, ξ − η)

)N
, ∀ x, y, ξ, η ∈ R

d, (2.8)

where the constants C and N do not depend on the parameters λ and τ (Definition 18.5.1 in [12]).

The weight ν(x) is admissible if it is g-continuous and g-temperate. When a weight is admissible,

all the powers of this weight are g-continuous and g-temperate. Therefore, it suffice to prove that

1 + λa(x) is admissible.

Let s ∈ [0, t] and t ∈ [0, 1]. Define f(s) = λa(x + s(y − x)) and F (t) = sups∈[0,t] f(s) where

x, y ∈ Ω satisfying λ |x− y | 2 ≤ δ. It is clear that f ′(s) = λa′(x+ s(y− x)) (y− x). Combining this

with the following inequality

| a′(x) | 2 ≤ 2a(x)‖a′′‖L∞(Ω), ∀ x ∈ Ω, (2.9)

we obtain

| f ′(s) | ≤ λ | a′(x+ s(y − x)) | | y − x | ≤ 2λ‖a′′‖
1

2

∞ [a(x+ s(y − x))]
1

2 | y − x | .

The proof of (2.9) will be given later. Consequently,

sup
s∈[0,t]

| f ′(s) | ≤ 2λ
1

2 ‖a′′‖
1

2

L∞(Ω) F (t)
1

2 | y − x | .

Since f(t) ≤ f(0) + t sups∈[0,t] | f ′(s) | , F is non-decreasing and λ |x − y | 2 ≤ δ, we obtain that for

all t ∈ [0, 1],

f(t) ≤ f(0) + Cλ
1

2F (t)
1

2 | y − x | ≤ f(0) + C
√
δF (t)

1

2 ≤ f(0) + C
√
δF (α)

1

2 ,

where C = 2‖a′′‖
1

2

L∞(Ω) and α ∈ [t, 1]. Note that f(0) = F (0). It follows that

F (α) = sup
t∈[0,α]

f(t) ≤ F (0) + C
√
δF (α)

1

2 .

This yields

1 + F (α) ≤ 1 + F (0) + C
√
δ
(
1 + F (α)

) 1

2 ≤ 1 + F (0) + C
√
δ
(
1 + F (α)

)
. (2.10)

By choosing δ sufficiently small such that C
√
δ ≤ 1/2, one can deduce from (2.10) that

1 + F (α) ≤ 2(1 + F (0)), ∀ α ∈ [t, 1].

In particular, we have

1 + λa(y) ≤ 2(1 + λa(x)).

The above inequality remains true if we exchange x and y. Therefore, the weight 1 + λa(x) is

g-continuous.

On the other hand, note that 1+λa(x) is independent to ξ. Then, to obtain the weight 1+λa(x)

is σ-temperate, it is sufficient to prove that

1 + λa(y) ≤ C(1 + λa(x))(1 + τ2 |x− y | 2)N . (2.11)

In fact, it is clear that 1 + λa(y) ≤ 1 + λ(a(x) + C |x− y | ) where C = ‖a′‖L∞(Ω). Therefore, there

exists positive constant C′ = CC−1 such that

1 + λa(y) ≤ (1 + λa(x))(1 + C′τ |x− y | ) ≤ (1 + λa(x))(2 + 2(C′τ |x− y | )2) 1

2 .

Thus, we obtain (2.11) with N = 1
2 , C = 2max{1, C′}.
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Remark 2.1. We claim that (2.9) holds for any compactly supported and nonnegative function

a ∈ C 2(Ω). In fact, from the following identity

a(x + h) = a(x) + a′(x)h+

∫ 1

0

(1− t)a′′(x + th)h2dt, ∀ h ∈ R,

one can get

a(x) + a′(x)h+
1

2
‖a′′‖L∞(Ω) |h | 2 ≥ 0.

Let h = y a′(x), where y ∈ R and x ∈ Ω are arbitrary. It follows from the above inequality that

a(x) + | a′(x) | 2y + 1

2
‖a′′‖L∞(Ω) | a′(x) | 2y2 ≥ 0, ∀ x ∈ Ω, y ∈ R.

Then,

| a′(x) | 4 − 2a(x)‖a′′‖L∞(Ω) | a′(x) | 2 ≤ 0,

and (2.9) is proved.

Definition 2.1. (Section 18.4.2 in [12]) Assume the weight m(x, ξ) is admissible and the metric g

is defined by (2.1). Let q(x, ξ, λ, τ) be a C∞ function with respect to (x, ξ) and λ, τ be parameters

satisfying conditions in Lemma 2.1. The symbol q(x, ξ, λ, τ) is in class S(m, g) if for all α, β ∈ N
d

there exists Cα,β independent of τ and λ such that

| ∂αx ∂βξ q(x, ξ, λ, τ) | ≤ Cα,βm(x, ξ)λ | α | /2 µ(τ, ξ)− | β | .

Remark 2.2. (i) It is clear that µ =
√
τ2 + | ξ | 2 ∈ S(µ, g) since | ∂βξ µ(τ, ξ) | . µ1− | β | for all

β ∈ R
d.

(ii) Let ν be the weight defined by (2.2). It is easy to get that λa ∈ S(ν, g). In fact, if |α | ≥ 2,

it holds that | ∂αx (λa(x)) | ≤ Cαλ ≤ Cαλ
|α | /2ν(x) , where Cα > 0. For the case |α | = 1, it

follows from (2.9) that

| ∂αx (λa(x)) | ≤
√
2 ‖a′′‖

1

2

L∞(Ω)λ
1

2

(
λa(x)

) 1

2

Note that |λa(x) | < Cν2(x) for some C > 0. This together with the above inequality, we have

that

| ∂αx (λa(x)) | <
√
2C ‖a′′‖

1

2

L∞(Ω)λ
1

2 ν(x).

(iii) It is known from Lemma 18.4.3 of [12] that if the metric g and weights m1, m2 are admissible,

symbols a ∈ S(m1, g) and b ∈ S(m2, g), then ab ∈ S(m1m2, g). In particular, (λa)jµk ∈
S(νjµk, g) for all j, k ∈ N ∪ {0}.

Definition 2.2. Let b ∈ S(m, g) be a symbol and u ∈ S (Rd), we set

b(x,D, τ)u(x) = Op(b)u(x) := (2π)−d
∫

Rd

eix·ξ b(x, ξ, τ) û(ξ) dξ.

It is known that Op(b) : S (Rd) → S (Rd) is continuous and Op(b) can be uniquely extended to

S ′(Rd) continuously. The following two lemmas are consequences of Theorem 18.5.4 and 18.5.10 in

[12].
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Lemma 2.2. Let b ∈ S(m, g) where m is an admissible weight and g is defined by (2.1). Then

there exists c ∈ S(m, g) such that Op(b)∗ = Op(c) and c(x, ξ) = b(x, ξ)+ r(x, ξ) where the remainder

r ∈ S(λ
1

2µ−1m, g).

Lemma 2.3. Let b ∈ S(m1, g) and c ∈ S(m2, g) where mj are admissible weights for j = 1, 2 and g

is defined by (2.1). Denote by [Op(b), Op(c)] = Op(b) ◦ Op(c) − Op(c) ◦ Op(b) and Poisson bracket

{b, c}(x, ξ, τ) = ∑
1≤j≤d

(∂ξj b ∂xj
c− ∂xj

b ∂ξjc)(x, ξ, τ). Then,

(i) there exists d ∈ S(m1m2, g) such that Op(b)Op(c) = Op(d) and d(x, ξ) = b(x, ξ)c(x, ξ)+r(x, ξ)

where r ∈ S(λ
1

2µ−1m1m2, g).

(ii) for commutator i[Op(b),Op(c)] = Op(f), it holds that f ∈ S(λ
1

2µ−1m1m2, g) and f(x, ξ) =

{b, c}(x, ξ) + r(x, ξ) where r ∈ S(λµ−2m1m2, g).

The operators in S(νjµk, g) act on Sobolev spaces adapted to the class of symbol. Let b ∈
S(νjµk, g), where µ and g are defined by (2.1). Then there exists C > 0 such that

‖Op(b)u‖Rd ≤ C‖νj Op(µk)u‖Rd , ∀ u ∈ S (Rd).

By symbolic calculus, the above estimate is equivalent to Op(µ−kν−j)Op(b) acts on L2(Rd) since

the operators associated with symbol in S(1, g) act on L2(Rd). In particular, if b ∈ S(νjµ, g), then

for any λ ≥ λ0, τ ≥ max{ Cλ, 1 } and u ∈ S (Rd), it holds

‖Op(b)u‖Rd ≤ Cτ‖νju‖Rd + C‖νjDu‖Rd ,

where C > 0 depends on positive constants λ0 and C.

2.2 Commutator estimate

In this subsection, we suppose that λ = 1 since the symbol does not depend on λ. The metric in

(2.1) becomes

g̃ = dx2 + µ−2dξ2, where µ is defined by (2.1). (2.12)

To get the commutator estimate, we shall use the following Gårding inequality ([12, Theorem

18.6.7]).

Lemma 2.4. Let b ∈ S(µ2k, g̃) be real valued. µ and g̃ are defined by (2.12). We assume there exists

C > 0 such that b(x, ξ, τ) ≥ Cµ2k. Then there exist C̃ > 0 and τ0 > 0 such that

Re(Op(b)w |w)Rd ≥ C̃‖Op(µk)w‖2
Rd , ∀ w ∈ S (Rd) and τ ≥ τ0. (2.13)

Definition 2.3. Let V be a bounded open set in R
d. We say that the weight function ϕ ∈ C∞(Rd;R)

satisfies the sub-ellipticity condition in V if | ∇ϕ | > 0 in V and there exists constant C > 0,

pϕ(x, ξ, τ) = 0, ∀ (x, ξ) ∈ V × R
d, τ > 0 ⇒ {q2,q1}(x, ξ, τ) ≥ C( | ξ |2 + τ2)3/2, (2.14)

where pϕ(x, ξ, τ) = |ξ + iτ∇ϕ(x)|2 = q2(x, ξ, τ) + iq1(x, ξ, τ) and q1, q2 are real valued.

Lemma 2.5. ([12]) Let V be a bounded open set in R
d and ψ ∈ C∞(Rd;R) be such that | ∇ψ | > 0

in V . Then, for γ > 0 sufficiently large, ϕ = eγψ fulfills the sub-ellipticity property in V .
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Lemma 2.6. Assume that ϕ satisfies the sub-ellipticity in Definition 2.3. For all w ∈ C∞
0 (V ), there

exist C1, C2 > 0 and τ0 > 0 such that the following inequality holds for all τ ≥ τ0,

C1τ
3‖w‖2V + C1τ‖Dw‖2V ≤ Re

(
Op({|ξ|2 − τ2|∇ϕ(x)|2, 2τξ · ∇ϕ(x)})w | w

)
V

+C2τ
−1‖Op(|ξ|2 − τ2|∇ϕ(x)|2)w‖2V

+C2τ
−1‖Op(2τξ · ∇ϕ(x))w‖2V .

(2.15)

Proof. First, by homogeneity in (ξ, τ), compactness arguments and sub-ellipticity condition, we claim

that there exist constants C, δ > 0 such that

C
[
| 2ξ · ∇ϕ(x) | 2 + µ−2 ( |ξ|2 − τ2|∇ϕ(x)|2 ) 2

]
+
{
|ξ|2 − τ2|∇ϕ(x)|2, 2ξ · ∇ϕ(x)

}
≥ δµ2. (2.16)

The proof of (2.16) is classical. In fact, set

K = {(x, ξ, τ) ∈ R
d × R

d × R : x ∈ V , | ξ | 2 + τ2 = 1, τ ≥ 0},

and for (x, ξ, τ) ∈ K, κ > 0,

G(x, ξ, τ, κ) = κ
[
| 2ξ · ∇ϕ(x) | 2 + µ−2 ( |ξ|2 − τ2|∇ϕ(x)|2 ) 2

]
+ {|ξ|2 − τ2|∇ϕ(x)|2, 2ξ · ∇ϕ(x)}.

If | 2ξ ·∇ϕ(x) | 2+µ−2 ( |ξ|2−τ2|∇ϕ(x)|2 ) 2 = 0 for (x, ξ, τ) ∈ K, it is clear that there exists a positive

constant δ such that (2.16) holds due to the fact that φ is sub-elliptic. When | 2ξ · ∇ϕ(x) | 2 +

µ−2 ( |ξ|2 − τ2|∇ϕ(x)|2 ) 2 > 0, there exists a positive constant κx,ξ,τ such that G(x, ξ, τ, κ) > 0

for every κ ≥ κx,ξ,τ since {|ξ|2 − τ2|∇ϕ(x)|2, 2ξ · ∇ϕ(x)} is bounded on K. By continuity of

G(x, ξ, τ, κ), there exists a neighborhood of (x, ξ, τ), denoted by Vx,ξ,τ , such that G(x, ξ, τ, κ) > 0

for all (x, ξ, τ) ∈ Vx,ξ,τ and κ ≥ κx,ξ,τ . Since K is compact, there exist finite sets Vj = Vxj ,ξj ,τj and

corresponding constants κj = κxj ,ξj ,τj (j = 1, 2, · · · , n), such that K ⊂ ∪nj=1Vj and G(x, ξ, τ, κ) > 0

for all (x, ξ, τ) ∈ Vj and κ > κj . Let κ̃ = max{κj : j = 1, 2, · · · , n}. It follows that G(x, ξ, τ, κ̃) > 0

for all (x, ξ, τ) ∈ K and κ ≥ κ̃. Finally, using the compactness of K again, we conclude that there

exists δ > 0 such that G(x, ξ, τ, κ̃) ≥ δ. Thus, (2.16) is reached since g is a homogeneous function

of degree 2 with respect to variables (ξ, τ).

By Gårding inequality (2.13), there exists a constant C > 0 such that, for τ ≥ τ0 with τ0

sufficiently large,

C‖Op(µ)w‖2V ≤ Re
(
Op

(
| 2ξ · ∇ϕ(x) | 2 + µ−2 ( |ξ|2 − τ2|∇ϕ(x)|2 ) 2

+
{
|ξ|2 − τ2|∇ϕ(x)|2, 2ξ · ∇ϕ(x)

})
w

∣∣w
)
V
.

(2.17)

Now we are going to estimate the terms τ Op( | 2ξ · ∇ϕ(x) | 2) and τ Op(µ−2 ( |ξ|2 − τ2|∇ϕ(x)|2 ) 2).
Firstly, it follows from Lemma 2.3 that

τ−1 Op( | 2τξ · ∇ϕ(x) | 2) = τ−1 Op(2τξ · ∇ϕ(x))∗ Op(2τξ · ∇ϕ(x)) + τ Op(r1), (2.18)

where r1 ∈ S(µ, g̃) and g̃ is defined by (2.12). Therefore, for any ε > 0, there exists a positive

constant Cε such that

∣∣(τ−1 Op( | 2τξ · ∇ϕ(x) | 2)w | w
)
V

∣∣

≤ τ−1‖Op(2τξ · ∇ϕ(x))w‖2V + τ | (Op(r1)w |w)V |

≤ τ−1‖Op(2τξ · ∇ϕ(x))w‖2V + ε τ‖Op(µ)w‖2V + Cετ‖w‖2V .

(2.19)
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Substituting (2.19) into (2.17) and choosing ε small enough, we have

Cτ‖Op(µ)w‖2V
≤ Re

(
Op

(
τµ−2 ( |ξ|2 − τ2|∇ϕ(x)|2 ) 2 + τ

{
|ξ|2 − τ2|∇ϕ(x)|2, 2ξ · ∇ϕ(x)

})
w

∣∣w
)
V

+τ−1‖Op(2τξ · ∇ϕ(x))w‖2V + Cετ‖w‖2V .

(2.20)

Secondly, by symbolic calculus, we have that

τ Op(µ−2 ( |ξ|2 − τ2|∇ϕ(x)|2 ) 2) = τ Op(r0)Op(|ξ|2 − τ2|∇ϕ(x)|2) + τ Op(r2), (2.21)

where r0(x, ξ) = µ−2(|ξ|2 − τ2|∇ϕ(x)|2) ∈ S(1, g̃) and r2 ∈ S(µ, g̃). Therefore, for all ε > 0, there

exists Cε > 0 such that

| (τ Op(r0)Op(|ξ|2 − τ2|∇ϕ(x)|2)w |w)V |

≤ Cετ
−1‖Op(|ξ|2 − τ2|∇ϕ(x)|2)w‖2V + ετ3‖w‖2V .

(2.22)

We choose ε small enough and combine (2.21)-(2.22) with (2.20) to get

Cτ‖Op(µ)w‖2V ≤ Re
(
τ Op

{
|ξ|2 − τ2|∇ϕ(x)|2, 2ξ · ∇ϕ(x)

}
w

∣∣w
)
V

+Cετ
−1‖Op(|ξ|2 − τ2|∇ϕ(x)|2)w‖2V

+τ−1‖Op(2τξ · ∇ϕ(x))w‖2V + Cε(τ + ετ3)‖w‖2V .

(2.23)

Finally, it is clear that there exist positive constant C such that

τ3‖w‖2V + τ‖Dw‖2V ≤ Cτ‖Op(µ)w‖2V . (2.24)

Thus, we obtain (2.15) by using (2.23)-(2.24), choosing ε small enough and letting τ > τ0 large

enough.

3 Carleman Estimate

In this section, we shall prove several Carleman inequalities. Define the operator

P (x,D, λ) = D2 + iλDa(x)D − λ2.

Let the weight function ϕ ∈ C∞(Rd;R). The associated conjugate operator of P (x,D, λ) is Pϕ(x,D, λ) =

eτϕP (x,D, λ)e−τϕ. Then,

Pϕ = (D + iτ∇ϕ(x))2 + iλ(D + iτ∇ϕ(x))a(x)(D + iτ∇ϕ(x)) − λ2.

By setting Q2 = 1
2 (Pϕ + P ∗

ϕ) and Q1 = 1
2i (Pϕ − P ∗

ϕ), we have Pϕ = Q2 + iQ1. We denote by

p(x, ξ, λ), pϕ(x, ξ, λ) the associated symbol of P (x,D, λ), Pϕ(x,D, λ), respectively.

Let the metric g and weight ν be defined by (2.1) and (2.2). Due to the results Remark 2.2,

we know that D + iτ∇ϕ(x) is an operator with symbol in S(µ, g) class, λa is in S(ν, g), and (1 +

iλa(x))|ξ + iτ∇ϕ(x)|2, the principal symbol of Pϕ belongs to S(νµ2, g). Furthermore, from Lemma

2.2 and 2.3, one has that

Pϕ = Op
(
(1 + iλa(x))|ξ + iτ∇ϕ(x)|2

)
− λ2 +R3,

Q2 = Op(q2)− λ2 +R2,

Q1 = Op(q1) +R1, (3.1)

9



where q2 = |ξ|2− τ2|∇ϕ(x)|2−2λτa(x)ξ ·∇ϕ(x), q1 = 2τξ ·∇ϕ(x)+λa(x)(|ξ|2− τ2|∇ϕ(x)|2) belong

to S(νµ2, g) and the symbols of Rj is in S(λ
1

2 νµ, g) for j = 1, 2, 3. It is clear that

‖Pϕv‖2V = ‖Q2v‖2V + ‖Q1v‖2V + 2Re(Q2v | iQ1v)V , ∀ v ∈ C
∞(V ). (3.2)

In what follows, several Carleman estimates are introduced. First, we give an estimation on the

subdomain which is far away from the boundary Γ.

Theorem 3.1. Suppose ϕ satisfies sub-ellipticity condition in V ⊂ Ω. Then, there exist positive

constants C, K̃ and λ0, such that for every v ∈ C ∞
0 (V ), it holds

τ3‖ν(x)v‖2V + τ‖ν(x)Dv‖2V + ‖Q1v‖2V + ‖Q2v‖2V . ‖Pϕv‖2V , (3.3)

where λ ≥ λ0 and τ ≥ max{K̃|λ| 54 , 1}.

Proof. Let w = ν(x)v in (2.15). We obtain

C1τ
3‖ν(x)v‖2V + C1τ‖D(ν(x)v)‖2V

≤ Re
(
Op(

{
|ξ|2 − τ2|∇ϕ(x)|2, 2τξ · ∇ϕ(x)

}
)ν(x)v | ν(x)v

)
V

+C2τ
−1‖Op(|ξ|2 − τ2|∇ϕ(x)|2)ν(x)v‖2V

+C2τ
−1‖Op(2τξ · ∇ϕ(x))ν(x)v‖2V , C1, C2 > 0.

(3.4)

Since the symbol of [D, ν(x)] is in S(λ
1

2 ν, g), we have

‖ν(x)Dv‖2V ≤ ‖D(ν(x)v)‖2V + ‖[D, ν(x)]v‖2V ≤ ‖D(ν(x)v)‖2V + Cλ‖ν(x)v‖2V .

Consequently, for τ ≥ Cλ with C > 0 sufficiently large, it holds

τ3‖ν(x)v‖2V + τ‖ν(x)Dv‖2V . τ3‖ν(x)v‖2V + τ‖D(ν(x)v)‖2V . (3.5)

It follows from (3.4) and (3.5) that

C′
1

(
τ3‖ν(x)v‖2V + τ‖ν(x)Dv‖2V

)

≤ Re
(
Op(

{
|ξ|2 − τ2ϕ(x)2, 2τξ · ∇ϕ(x)

}
)ν(x)v | ν(x)v

)
V

+C2τ
−1‖Op(|ξ|2 − τ2|∇ϕ(x)|2)ν(x)v‖2V

+C2τ
−1‖Op(2τξ · ∇ϕ(x))ν(x)v‖2V , C′

1, C2 > 0.

(3.6)

Now, we estimate the first term on the right side hand of (3.6). Note that

2Re(Q2v | iQ1v)V = (Q2v | iQ1v)V + (iQ1v |Q2v)V = (i[Q2, Q1]v | v)V , (3.7)

where the principal symbol of i[Q2, Q1] is {q2, q1}. Due to Lemma 2.3, we obtain that

i[Q2, Q1] = Op({q2, q1}) +R4, (3.8)

where {q2, q1} ∈ S(λ
1

2 ν2µ3, g) and the symbol of R4 is in S(λν2µ2, g). A direct computation gives

that

{
q2, q1

}
= (1 + a2(x)λ2)

{
|ξ|2 − τ2|∇ϕ(x)|2, 2τξ · ∇ϕ(x)

}

+
({

|ξ|2 − τ2|∇ϕ(x)|2, λa(x)
}
− λa(x)

{
2τξ.∇ϕ(x), λa(x)

})
(|ξ|2 − τ2|∇ϕ(x)|2)

− 2τξ · ∇ϕ(x)
(
λa(x)

{
λa(x), |ξ|2 − τ2|∇ϕ(x)|2

}
+
{
λa(x), 2τξ · ∇ϕ(x)

})
.
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From the definition of q1 and q2, we have

q2(x, ξ) + λa(x)q1(x, ξ) = (1 + λ2a(x)2)(|ξ|2 − τ2|∇ϕ(x)|2),
q1(x, ξ)− λa(x)q2(x, ξ) = 2τξ · ∇ϕ(x)(1 + λ2a2(x)). (3.9)

Consequently,
{
q2, q1

}

= ν2(x)
{
|ξ|2 − τ2|∇ϕ(x)|2, 2τξ · ∇ϕ(x)

}

+ν−2(x)(q2(x, ξ) + λa(x)q1(x, ξ))
({

|ξ|2 − τ2|∇ϕ(x)|2, λa(x)
}
− λa(x)

{
2τξ · ∇ϕ(x), λa(x)

})

−ν−2(x)(q1(x, ξ)− λa(x)q2(x, ξ))
(
λa(x)

{
λa(x), |ξ|2 − τ2|∇ϕ(x)|2

}
+
{
λa(x), 2τξ · ∇ϕ(x)

})
.

Then, it follows from (3.8) and the above equation that

i[Q2, Q1] = ν(x)Op
({

|ξ|2 − τ2|∇ϕ(x)|2, 2τξ · ∇ϕ(x)
})
ν(x)

+B1ν
−1(x)Op

(
q2(x, ξ) + λa(x)q1(x, ξ)

)

−B2ν
−1(x)Op

(
q1(x, ξ)− λa(x)q2(x, ξ)

)
+R5,

where

B1 = Op
(
ν−1(x)

({
|ξ|2 − τ2|∇ϕ(x)|2, λa(x)

}
− λa(x)

{
2τξ · ∇ϕ(x), λa(x)

}))
,

B2 = Op
(
ν−1(x)

(
λa(x)

{
λa(x), |ξ|2 − τ2|∇ϕ(x)|2

}
+
{
λa(x), 2τξ · ∇ϕ(x)

}))
,

symbols of B1 and B2 belong to S(λ
1

2 νµ, g) and the symbol of R5 is in S(λν2µ2, g). Combining this

with (3.1) yields

i[Q2, Q1] = ν(x)Op
({

|ξ|2 − τ2|∇ϕ(x)|2, 2τξ · ∇ϕ(x)
})
ν(x)

+B1ν
−1(x)

[
Q2(x, ξ) + λa(x)Q1(x, ξ) + λ2

]

−B2ν
−1(x)

[
Q1(x, ξ) − λa(x)Q2(x, ξ) − λ3a(x)

]
+R5, (3.10)

We refer to Section 2 where the rules on symbolic calculus are given and precise. Therefore, by the

continuity of pseudo-differential operator, we have that for j = 1, 2, k = 0, 1 and ℓ = 1, 2,

| (Bjν(x)−1(λa(x))kQℓv | v)V |

= | (ν(x)−1(λa(x))kQℓv |B∗
j v)V | . ‖Qℓv‖V ‖B∗

j v‖V

≤ 1

10
‖Qℓv‖2V + Cλτ2‖ν(x)v‖2V + Cλ‖ν(x)Dv‖2V , C > 0,

(3.11)

| (Bjν−1(x)λ2(λa(x))kv | v)V | . λ
5

2

(
τ‖ν(x)v‖V + ‖ν(x)Dv‖V

)
‖ν(x)v‖V

. λ
5

2 τ‖ν(x)v‖2V + λ
5

2 τ−1‖ν(x)Dv‖2V , (3.12)

and

| (R5v | v)V | . λτ2‖ν(x)v‖2V + λ‖ν(x)Dv‖2V . (3.13)

Due to (3.10)–(3.13), there exists a positive constant C such that
(
Op(

{
|ξ|2 − τ2|∇ϕ(x)|2, 2τξ · ∇ϕ(x)

}
)ν(x)v | ν(x)v

)
V

≤ (i[Q2, Q1]v | v)V +
1

4

∑

ℓ=1,2

‖Qℓv‖2V + C
(
λτ2‖ν(x)v‖2V

+λ‖ν(x)Dv‖2V + λ
5

2 τ‖ν(x)v‖2V + λ
5

2 τ−1‖ν(x)Dv‖2V
)
.

(3.14)
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Next, we are going to estimate the last two terms on the right side hand of (3.6). It follows from

(3.1) and (3.9) that

‖Op(|ξ|2 − τ2|∇ϕ(x)|2)ν(x)v‖2V + ‖Op(2τξ · ∇ϕ(x))ν(x)v‖2V
= ‖Op(ν(x)−2(q2 + λa(x)q1)ν(x)v‖2V + ‖Op(ν(x)−2(q1 − λa(x)q2)ν(x)v‖2V
= ‖ν(x)−1

[
Q2 + λ2 −R2 + λa(x)(Q1 −R1)

]
v‖2V

+‖ν(x)−1
[
Q1 −R1 − λa(x)(Q2 + λ2 −R2)

]
v‖2V .

(3.15)

Combining this with the fact that the symbols of Rj are in S(λ
1

2 νµ, g) for j = 1, 2, we have

‖Op(|ξ|2 − τ2|∇ϕ(x)|2)ν(x)v‖2V + ‖Op(2τξ · ∇ϕ(x))ν(x)v‖2V
.

∑

ℓ=1,2

(‖Qℓv‖2V + ‖Rℓv‖2V ) + λ4‖v‖2V

.
∑
ℓ=1,2

‖Qℓv‖2V + λτ2‖ν(x)v‖2V + λ‖ν(x)Dv‖2V + λ4‖v‖2V .

(3.16)

Consequently, for τ ≥ Cλ with C large enough, it holds

τ−1‖Op(|ξ|2 − τ2|∇ϕ(x)|2)ν(x)v‖2V + τ−1‖Op(2τξ · ∇ϕ(x))ν(x)v‖2V
. τ−1

∑

ℓ=1,2

‖Qℓv‖2V + λτ‖ν(x)v‖2V + ‖ν(x)Dv‖2V + λ3‖v‖2V .
(3.17)

Finally, by (3.6), (3.14) and (3.17), one can choose τ ≥ max{K̃|λ| 54 , 1} with K̃ sufficiently large such

that for some C > 0,

C
(
τ3‖ν(x)v‖2V + τ‖ν(x)Dv‖2V

)
≤ (i[Q2, Q1]v | v)V +

1

2

∑

ℓ=1,2

‖Qℓv‖2V

+ ετ3‖ν(x)v‖2V + ετ‖ν(x)Dv‖2V ,
(3.18)

where ε > 0 is arbitrary. Choosing ε small with respect to C, using (3.2), (3.7) and (3.18), we obtain

C1

(
τ3‖ν(x)v‖2V + τ‖ν(x)Dv‖2V

)
+

1

2

(
‖Q1v‖2V + ‖Q2v‖2V

)

≤ (i[Q2, Q1]v, v)V + ‖Q1v‖2V + ‖Q2v‖2V = ‖Pϕv‖2V ,

which implies (3.3).

Remark 3.1. The estimates in (3.12) impose the assumption τ ≥ K̃|λ| 54 . The other remainder terms

only impose the condition τ ≥ Cλ. This condition is related with the principal normal condition.

Indeed for a complex operator, with symbol p1 + ip2 where p1, p2 are both real valued, the Carleman

estimate is only true if {p1, p2} = 0 on p1 = p2 = 0. Here the symbol of operator before conjugation by

weight is |ξ|2−λ2+iλa(x)|ξ|2, and the Poisson bracket is {|ξ|2−λ2, λa(x)|ξ|2} = 2λ(ξ·∇a(x))|ξ|2. We

can estimate this term, uniformly in a neighborhood of a(x) = 0, by Cλa
1

2 (x) | ξ | 3. This explanation

does not justify the power |λ| 54 found at the end of computations but shows the difficulties.

Theorem 3.2. Suppose ϕ satisfies sub-ellipticity condition in V ⊂ Ω. Then, there exist positive

constants K̃ and λ0, such that for every u ∈ C∞
0 (V ), it holds

τ3‖(1 + λ2a(x)2)
1

2 eτϕu‖2V + τ‖(1 + λ2a(x)2)
1

2 eτϕDu‖2V . ‖eτϕPu‖2V , (3.19)

where λ ≥ λ0 and τ ≥ max{K̃|λ| 54 , 1}.
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Proof. Set v = eτϕu. From Theorem 3.1, it suffices to prove that (3.19) is equivalent to

τ3‖ν(x)v‖2V + τ‖ν(x)Dv‖2V . ‖Pϕv‖2V . (3.20)

First, assume (3.20) holds. Then, Dv = eτϕ(Du − iτ∇ϕu) and eτϕDu = Dv + iτ∇ϕv. Then there

exist positive constants c1, c2 such that

c1
(
‖ ν(x)Dv‖V + τ‖ν(x)v‖V

)
≤ ‖ν(x)eτϕDu‖V + τ‖ν(x)eτϕu‖V
≤ c2

(
‖ν(x)Dv‖V + τ‖ν(x)v‖V

)
.

(3.21)

Combining this with (3.20), we conclude that

τ3‖ν(x)eτϕu‖2V + τ‖ν(x)eτϕDu‖2V . (τ‖ν(x)Dv‖2V + τ3‖ν(x)v‖2V ) . ‖eτϕPu‖2V .

On the other hand, (3.19) implies that

τ3‖ν(x)eτϕu‖2V + τ‖ν(x)eτϕDu‖2V . ‖Pϕv‖2V .

Then, we proved (3.20) from the above estimate and (3.21).

Since there is higher order term div(a(x)∇yt) in system (1.1), it is necessary to deal with the term

div(a(x)∇f) for f ∈ H1(Ω) when proving the resolvent estimate. The following result is analogue to

the work by Imanuvilov and Puel ([14]).

Theorem 3.3. Suppose ϕ satisfies sub-ellipticity condition on V ⊂ Ω. Then, there exist C, K̃, λ0 >

0, such that for all u ∈ C∞
0 (V ) satisfying

P (x,D, λ)u = g0 +

d∑

j=1

∂xj
gj , where gj ∈ L2(V ), j = 0, 1, · · · , d, (3.22)

it holds

τ‖(1 + λ2a(x)2)
1

2 eτϕu‖2V + τ−1‖(1 + λ2a(x)2)
1

2 eτϕDu‖2V ≤ C

d∑

j=0

‖eτϕgj‖2V , (3.23)

where λ ≥ λ0 and τ ≥ max{K̃|λ| 54 , 1}.

Proof. First, from (3.1), we have D2 = Q2 + S2 and λa(x)D2 = Q1 + S1 where S1 and S2 have

symbols in S(τνµ, g) if τ & λ. It follows that for any v ∈ C
∞
0 (V ),

‖D2v‖2V . ‖Q2v‖2V + τ2(τ2‖ν(x)v‖2V + ‖ν(x)Dv‖2V ),

‖λaD2v‖2V . ‖Q1v‖2V + τ2(τ2‖ν(x)v‖2V + ‖ν(x)Dv‖2V ).
(3.24)

Using (3.3), (3.24) and the fact that ‖ν(x)D2v‖2V ≤ 2(‖D2v‖2V + ‖λa(x)D2v‖2V ), we obtain

τ3‖ν(x)v‖2V + τ‖ν(x)Dv‖2V + τ−1‖ν(x)D2v‖2V . ‖Pϕv‖2V . (3.25)

Let ũ and χ be in C ∞
0 (Ω) such that χ = 1 on a neighborhood of supp ũ. Similarly to (3.21), we

obtain

τ‖ν(x)ũ‖2V + τ−1‖ν(x)Dũ‖2V . τ‖ν(x)ũ‖2V + τ−1‖D(ν(x)ũ)‖2V .
Then, combining this with Fourier transform and the following inequality

τ +
| ξ | 2
τ

.
τ3

τ2 + | ξ | 2 +
| ξ | 4

τ(τ2 + | ξ | 2) ,
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we conclude that

τ‖ν(x)ũ‖2V + τ−1‖ν(x)Dũ‖2V . τ3‖Op(µ−1)ν(x)χũ‖2V + τ−1‖D2Op(µ−1)ν(x)χw‖2V . (3.26)

From Lemma 2.3, we have Op(µ−1)νχ = νχOp(µ−1)+R1, where R1 has a symbol in S(µ−2νλ
1

2 , g),

and D2 Op(µ−1)νχ = νD2χOp(µ−1) + R2, where R2 has a symbol in S(νλ
1

2 , g). Then, it follows

from (3.26) that

τ‖ν(x)ũ‖2V + τ−1‖ν(x)Dũ‖2V . τ3‖ν(x)χOp(µ−1)ũ‖2V + τ−1‖ν(x)D2χOp(µ−1)ũ‖2V + λ‖ν(x)ũ‖2V .

For τ ≥ max{Cλ, 1} with C large enough, one has the following result from the above inequality.

τ‖ν(x)ũ‖2V + τ−1‖ν(x)Dũ‖2V . τ3‖ν(x)χOp(µ−1)ũ‖2V + τ−1‖νD2χOp(µ−1)ũ‖2V . (3.27)

Now, we apply (3.25) to v = χOp(µ−1)ũ to have

τ3‖ν(x)χOp(µ−1)ũ‖2V + τ‖ν(x)DχOp(µ−1)ũ‖2V + τ−1‖ν(x)D2χOp(µ−1)ũ‖2V
. ‖PϕχOp(µ−1)ũ‖2V .

Thus, combining this with (3.27) yields

τ‖ν(x)ũ‖2V + τ−1‖ν(x)Dũ‖2V . ‖PϕχOp(µ−1)ũ‖2V . (3.28)

Finally, note that Pϕ has a symbol in S(νµ2, g). Consequently, PϕχOp(µ−1) = Op(µ−1)Pϕχ+R,

where R has a symbol in S(νλ
1

2 , g). Then, we can deduce from (3.28) that

τ‖ν(x)ũ‖2V + τ−1‖ν(x)Dũ‖2V . ‖Op(µ−1)Pϕũ‖2V + λ‖νũ‖2V .

When τ ≥ Cλ with C large enough, the error term λ‖νũ‖2V can be absorbed by the left hand side.

Consequently,

τ‖ν(x)ũ‖2V + τ−1‖ν(x)Dũ‖2V . ‖Op(µ−1)Pϕũ‖2V . (3.29)

For ũ = eτϕu, it follows from (3.29) and similar argument as (3.21) that

τ‖ν(x)eτϕu‖2V + τ−1‖ν(x)eτϕDu‖2V . τ‖ν(x)eτϕu‖2V + τ−1‖ν(x)Deτϕu‖2V
. ‖Op(µ−1)Pϕe

τϕu‖2V .
(3.30)

Obviously, one has that

Pϕũ = eτϕPu = eτϕg0 +

d∑

j=1

eτϕ∂xj
gj = eτϕg0 +

d∑

j=1

(
∂xj

(eτϕgj)− τeτϕgj∂xj
ϕ
)
,

which yields

‖Op(µ−1)Pϕũ‖2V .

d∑

j=0

‖eτϕgj‖2V . (3.31)

Hence, we obtain Theorem 3.3 from (3.30) and (3.31).
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Remark 3.2. Since a(·) is nonnegative and not identically null, there exists δ > 0 such that {x ∈
Ω : a(x) > δ} 6= ∅. We introduce several sets as follows.

W0 = Ω \ supp a,

W1 = Ω \ O
(
supp a

)
,

W2 = Ω \
(
{x ∈ Ω : a(x) ≥ δ} ∪ O(Γ)

)
,

W3 = Ω \ {x ∈ Ω : a(x) ≥ δ
2},

where O(Γ) means the neighborhood of Γ.

It is known that there exists a function ψ ∈ C ∞(Ω) such that ([11])

1) ψ(x) = 0 for x ∈ ∂Ω.

2) ∂nψ(x) < 0 for x ∈ ∂Ω.

3) ∇ψ(x) 6= 0 for x ∈ Ω \ {x ∈ Ω : a(x) ≥ δ}.

Let ϕ = eγψ. It follows from Lemma 2.5 that ϕ satisfies the sub-ellipticity condition on x ∈ Ω \ {x ∈
Ω : a(x) ≥ δ} if γ > 0 is sufficiently large. Then, in Theorem 3.2 and 3.3, one can choose V as

Ω \ {x ∈ Ω : a(x) ≥ δ}.

The following result is a classical Carleman estimate and corresponding to the Laplacian with

Dirichlet boundary condition ([17], Proposition 2). We shall use it to deal with the terms on Ω\supp a.

Lemma 3.1. Suppose ϕ is chosen as in Remark 3.2. Then, there exist C > 0, λ0 > 0, such that for

all u ∈ C ∞(Ω) satisfying suppu ⊂W1 and u = 0 on Γ, it holds

τ3‖eτϕu‖2Ω + τ‖eτϕDu‖2Ω . ‖eτϕ(D2 − λ2)u‖2Ω, (3.32)

where λ ≥ λ0 and τ ≥ max{Cλ, 1}.

Theorem 3.4. Suppose ϕ is chosen as in Remark 3.2. Let u ∈ C∞(Ω) and satisfy

P (x,D, λ)u = f0 +

d∑

j=1

∂xj
fj in Ω,

u = 0 on Γ,

where fj ∈ L2(Ω), supp f0 ⊂ Ω and supp fj ⊂ O
(
supp a

)
for j = 1, · · · , d. Then, there exist K̃ > 0,

λ0 > 0, such that for all λ ≥ λ0 and τ ≥ max{K̃|λ| 54 , 1}, it holds

τ‖eτϕu‖2W3
+ τ−1‖eτϕDu‖2W3

.

d∑

j=0

‖eτϕfj‖2Ω + λ‖eτϕu‖2{x∈Ω : a(x)≥δ/2},

where the positive constant δ is defined as in Remark 3.2.

Proof. Let χ1, χ2 ∈ C∞(Ω) be non-negative and satisfy the following assumption

(i) 0 ≤ χ1, χ2 ≤ 1; χ1 and χ2 are supported on W1 and W2, respectively.

(ii) χ1 + χ2 ≥ 1 in W3. In particular, χ1 ≡ 1 on [O(∂Ω) ∩ Ω] \ O(supp a), and χ2 ≡ 1 on

O(supp a) \ {x ∈ Ω : a(x) ≥ δ
2}.
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First, it is clear that

Pχ2u = χ2f0 +
d∑

j=1

(
∂xj

(χ2fj)− fj∂xj
χ2

)
+ [P, χ2]u.

Since [P, χ2] is a first order operator, we have there exist a0, a1, · · · , ad and b0, b1, · · · , bd such that

[P, χ2]u =

d∑

j=0

aj∂xj
u+ λ

d∑

j=0

bj∂xj
u,

where supp aj ⊂ {x ∈ Ω : δ
2 < a(x) < δ} ∪ [Ω \ (O(supp a) ∪ O(supp ∂Ω))], supp bj ⊂ {x ∈

Ω : δ
2 < a(x) < δ} for j = 0, 1, · · · , d. Then, applying Theorem 3.3 with χ2u instead of u,

Ω \ {x ∈ Ω : a(x) ≥ δ} instead of V, we obtain

τ‖(1 + λ2a(x)2)
1

2 eτϕχ2u‖2Ω + τ−1‖(1 + λ2a(x)2)
1

2 eτϕDχ2u‖2Ω

.

d∑

j=0

‖eτϕfj‖2Ω + ‖eτϕu‖2
{x∈Ω : δ

2
<a(x)<δ}∪(Ω\supp a)

+ λ‖eτϕu‖2
{x∈Ω: δ

2
<a(x)<δ}

.

Consequently, due to (1 + λ2a(x)2) ≥ 1, τ ≥ {Cλ, 1} and λ ≥ λ0, we obtain

τ‖(1 + λ2a(x)2)
1

2 eτϕχ2u‖2Ω + τ−1‖(1 + λ2a(x)2)
1

2 eτϕDχ2u‖2Ω

.

d∑

j=0

‖eτϕfj‖2Ω + ‖eτϕu‖2Ω\supp a + λ‖eτϕu‖2
{x∈Ω : a(x)≥ δ

2
}
.

(3.33)

On the other hand, by using χ1u instead of u in Lemma 3.1, we obtain

τ3‖eτϕχ1u‖2Ω + τ‖eτϕDχ1u‖2Ω . ‖eτϕ(P − iλDa(x)D)χ1u‖2Ω. (3.34)

Since χ1∂xj
fj = 0 for j = 1, · · · , d, we have

Pχ1u = χ1f0 + [P, χ1]u.

Therefore, combining these with (3.34) and O(supp a) ∩ supp χ1 = ∅ yields

τ‖eτϕχ1u‖2Ω + τ−1‖eτϕDχ1u‖2Ω . τ−2
(
‖eτϕf0‖2Ω + ‖eτϕ[P, χ1]u‖2Ω

)
. (3.35)

Adding up (3.35) and (3.33), using (1 + λ2a(x)2) ≥ 1 and τ ≥ 1, we obtain

τ‖eτϕ(χ1 + χ2)u‖2Ω + τ−1‖eτϕD(χ1 + χ2)u‖2Ω

.

d∑

j=0

‖eτϕfj‖2Ω + ‖eτϕu‖2Ω\supp a + λ‖eτϕu‖2
{x∈Ω : a(x)≥ δ

2
}
+ τ−2‖eτϕ[P, χ1]u‖2Ω.

Note that [P, χ1] is a first order operator and supported on supp χ1 \ {x ∈ Ω : χ1 ≡ 1}, which is an

subset of {x ∈ Ω : χ1 + χ2 = 1}. Then, for τ sufficiently large, we have

τ‖eτϕ(χ1 + χ2)u‖2Ω + τ−1‖eτϕ(χ1 + χ2)Du‖2Ω .

d∑

j=0

‖eτϕfj‖2Ω + λ‖eτϕu‖2
{x∈Ω : a(x)≥ δ

2
}
.

Then as 1 ≤ χ1 + χ2 ≤ 2 on W3, we obtain the statement of Theorem 3.4.
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4 Resolvent estimate

In this section, we shall prove the main result. From the results in [3, 7, 10], the logarithmic decay

of the energy in Theorem 1.1 can be obtained through the following theorem.

Theorem 4.1. Suppose conditions in Theorem 1.1 hold. Then, for every λ ∈ R with |λ| large

enough, there exists C > 0 such that

∥∥∥(A− iλ)−1
∥∥∥
L(H)

. eC |λ |
5

4 . (4.1)

Let λ be a real number such that |λ | is large enough. Consider the resolvent equation:

F = (A− iλ)Y, where Y =
(
y1, y2

)
∈ D(A), F =

(
f1, f2

)
∈ H, (4.2)

which yields 



div (∇y1 + a∇y2) + λ2y1 = iλf1 + f2, in Ω,

y2 = iλy1 + f1 in Ω,

y1 | Γ = 0

(4.3)

In what follows, we shall prove that there exists a positive constant C such that

‖(y1, y2)‖H . eC |λ |
5

4 ‖(f1, f2)‖H.

First, let η > 0 and χ ∈ C∞
0 (Ω) be real valued function such that supp χ = {x ∈ Ω : a(x) > η})

and χ ≡ 1 in {x ∈ Ω : a(x) > 2η}. The following lemma is helpful.

Lemma 4.1. For y1, f1, f2 satisfying (4.3) and |λ| large enough, it holds

(i) ‖χy1‖Ω . ‖∇y1‖{x∈Ω: a(x)>η} + ‖f1‖H1(Ω) + ‖f2‖Ω.

(ii)
∫

Ω

a(x)|∇y1|2dx . ‖f1‖2H1(Ω) + (‖f1‖Ω + ‖f2‖Ω)‖y1‖Ω.

Proof. (i) Multiplying the first equation in (4.3) by χ2y1 and using y2 = iλy1 + f1, we obtain,

λ2‖χy1‖2Ω =

∫

Ω

∇y1 · ∇(χ2y1)dx+ iλ

∫

Ω

a(x)∇y1 · ∇(χ2y1)dx

+iλ

∫

Ω

f1χ
2y1dx +

∫

Ω

f2χ
2y1dx+

∫

Ω

a(x)∇f1 · ∇(χ2y1)dx.

(4.4)

Since ∇(χ2y1) = χ2∇y1 + 2y1χ∇χ, we have

∣∣∣
∫

Ω

a(x)∇y1 · ∇(χ2y1)dx
∣∣∣ . ‖∇y1‖2{x∈Ω: a(x)>η} + ‖χy1‖Ω‖∇y1‖{x∈Ω : a(x)>η}

≤ 2‖∇y1‖2{x∈Ω : a(x)>η} +
1

4
‖χy1‖2Ω.

(4.5)

By the similar argument, we can deal with the rest terms on the right hand side of (4.4). Combining

these with (4.4), (4.5) yields

λ2‖χy1‖2Ω .
1

2
λ2‖χy1‖2Ω + (|λ| + 1)‖∇y1‖2{x∈Ω : a(x)>η}

+‖f1‖2Ω + λ−2‖f2‖2Ω + (λ−2 + 1)‖∇f1‖2H1(Ω).

(4.6)
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Then, (i) is reached.

(ii) Multiplying the first equation in (4.3) by y1 and using y2 = iλy1 + f1, we obtain,
∫

Ω

[−(iλa(x) + 1)|∇y1|2 + λ2|y1|2]dx =

∫

Ω

[a(x)∇f1 · ∇y1 + (iλf1 + f2)y1]dx. (4.7)

Taking the imaginary part of (4.7) yields
∫

Ω

a(x)|∇y1|2dx = −λ−1 Im

∫

Ω

[a(x)∇f1 · ∇y1 + (iλf1 + f2)y1]dx. (4.8)

Thus, by the Cauchy-Schwarz inequality, one can conclude from (4.8) that

∫

Ω

a(x)|∇y1|2dx ≤ |λ |−1
(∫

Ω

a(x)|∇y1|2dx
) 1

2 ‖f1‖H1(Ω) + (‖f1‖Ω + |λ |−1 ‖f2‖Ω)‖y1‖Ω

≤ 1

4

∫

Ω

a(x)|∇y1|2dx + |λ |−2 ‖f1‖2H1(Ω) + (‖f1‖Ω + |λ |−1 ‖f2‖Ω)‖y1‖Ω.

The proof of lemma is finished.

Proof of Theorem 4.1. Due to Lemma 4.1 (i) and (ii), we have

‖y1‖2{x∈Ω : a(x)>2η} . ‖∇y1‖2{x∈Ω : a(x)>η} + ‖f1‖2H1(Ω) + ‖f2‖2Ω, (4.9)

and

‖∇y1‖2{x∈Ω : a(x)>η} . ‖f1‖2H1(Ω) + (‖f1‖Ω + ‖f2‖Ω)‖y1‖Ω. (4.10)

Combining (4.9) and (4.10) yields

‖y1‖2H1({x∈Ω : a(x)>2η}) . ‖f1‖2H1(Ω) + ‖f2‖2L2(Ω) + (‖f1‖Ω + ‖f2‖Ω)‖y1‖Ω. (4.11)

On the other hand, by (4.3), one has that y1 satisfies

div (∇y1 + iλa(x)∇y1) + λ2y1 = iλf1 + f2 − div(a(x)∇f1). (4.12)

Then, applying Theorem 3.4 to y1 satisfying (4.12), we obtain

τ‖eτϕy1‖2Ω + τ−1‖eτϕ∇y1‖2Ω

. λ2‖eτϕf1‖2Ω + ‖eτϕf2‖2Ω +

d∑

j=1

‖eτϕa ∂xj
f1‖2Ω

+(λ+ τ)‖eτϕy1‖2{x∈Ω: a(x)≥δ/2} + τ−1‖eτϕ∇y1‖2{x∈Ω : a(x)≥δ/2}.

Let c1 = minx∈Ω ϕ(x) and c2 = maxx∈Ω ϕ(x). We conclude from the above inequality and τ ≥
max{K̃|λ| 54 , 1} that

τe2c1τ‖y1‖2Ω + τ−1e2c1τ‖∇y1‖2Ω
. λ2e2c2τ‖f1‖2H1(Ω) + e2c2τ‖f2‖2Ω + τe2c2τ‖y1‖2H1({x∈Ω : a(x)≥δ/2}).

(4.13)

Setting η = δ
8 and substituting (4.11) into (4.13), we obtain

τe2c1τ‖y1‖2Ω + τ−1e2c1τ‖∇y1‖2Ω . τ2e2c2τ‖f1‖2H1(Ω) + τe2c2τ‖f2‖2Ω + τe2c2τ (‖f1‖Ω + ‖f2‖Ω)‖y1‖Ω.
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Let c3 = 2(c2 − c1) + 1. For τ ≥ max{K̃|λ| 54 , 1}, one has

‖y1‖2Ω + ‖∇y1‖2Ω . ec3τ‖f1‖2H1(Ω) + ec3τ‖f2‖2Ω + ec3τ (‖f1‖Ω + ‖f2‖Ω)‖y1‖Ω.

For any ε > 0, using ec3τ (‖f1‖Ω + ‖f2‖Ω)‖y1‖Ω ≤ ε‖y1‖2Ω + 1
4ε

−1e2c3τ (‖f1‖Ω + ‖f2‖Ω)2 in the above

estimate, we conclude that

‖y1‖2Ω + ‖∇y1‖2Ω . e2c3τ
(
‖f1‖2H1(Ω) + ‖f2‖2Ω

)
,

which gives the desired result. �
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