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In this paper we analyze the long time behavior of a wave equation with local Kelvin-Voigt Damping. Through introducing proper class symbol and pseudo-differential calculus, we obtain a Carleman estimate, and then establish an estimate on the corresponding resolvent operator. As a result, we show the logarithmic decay rate for energy of the system without any geometric assumption on the subdomain on which the damping is effective.

Introduction

In this paper, we consider a wave equation with local Kelvin-Voigt damping and analyze long time behaviour for the -solution of the system. Let Ω ⊂ R d be a bounded domain with smooth boundary Γ = ∂Ω. Denote by ∂ n the unit outward normal vector on boundary Γ. The PDE model is as follows.

         y tt (t, x)div [∇y(t, x) + a(x)∇y t (t, x)] = 0 in (0, ∞) × Ω, y(t, x) = 0 on (0, ∞) × Γ, y(0, x) = y 0 , y t (0, x) = y 1 in Ω,

where the coefficient function a(•) ∈ L 1 (Ω) is nonnegative and not identically null. The natural energy of system (1.1) is

E(t) = 1 2 Ω | ∇y(t) | 2 + | y t (t) | 2 dx . (1.2) 
A direct computation gives that

d dt E(t) = - supp a a(x) | ∇y t (t) | 2 dx. (1.3) 
Formula (1.3) shows that the only dissipative mechanism acting on the system is the viscoelastic damping div [a∇y t ], which is only effective on supp a. To rewrite the system as an evolution equation, we set the energy space as

H = H 1 0 (Ω) × L 2 (Ω), (1.4) 
with norm (Ω), div (∇y 1 + a∇y 2 ) ∈ L 2 (Ω) . Let Y (t) = (y(t), y t (t)). Then system (1.1) can be written as d dt Y (t) = AY (t), ∀ t > 0, Y (0) = (y 0 , y 1 ).

Y H = ∇y 1 2 L 2 (Ω) + y 2 2 L 2 (Ω) , ∀ Y = y 1 , y 2 ∈ H. ( 1 
(1.6)

It is known from [START_REF] Liu | Exponential stability for the wave equation with local Kelvin-Voigt damping[END_REF] that if supp a is non-empty, the operator A generates a contractive C 0 semigroup e tA on H and iR ⊂ ρ(A), the resolvent of A. Consequently, the semigroup e tA is strongly stable. Moreover, if the entire medium is of the viscoelastic type (i.e. supp a = Ω), the damping for the wave equation not only induces exponential energy decay, but also restricts the spectrum of the associated semigroup generator to a sector in the left half plane, and the associated semigroup is analytic ( [START_REF] Huang | On the mathematical model for linear elastic systems with analytic damping[END_REF]). When the Kelvin-Voigt damping is localized on a subdomain of Ω, the properties of system is quite complicated. First, it has been proved that properties of regularity and stability of 1-d system (1.1) depend on the continuousness of coefficient function a(•). More precisely, assume that Ω = (-1, 1) and a(x) behaviours like x α with α > 0 in supp a = [0, 1]. Then the solution of system (1.1) is eventually differentiable for α > 1, exponentially stable for α ≥ 1, polynomially stable of order 1 1-α for 0 < α < 1, and polynomially stable of optimal decay rate 2 for α = 0 (see [START_REF] Liu | Eventual differentiability of a string with local Kelvin-Voigt damping, to appear in[END_REF][START_REF] Liu | Stability of a string with local Kelvin-Voigt damping and non-smooth coefficient at interface[END_REF][START_REF] Renardy | On localized Kelvin-Voigt damping[END_REF][START_REF] Zhang | Exponential stability of an elastic string with local Kelvin-Voigt damping[END_REF]). For the higher dimensional system, the corresponding semigroup is exponentially stable when a(•) ∈ C 2 (Ω) and supp a ⊃ Γ ( [START_REF] Liu | Frequency domain characterization of rational decay rate for solution of linear evolution euqations[END_REF]). However, when the Kelvin-Voigt damping is local and the material coefficient a(•) is a positive constant on supp a, the energy of system (1.1) does not decay exponentially for any geometry of Ω and supp a ( [START_REF] Chen | Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping[END_REF][START_REF] Zhang | On the lack of exponential stability for an elastic-viscoelastic waves interaction system[END_REF]). The reason is that the strong damping and non-continuousness of the coefficient function lead to reflection of waves at the interface γ .

= ∂(supp a) \ Γ, which then fails to be effectively damped because they do not enter the region of damping. It turns out that the Kelvin-Voigt damping does not follow the principle that "geometric optics" condition implies exponential stability, which is true for the wave equation with local viscous damping ( [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary[END_REF]).

Recently, [START_REF] Zhang | Polynomial decay of an elastic/viscoelastic waves interaction system[END_REF] proves the polynomial stability of system (1.1) when a(•) ≡ a 0 > 0 on supp a and supp a satisfies certain geometry conditions. Then, a natural problem is: how about the decay rate if supp a = ∅ is arbitrary? In [START_REF] Ammari | Stabilization for the wave equation with singular Kelvin-Voigt damping[END_REF], a is assumed discontinuous along a (d -1)-manifold, supp a is arbitrary and the rate of the decay of semi-group is estimated by (log t) -k for a data in D(A k ). In this paper, we analyze the logarithmic decay properties of the solution to (1.1) when a is smooth and supp a is arbitrary. The main result reads as follows.

Theorem 1.1. Suppose that the coefficient function a(•) ∈ C ∞ 0 (Ω) is nonnegative and supp a ⊂ Ω is non-empty. Then the energy of the solution of (1.1) decays at logarithmic speed. More precisely, one has that there exists a positive constant C such that

e tA Y 0 H ≤ C [log(t + 2)] 4k 5 Y 0 D(A k ) , ∀ t > 0, Y 0 = (y 0 , y 1 ) ∈ D(A k ). (1.7)
Our approach is based on the results duo to [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF], which reduced the problem of determining the rate of energy decay to estimating the norm of the resolvent operator along the imaginary axis, see also [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF][START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF], etc. Our argument divides naturally three steps. First, in Section 2, we show some preliminaries including definitions and classical results about symbol, pseudo-differential calculus, and commutator estimate, etc. Then in Section 3, we prove corresponding Carleman estimates. Finally, in Section 4, we present a resolvent estimate and obtain Theorem 1.1. This theorem is a consequence of a resolvent estimate. The proof is given in Section 4. The method was developed in ( [START_REF] Bellassoued | Distribution of resonances and decay rate of the local energy for the elastic wave equation[END_REF][START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF][START_REF] Bellassoued | Decay of solutions of the elastic wave equation with a localized dissipation[END_REF][START_REF] Lebeau | Équation des ondes amorties[END_REF][START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF][START_REF] Robbiano | Fonction de coût et contrôle des solutions des équations hyperboliques[END_REF] and the references cited therein).

Throughout this paper, we use • V and (• | •) V to denote the norm and inner product on L 2 (V ), where V ⊂ R d if there is no further comments. When writing f g (or f g), we mean that there exists a positive constant C such that f ≤ Cg (or f ≥ Cg). For j = 1, 2, • • • , define operators

D j = -i∂ xj , D = (D 1 , • • • , D d ), D 2 = d j=1 D 2 j and Da(x)D = d j=1 D j a(x)D j .

Preliminaries

We shall prove Theorem 1.1 by Weyl-Hörmander calculus, which was introduced Hörmander ( [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF][START_REF] Rousseau | Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF]). In this section, some definitions and results on the class of symbol and pseudo-differential calculus are given.

Symbol and Symbolic calculus

For any (x, ξ) ∈ R d × R d , λ ∈ R and τ > 0, we introduce the metric

g = g x,ξ = λdx 2 + µ -2 dξ 2 , where µ 2 = µ(τ, ξ) 2 = τ 2 + | ξ | 2 , (2.1) 
and the weight

ν = ν(x, λ) = 1 + λ 2 a(x) 2 . (2.2)
Note that and g

x,ξ (X, Ξ) = λ | X | 2 + µ -2 (τ, ξ) | Ξ | 2 for all X, Ξ ∈ R d .
Then we have the following results.

Lemma 2.1. Assume that there exist positive constants C and λ 0 such that λ ≥ λ 0 and τ ≥ max{ Cλ, 1 }. It holds

(i)
The metric g = g x,ξ defined by (2.1) is admissible, i.e., it is slowly varying and temperate.

(ii) The weight ν = ν(x, λ) defined by (2.2) is admissible, i.e., it is g-continuous and g-temperate.

Proof. (i) From Definition 18.4.1 in [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF], the metric g x,ξ defined by (2.1) is slowly varying if there exist δ > 0 and C > 0 such that

g x,ξ (y -x, η -ξ) ≤ δ implies g y,η (X, Ξ) ≤ Cg x,ξ (X, Ξ), ∀ x, y, ξ, η, X, Ξ ∈ R d ,
where the constants δ and C are independent on the parameters λ and τ . Suppose 0 < δ ≤ 1/4 and

g x,ξ (y -x, η -ξ) = λ | y -x | 2 + (τ 2 + | ξ | 2 ) -1 | η -ξ | 2 ≤ δ.
Then, we have

τ 2 + | ξ | 2 ≤ τ 2 + 2 | ξ -η | 2 + 2 | η | 2 ≤ τ 2 + 2δ(τ 2 + | ξ | 2 ) + 2 | η | 2 .
This implies that τ

2 + | ξ | 2 ≤ 4(τ 2 + | η | 2 ). Consequently, g y,η (X, Ξ) = λ | X | 2 + (τ 2 + | η | 2 ) -1 | Ξ | 2 ≤ λ | X | 2 + 1 4 (τ 2 + | ξ | 2 ) -1 | Ξ | 2 ≤ g x,ξ (X, Ξ).
Therefore, g is slowly varying. For a given metric g x,ξ , the associated metric g σ x,ξ is defined by

g σ x,ξ = (τ 2 + | ξ | 2 )dx 2 + λ -1 dξ 2 . The metric g x,ξ is temperate if there exist C > 0 and N > 0, such that g x,ξ (X, Ξ) ≤ Cg y,η (X, Ξ) 1 + g σ x,ξ (x -y, ξ -η) N , ∀ x, y, ξ, η, X, Ξ ∈ R d , (2.3) 
where the constants C and N are independent on the parameters λ and τ (Definition 18.5.1 in [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF]).

For the metric g = g x,ξ defined by (2.1), (2.3) is equivalent to

λ | X | 2 + (τ 2 + | ξ | 2 ) -1 | Ξ | 2 ≤ C λ | X | 2 + (τ 2 + | η | 2 ) -1 | Ξ | 2 1 + (τ 2 + | ξ | 2 ) | x -y | 2 + λ -1 | ξ -η | 2 N . (2.4) First, assume that τ 2 + | η | 2 ≤ 4(τ 2 + | ξ | 2 ). It follows that (τ 2 + | η | 2 ) ≤ C(τ 2 + | ξ | 2 ) 1 + λ -1 | ξ -η | 2 N , C > 0, N > 0. (2.5) 
Then it is easy to obtain (2.4) from (2.5). Secondly, consider the case

τ 2 + | η | 2 > 4(τ 2 + | ξ | 2 ). Then | η | > 2 | ξ |, | η | > √ 3τ, (2.6) 
and

| ξ -η | > 1 2 | η | > √ 3 2 τ > √ 3 2 Cλ. (2.7) 
It follows from (2.6) and (2.7) that

λ -1 | ξ -η | 2 > √ 3 2 C | ξ -η | > √ 3 4 C | η | .
Consequently,

1 + λ -1 | ξ -η | 2 2 > 3 16 C 2 | η | 2 > 3 32 C 2 ( | η | 2 + 3τ 2 ).
This together with τ 2 + | ξ | 2 ≥ 1 yields that there exists a positive constant C such that (2.5) holds with N = 2.

(ii) It is known from Definition 18.4.2 in [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF] that a weight ν(x) is g-continuous if there exist δ > 0 and C > 0 such that

g x,ξ (y -x, η -ξ) ≤ δ implies C -1 ν(x) ≤ ν(y) ≤ Cν(x), ∀ x, y, ξ, η ∈ R d .
where the constants δ and C are independent on the parameters λ and τ . Since the weight ν(x) defined by (2.2) does not depend on ξ, the above condition is reduced to

λ | x -y | 2 ≤ δ implies C -1 ν(x) ≤ ν(y) ≤ Cν(x), ∀ x, y ∈ R d . The weight ν(x) is g-temperate if there exist C > 0 and N > 0 such that ν(y) ≤ Cν(x) 1 + g σ y,η (x -y, ξ -η) N , ∀ x, y, ξ, η ∈ R d , (2.8) 
where the constants C and N do not depend on the parameters λ and τ (Definition 18.5.1 in [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF]). The weight ν(x) is admissible if it is g-continuous and g-temperate. When a weight is admissible, all the powers of this weight are g-continuous and g-temperate. Therefore, it suffice to prove that

1 + λa(x) is admissible. Let s ∈ [0, t] and t ∈ [0, 1]. Define f (s) = λa(x + s(y -x)) and F (t) = sup s∈[0,t] f (s) where x, y ∈ Ω satisfying λ | x -y | 2 ≤ δ. It is clear that f ′ (s) = λ a ′ (x + s(y -x)) (y -x).
Combining this with the following inequality

| a ′ (x) | 2 ≤ 2a(x) a ′′ L ∞ (Ω) , ∀ x ∈ Ω, (2.9) 
we obtain

| f ′ (s) | ≤ λ | a ′ (x + s(y -x)) | | y -x | ≤ 2λ a ′′ 1 2 ∞ [a(x + s(y -x))] 1 2 | y -x | .
The proof of (2.9) will be given later. Consequently,

sup s∈[0,t] | f ′ (s) | ≤ 2λ 1 2 a ′′ 1 2 L ∞ (Ω) F (t) 1 2 | y -x | . Since f (t) ≤ f (0) + t sup s∈[0,t] | f ′ (s) | , F is non-decreasing and λ | x -y | 2 ≤ δ, we obtain that for all t ∈ [0, 1], f (t) ≤ f (0) + Cλ 1 2 F (t) 1 2 | y -x | ≤ f (0) + C √ δF (t) 1 2 ≤ f (0) + C √ δF (α) 1 2 
,

where C = 2 a ′′ 1 2 L ∞ (Ω) and α ∈ [t, 1]. Note that f (0) = F (0). It follows that F (α) = sup t∈[0,α] f (t) ≤ F (0) + C √ δF (α) 1 2 
.

This yields

1 + F (α) ≤ 1 + F (0) + C √ δ 1 + F (α) 1 2 ≤ 1 + F (0) + C √ δ 1 + F (α) . (2.10) 
By choosing δ sufficiently small such that C √ δ ≤ 1/2, one can deduce from (2.10) that

1 + F (α) ≤ 2(1 + F (0)), ∀ α ∈ [t, 1].
In particular, we have

1 + λa(y) ≤ 2(1 + λa(x)).
The above inequality remains true if we exchange x and y. Therefore, the weight 1 + λa(x) is g-continuous.

On the other hand, note that 1 + λa(x) is independent to ξ. Then, to obtain the weight 1 + λa(x) is σ-temperate, it is sufficient to prove that

1 + λa(y) ≤ C(1 + λa(x))(1 + τ 2 | x -y | 2 ) N .
(2.11)

In fact, it is clear that 1 + λa(y)

≤ 1 + λ(a(x) + C | x -y | ) where C = a ′ L ∞ (Ω)
. Therefore, there exists positive constant C ′ = CC -1 such that

1 + λa(y) ≤ (1 + λa(x))(1 + C ′ τ | x -y | ) ≤ (1 + λa(x))(2 + 2(C ′ τ | x -y | ) 2 ) 1 2 .
Thus, we obtain (2.11) with N = 1 2 , C = 2 max{1, C ′ }.

Remark 2.1. We claim that (2.9) holds for any compactly supported and nonnegative function a ∈ C 2 (Ω). In fact, from the following identity

a(x + h) = a(x) + a ′ (x)h + 1 0 (1 -t)a ′′ (x + th)h 2 dt, ∀ h ∈ R, one can get a(x) + a ′ (x)h + 1 2 a ′′ L ∞ (Ω) | h | 2 ≥ 0.
Let h = y a ′ (x), where y ∈ R and x ∈ Ω are arbitrary. It follows from the above inequality that

a(x) + | a ′ (x) | 2 y + 1 2 a ′′ L ∞ (Ω) | a ′ (x) | 2 y 2 ≥ 0, ∀ x ∈ Ω, y ∈ R. Then, | a ′ (x) | 4 -2a(x) a ′′ L ∞ (Ω) | a ′ (x) | 2 ≤ 0,
and (2.9) is proved.

Definition 2.1. (Section 18.4.2 in [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF]) Assume the weight m(x, ξ) is admissible and the metric g is defined by (2.1). Let q(x, ξ, λ, τ ) be a C ∞ function with respect to (x, ξ) and λ, τ be parameters satisfying conditions in Lemma 2.1. The symbol q(x, ξ, λ, τ ) is in class S(m, g) if for all α, β ∈ N d there exists C α,β independent of τ and λ such that

| ∂ α x ∂ β ξ q(x, ξ, λ, τ ) | ≤ C α,β m(x, ξ) λ | α | /2 µ(τ, ξ) -| β | . Remark 2.2. (i) It is clear that µ = τ 2 + | ξ | 2 ∈ S(µ, g) since | ∂ β ξ µ(τ, ξ) | µ 1-| β | for all β ∈ R d .
(ii) Let ν be the weight defined by (2.2). It is easy to get that λa ∈ S(ν, g). In fact, if

| α | ≥ 2, it holds that | ∂ α x (λa(x)) | ≤ C α λ ≤ C α λ | α | /2 ν(x) , where C α > 0. For the case | α | = 1, it follows from (2.9) that | ∂ α x (λa(x)) | ≤ √ 2 a ′′ 1 2 L ∞ (Ω) λ 1 2 λa(x) 1 2
Note that | λa(x) | < Cν 2 (x) for some C > 0. This together with the above inequality, we have that

| ∂ α x (λa(x)) | < √ 2C a ′′ 1 2 L ∞ (Ω) λ 1 2 ν(x).
(iii) It is known from Lemma 18.4.3 of [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF] that if the metric g and weights m 1 , m 2 are admissible, symbols a ∈ S(m 1 , g) and b ∈ S(m 2 , g), then ab ∈ S(m 1 m 2 , g). In particular, (λa) j µ k ∈ S(ν j µ k , g) for all j, k ∈ N ∪ {0}. where r ∈ S(λ

1 2 µ -1 m 1 m 2 , g). (ii) for commutator i[Op(b), Op(c)] = Op(f ), it holds that f ∈ S(λ 1 2 µ -1 m 1 m 2 , g) and f (x, ξ) = {b, c}(x, ξ) + r(x, ξ) where r ∈ S(λµ -2 m 1 m 2 , g).
The operators in S(ν j µ k , g) act on Sobolev spaces adapted to the class of symbol. Let b ∈ S(ν j µ k , g), where µ and g are defined by (2.1). Then there exists C > 0 such that

Op(b)u R d ≤ C ν j Op(µ k )u R d , ∀ u ∈ S (R d ).
By symbolic calculus, the above estimate is equivalent to Op(µ -k ν -j ) Op(b) acts on L 2 (R d ) since the operators associated with symbol in S(1, g) act on L 2 (R d ). In particular, if b ∈ S(ν j µ, g), then for any λ ≥ λ 0 , τ ≥ max{ Cλ, 1 } and u ∈ S (R d ), it holds

Op(b)u R d ≤ Cτ ν j u R d + C ν j Du R d ,
where C > 0 depends on positive constants λ 0 and C.

Commutator estimate

In this subsection, we suppose that λ = 1 since the symbol does not depend on λ. The metric in (2.1) becomes

g = dx 2 + µ -2 dξ 2 ,
where µ is defined by (2.1).

(2.12)

To get the commutator estimate, we shall use the following Gårding inequality ([12, Theorem 18.6.7]).

Lemma 2.4. Let b ∈ S(µ 2k , g) be real valued. µ and g are defined by (2.12). We assume there exists C > 0 such that b(x, ξ, τ ) ≥ Cµ 2k . Then there exist C > 0 and τ 0 > 0 such that

Re(Op(b)w | w) R d ≥ C Op(µ k )w 2 R d , ∀ w ∈ S (R d ) and τ ≥ τ 0 . (2.13) Definition 2.3. Let V be a bounded open set in R d . We say that the weight function ϕ ∈ C ∞ (R d ; R) satisfies the sub-ellipticity condition in V if | ∇ϕ | > 0 in V and there exists constant C > 0, Ô ϕ (x, ξ, τ ) = 0, ∀ (x, ξ) ∈ V × R d , τ > 0 ⇒ {Õ 2 , Õ 1 }(x, ξ, τ ) ≥ C( | ξ | 2 + τ 2 ) 3/2 , (2.14)
where Ô ϕ (x, ξ, τ ) = |ξ + iτ ∇ϕ(x)| 2 = Õ 2 (x, ξ, τ ) + iÕ 1 (x, ξ, τ ) and Õ 1 , Õ 2 are real valued.

Lemma 2.5.

([12]) Let V be a bounded open set in R d and ψ ∈ C ∞ (R d ; R) be such that | ∇ψ | > 0 in V .
Then, for γ > 0 sufficiently large, ϕ = e γψ fulfills the sub-ellipticity property in V .

Lemma 2.6. Assume that ϕ satisfies the sub-ellipticity in Definition 2.3. For all w ∈ C ∞ 0 (V ), there exist C 1 , C 2 > 0 and τ 0 > 0 such that the following inequality holds for all τ ≥ τ 0 ,

C 1 τ 3 w 2 V + C 1 τ Dw 2 V ≤ Re Op({|ξ| 2 -τ 2 |∇ϕ(x)| 2 , 2τ ξ • ∇ϕ(x)})w | w V + C 2 τ -1 Op(|ξ| 2 -τ 2 |∇ϕ(x)| 2 )w 2 V + C 2 τ -1 Op(2τ ξ • ∇ϕ(x))w 2 V .
(2.15)

Proof. First, by homogeneity in (ξ, τ ), compactness arguments and sub-ellipticity condition, we claim that there exist constants C, δ > 0 such that

C | 2ξ • ∇ϕ(x) | 2 + µ -2 ( |ξ| 2 -τ 2 |∇ϕ(x)| 2 ) 2 + |ξ| 2 -τ 2 |∇ϕ(x)| 2 , 2ξ • ∇ϕ(x) ≥ δµ 2 . (2.16)
The proof of (2.16) is classical. In fact, set

K = {(x, ξ, τ ) ∈ R d × R d × R : x ∈ V , | ξ | 2 + τ 2 = 1, τ ≥ 0},
and for (x, ξ, τ

) ∈ K, κ > 0, G(x, ξ, τ, κ) = κ | 2ξ • ∇ϕ(x) | 2 + µ -2 ( |ξ| 2 -τ 2 |∇ϕ(x)| 2 ) 2 + {|ξ| 2 -τ 2 |∇ϕ(x)| 2 , 2ξ • ∇ϕ(x)}. If | 2ξ •∇ϕ(x) | 2 +µ -2 ( |ξ| 2 -τ 2 |∇ϕ(x)| 2 ) 2 = 0 for (x, ξ, τ ) ∈ K
, it is clear that there exists a positive constant δ such that (2.16) holds due to the fact that φ is sub-elliptic.

When | 2ξ • ∇ϕ(x) | 2 + µ -2 ( |ξ| 2 -τ 2 |∇ϕ(x)| 2 ) 2 > 0, there exists a positive constant κ x,ξ,τ such that G(x, ξ, τ, κ) > 0 for every κ ≥ κ x,ξ,τ since {|ξ| 2 -τ 2 |∇ϕ(x)| 2 , 2ξ • ∇ϕ(x)} is bounded on K.
By continuity of G(x, ξ, τ, κ), there exists a neighborhood of (x, ξ, τ ), denoted by V x,ξ,τ , such that G(x, ξ, τ, κ) > 0 for all (x, ξ, τ ) ∈ V x,ξ,τ and κ ≥ κ x,ξ,τ . Since K is compact, there exist finite sets V j = V xj ,ξj ,τj and corresponding constants κ j = κ xj ,ξj ,τj (j = 1, 2, • • • , n), such that K ⊂ ∪ n j=1 V j and G(x, ξ, τ, κ) > 0 for all (x, ξ, τ ) ∈ V j and κ > κ j . Let κ = max{κ j : j = 1, 2, • • • , n}. It follows that G(x, ξ, τ, κ) > 0 for all (x, ξ, τ ) ∈ K and κ ≥ κ. Finally, using the compactness of K again, we conclude that there exists δ > 0 such that G(x, ξ, τ, κ) ≥ δ. Thus, (2.16) is reached since g is a homogeneous function of degree 2 with respect to variables (ξ, τ ).

By Gårding inequality (2.13), there exists a constant C > 0 such that, for τ ≥ τ 0 with τ 0 sufficiently large,

C Op(µ)w 2 V ≤ Re Op | 2ξ • ∇ϕ(x) | 2 + µ -2 ( |ξ| 2 -τ 2 |∇ϕ(x)| 2 ) 2 + |ξ| 2 -τ 2 |∇ϕ(x)| 2 , 2ξ • ∇ϕ(x) w w V .
(2.17)

Now we are going to estimate the terms τ Op(

| 2ξ • ∇ϕ(x) | 2 ) and τ Op(µ -2 ( |ξ| 2 -τ 2 |∇ϕ(x)| 2 ) 2 ).
Firstly, it follows from Lemma 2.3 that

τ -1 Op( | 2τ ξ • ∇ϕ(x) | 2 ) = τ -1 Op(2τ ξ • ∇ϕ(x)) * Op(2τ ξ • ∇ϕ(x)) + τ Op(r 1 ), (2.18) 
where r 1 ∈ S(µ, g) and g is defined by (2.12). Therefore, for any ε > 0, there exists a positive constant C ε such that

τ -1 Op( | 2τ ξ • ∇ϕ(x) | 2 )w | w V ≤ τ -1 Op(2τ ξ • ∇ϕ(x))w 2 V + τ | (Op(r 1 )w | w) V | ≤ τ -1 Op(2τ ξ • ∇ϕ(x))w 2 V + ε τ Op(µ)w 2 V + C ε τ w 2 V .
(2.19) Substituting (2.19) into (2.17) and choosing ε small enough, we have

Cτ Op(µ)w 2 V ≤ Re Op τ µ -2 ( |ξ| 2 -τ 2 |∇ϕ(x)| 2 ) 2 + τ |ξ| 2 -τ 2 |∇ϕ(x)| 2 , 2ξ • ∇ϕ(x) w w V +τ -1 Op(2τ ξ • ∇ϕ(x))w 2 V + C ε τ w 2 V .
(2.20)

Secondly, by symbolic calculus, we have that

τ Op(µ -2 ( |ξ| 2 -τ 2 |∇ϕ(x)| 2 ) 2 ) = τ Op(r 0 ) Op(|ξ| 2 -τ 2 |∇ϕ(x)| 2 ) + τ Op(r 2 ), (2.21) 
where r 0 (x, ξ) = µ -2 (|ξ| 2τ 2 |∇ϕ(x)| 2 ) ∈ S(1, g) and r 2 ∈ S(µ, g). Therefore, for all ε > 0, there exists C ε > 0 such that

| (τ Op(r 0 ) Op(|ξ| 2 -τ 2 |∇ϕ(x)| 2 )w | w) V | ≤ C ε τ -1 Op(|ξ| 2 -τ 2 |∇ϕ(x)| 2 )w 2 V + ετ 3 w 2 V .
(2.22)

We choose ε small enough and combine (2.21)-(2.22) with (2.20) to get

Cτ Op(µ)w 2 V ≤ Re τ Op |ξ| 2 -τ 2 |∇ϕ(x)| 2 , 2ξ • ∇ϕ(x) w w V +C ε τ -1 Op(|ξ| 2 -τ 2 |∇ϕ(x)| 2 )w 2 V +τ -1 Op(2τ ξ • ∇ϕ(x))w 2 V + C ε (τ + ετ 3 ) w 2 V .
(2.23)

Finally, it is clear that there exist positive constant C such that

τ 3 w 2 V + τ Dw 2 V ≤ Cτ Op(µ)w 2 V . (2.24) 
Thus, we obtain (2.15) by using (2.23)-(2.24), choosing ε small enough and letting τ > τ 0 large enough.

Carleman Estimate

In this section, we shall prove several Carleman inequalities. Define the operator

P (x, D, λ) = D 2 + iλDa(x)D -λ 2 .
Let the weight function ϕ ∈ C ∞ (R d ; R). The associated conjugate operator of P (x, D, λ) is P ϕ (x, D, λ) = e τ ϕ P (x, D, λ)e -τ ϕ . Then,

P ϕ = (D + iτ ∇ϕ(x)) 2 + iλ(D + iτ ∇ϕ(x))a(x)(D + iτ ∇ϕ(x)) -λ 2 .
By setting

Q 2 = 1 2 (P ϕ + P * ϕ ) and Q 1 = 1 2i (P ϕ -P * ϕ ), we have P ϕ = Q 2 + iQ 1 .
We denote by p(x, ξ, λ), p ϕ (x, ξ, λ) the associated symbol of P (x, D, λ), P ϕ (x, D, λ), respectively.

Let the metric g and weight ν be defined by (2.1) and (2.2). Due to the results Remark 2.2, we know that D + iτ ∇ϕ(x) is an operator with symbol in S(µ, g) class, λa is in S(ν, g), and (1 + iλa(x))|ξ + iτ ∇ϕ(x)| 2 , the principal symbol of P ϕ belongs to S(νµ 2 , g). Furthermore, from Lemma 2.2 and 2.3, one has that

P ϕ = Op (1 + iλa(x))|ξ + iτ ∇ϕ(x)| 2 -λ 2 + R 3 , Q 2 = Op(q 2 ) -λ 2 + R 2 , Q 1 = Op(q 1 ) + R 1 , (3.1) V τ 3 ν(x)v 2 V + τ D(ν(x)v) 2 V . (3.5)
It follows from (3.4) and (3.5) that

C ′ 1 τ 3 ν(x)v 2 V + τ ν(x)Dv 2 V ≤ Re Op( |ξ| 2 -τ 2 ϕ(x) 2 , 2τ ξ • ∇ϕ(x) )ν(x)v | ν(x)v V +C 2 τ -1 Op(|ξ| 2 -τ 2 |∇ϕ(x)| 2 )ν(x)v 2 V +C 2 τ -1 Op(2τ ξ • ∇ϕ(x))ν(x)v 2 V , C ′ 1 , C 2 > 0. (3.6)
Now, we estimate the first term on the right side hand of (3.6). Note that

2 Re(Q 2 v | iQ 1 v) V = (Q 2 v | iQ 1 v) V + (iQ 1 v | Q 2 v) V = (i[Q 2 , Q 1 ]v | v) V , (3.7) 
where the principal

symbol of i[Q 2 , Q 1 ] is {q 2 , q 1 }. Due to Lemma 2.3, we obtain that i[Q 2 , Q 1 ] = Op({q 2 , q 1 }) + R 4 , (3.8) 
where {q 2 , q 1 } ∈ S(λ 1 2 ν 2 µ 3 , g) and the symbol of R 4 is in S(λν 2 µ 2 , g). A direct computation gives that

q 2 , q 1 = (1 + a 2 (x)λ 2 ) |ξ| 2 -τ 2 |∇ϕ(x)| 2 , 2τ ξ • ∇ϕ(x) + |ξ| 2 -τ 2 |∇ϕ(x)| 2 , λa(x) -λa(x) 2τ ξ.∇ϕ(x), λa(x) (|ξ| 2 -τ 2 |∇ϕ(x)| 2 ) -2τ ξ • ∇ϕ(x) λa(x) λa(x), |ξ| 2 -τ 2 |∇ϕ(x)| 2 + λa(x), 2τ ξ • ∇ϕ(x) .
From the definition of q 1 and q 2 , we have

q 2 (x, ξ) + λa(x)q 1 (x, ξ) = (1 + λ 2 a(x) 2 )(|ξ| 2 -τ 2 |∇ϕ(x)| 2 ), q 1 (x, ξ) -λa(x)q 2 (x, ξ) = 2τ ξ • ∇ϕ(x)(1 + λ 2 a 2 (x)). (3.9) 
Consequently,

q 2 , q 1 = ν 2 (x) |ξ| 2 -τ 2 |∇ϕ(x)| 2 , 2τ ξ • ∇ϕ(x) +ν -2 (x)(q 2 (x, ξ) + λa(x)q 1 (x, ξ)) |ξ| 2 -τ 2 |∇ϕ(x)| 2 , λa(x) -λa(x) 2τ ξ • ∇ϕ(x), λa(x) -ν -2 (x)(q 1 (x, ξ) -λa(x)q 2 (x, ξ)) λa(x) λa(x), |ξ| 2 -τ 2 |∇ϕ(x)| 2 + λa(x), 2τ ξ • ∇ϕ(x) .
Then, it follows from (3.8) and the above equation that

i[Q 2 , Q 1 ] = ν(x) Op |ξ| 2 -τ 2 |∇ϕ(x)| 2 , 2τ ξ • ∇ϕ(x) ν(x) + B 1 ν -1 (x) Op q 2 (x, ξ) + λa(x)q 1 (x, ξ) -B 2 ν -1 (x) Op q 1 (x, ξ) -λa(x)q 2 (x, ξ) + R 5 ,
where

B 1 = Op ν -1 (x) |ξ| 2 -τ 2 |∇ϕ(x)| 2 , λa(x) -λa(x) 2τ ξ • ∇ϕ(x), λa(x) , B 2 = Op ν -1 (x) λa(x) λa(x), |ξ| 2 -τ 2 |∇ϕ(x)| 2 + λa(x), 2τ ξ • ∇ϕ(x) , symbols of B 1 and B 2 belong to S(λ 1 2 νµ, g) and the symbol of R 5 is in S(λν 2 µ 2 , g). Combining this with (3.1) yields i[Q 2 , Q 1 ] = ν(x) Op |ξ| 2 -τ 2 |∇ϕ(x)| 2 , 2τ ξ • ∇ϕ(x) ν(x) + B 1 ν -1 (x) Q 2 (x, ξ) + λa(x)Q 1 (x, ξ) + λ 2 -B 2 ν -1 (x) Q 1 (x, ξ) -λa(x)Q 2 (x, ξ) -λ 3 a(x) + R 5 , (3.10) 
We refer to Section 2 where the rules on symbolic calculus are given and precise. Therefore, by the continuity of pseudo-differential operator, we have that for j = 1, 2, k = 0, 1 and ℓ = 1, 2,

| (B j ν(x) -1 (λa(x)) k Q ℓ v | v) V | = | (ν(x) -1 (λa(x)) k Q ℓ v | B * j v) V | Q ℓ v V B * j v V ≤ 1 10 Q ℓ v 2 V + Cλτ 2 ν(x)v 2 V + Cλ ν(x)Dv 2 V , C > 0, (3.11) 
| (B j ν -1 (x)λ 2 (λa(x)) k v | v) V | λ 5 2 τ ν(x)v V + ν(x)Dv V ν(x)v V λ 5 2 τ ν(x)v 2 V + λ 5 2 τ -1 ν(x)Dv 2 V , (3.12) 
and

| (R 5 v | v) V | λτ 2 ν(x)v 2 V + λ ν(x)Dv 2 V . (3.13) 
Due to (3.10)-(3.13), there exists a positive constant C such that

Op( |ξ| 2 -τ 2 |∇ϕ(x)| 2 , 2τ ξ • ∇ϕ(x) )ν(x)v | ν(x)v V ≤ (i[Q 2 , Q 1 ]v | v) V + 1 4 ℓ=1,2 Q ℓ v 2 V + C λτ 2 ν(x)v 2 V +λ ν(x)Dv 2 V + λ 5 2 τ ν(x)v 2 V + λ 5 2 τ -1 ν(x)Dv 2 V . (3.14) 
Remark 3.2. Since a(•) is nonnegative and not identically null, there exists δ > 0 such that {x ∈ Ω : a(x) > δ} = ∅. We introduce several sets as follows.

W 0 = Ω \ supp a, W 1 = Ω \ O supp a , W 2 = Ω \ {x ∈ Ω : a(x) ≥ δ} ∪ O(Γ) , W 3 = Ω \ {x ∈ Ω : a(x) ≥ δ 2 },
where O(Γ) means the neighborhood of Γ.

It is known that there exists a function ψ ∈ C ∞ (Ω) such that ( [START_REF] Fursikov | Controllability of evolution equations[END_REF])

1) ψ(x) = 0 for x ∈ ∂Ω.
2) ∂ n ψ(x) < 0 for x ∈ ∂Ω.

3) ∇ψ(x) = 0 for x ∈ Ω \ {x ∈ Ω : a(x) ≥ δ}.

Let ϕ = e γψ . It follows from Lemma 2.5 that ϕ satisfies the sub-ellipticity condition on x ∈ Ω \ {x ∈ Ω : a(x) ≥ δ} if γ > 0 is sufficiently large. Then, in Theorem 3.2 and 3.3, one can choose V as Ω \ {x ∈ Ω : a(x) ≥ δ}.

The following result is a classical Carleman estimate and corresponding to the Laplacian with Dirichlet boundary condition ( [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], Proposition 2). We shall use it to deal with the terms on Ω\supp a. Lemma 3.1. Suppose ϕ is chosen as in Remark 3.2. Then, there exist C > 0, λ 0 > 0, such that for all u ∈ C ∞ (Ω) satisfying supp u ⊂ W 1 and u = 0 on Γ, it holds

τ 3 e τ ϕ u 2 Ω + τ e τ ϕ Du 2 Ω e τ ϕ (D 2 -λ 2 )u 2 Ω , (3.32) 
where λ ≥ λ 0 and τ ≥ max{Cλ, 1}.

Theorem 3.4. Suppose ϕ is chosen as in Remark 3.2. Let u ∈ C ∞ (Ω) and satisfy

P (x, D, λ)u = f 0 + d j=1 ∂ xj f j in Ω, u = 0 on Γ,
where

f j ∈ L 2 (Ω), supp f 0 ⊂ Ω and supp f j ⊂ O supp a for j = 1, • • • , d.
Then, there exist K > 0, λ 0 > 0, such that for all λ ≥ λ 0 and τ ≥ max{ K|λ| First, it is clear that

P χ 2 u = χ 2 f 0 + d j=1 ∂ xj (χ 2 f j ) -f j ∂ xj χ 2 + [P, χ 2 ]u.
Since [P, χ 2 ] is a first order operator, we have there exist a 0 , a 1 ,

• • • , a d and b 0 , b 1 , • • • , b d such that [P, χ 2 ]u = d j=0 a j ∂ xj u + λ d j=0 b j ∂ xj u,
where supp a j ⊂ {x ∈ Ω :

δ 2 < a(x) < δ} ∪ [Ω \ (O(supp a) ∪ O(supp ∂Ω))], supp b j ⊂ {x ∈ Ω : δ 2 < a(x) < δ} for j = 0, 1, • • • , d.
Then, applying Theorem 3.3 with χ 2 u instead of u, Ω \ {x ∈ Ω : a(x) ≥ δ} instead of V, we obtain Consequently, due to (1 + λ 2 a(x) 2 ) ≥ 1, τ ≥ {Cλ, 1} and λ ≥ λ 0 , we obtain

τ (1 + λ 2 a(x) 2 ) 1 2 e τ ϕ χ 2 u 2 Ω + τ -1 (1 + λ 2 a(x) 2 )
τ (1 + λ 2 a(x) 2 ) 1 2 e τ ϕ χ 2 u 2 Ω + τ -1 (1 + λ 2 a(x) 2 ) 1 2 e τ ϕ Dχ 2 u 2 Ω d j=0 e τ ϕ f j 2 Ω + e τ ϕ u 2 Ω\supp a + λ e τ ϕ u 2 {x∈Ω : a(x)≥ δ 2 } . (3.33) 
On the other hand, by using χ 1 u instead of u in Lemma 3.1, we obtain 

τ e τ ϕ (χ 1 + χ 2 )u 2 Ω + τ -1 e τ ϕ D(χ 1 + χ 2 )u 2 Ω d j=0 e τ ϕ f j 2 Ω + e τ ϕ u 2 Ω\supp a + λ e τ ϕ u 2 {x∈Ω : a(x)≥ δ 2 } + τ -2 e τ ϕ [P, χ 1 ]u 2 Ω .
Note that [P, χ 1 ] is a first order operator and supported on supp χ 1 \ {x ∈ Ω : χ 1 ≡ 1}, which is an subset of {x ∈ Ω : χ 1 + χ 2 = 1}. Then, for τ sufficiently large, we have

τ e τ ϕ (χ 1 + χ 2 )u 2 Ω + τ -1 e τ ϕ (χ 1 + χ 2 )Du 2 Ω d j=0 e τ ϕ f j 2 Ω + λ e τ ϕ u 2 {x∈Ω : a(x)≥ δ 2 } .
Then as 1 ≤ χ 1 + χ 2 ≤ 2 on W 3 , we obtain the statement of Theorem 3.4.

Resolvent estimate

In this section, we shall prove the main result. From the results in [START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF][START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF][START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF], the logarithmic decay of the energy in Theorem 1.1 can be obtained through the following theorem. Let λ be a real number such that | λ | is large enough. Consider the resolvent equation:

F = (A -iλ)Y, where Y = y 1 , y 2 ∈ D(A), F = f 1 , f 2 ∈ H, (4.2) 
which yields

         div (∇y 1 + a∇y 2 ) + λ 2 y 1 = iλf 1 + f 2 ,
in Ω,

y 2 = iλy 1 + f 1 in Ω, y 1 | Γ = 0 (4.3)
In what follows, we shall prove that there exists a positive constant C such that

(y 1 , y 2 ) H e C | λ | 5 4 (f 1 , f 2 ) H .
First, let η > 0 and χ ∈ C ∞ 0 (Ω) be real valued function such that supp χ = {x ∈ Ω : a(x) > η}) and χ ≡ 1 in {x ∈ Ω : a(x) > 2η}. The following lemma is helpful. 

(i) χy 1 Ω ∇y 1 {x∈Ω : a(x)>η} + f 1 H 1 (Ω) + f 2 Ω . (ii) Ω a(x)|∇y 1 | 2 dx f 1 2 H 1 (Ω) + ( f 1 Ω + f 2 Ω ) y 1 Ω .
Proof. (i) Multiplying the first equation in (4.3) by χ 2 y 1 and using y 2 = iλy 1 + f 1 , we obtain, 

1 2 f 1 H 1 (Ω) + ( f 1 Ω + |λ | -1 f 2 Ω ) y 1 Ω ≤ 1 4 Ω a(x)|∇y 1 | 2 dx + |λ | -2 f 1 2 H 1 (Ω) + ( f 1 Ω + |λ | -1 f 2 Ω ) y 1 Ω .
The proof of lemma is finished. 

. 5 )

 5 Define an unbounded operatorA : D(A) ⊂ H → H by AY = y 2 , div (∇y 1 + a∇y 2 ) , ∀ Y = y 1 , y 2 ∈ D(A),andD(A) = y 1 , y 2 ∈ H : y 2 ∈ H 1 0

Definition 2 . 2 .Lemma 2 . 2 . 1 2Lemma 2 . 3 .

 2222123 Let b ∈ S(m, g) be a symbol and u ∈ S (R d ), we set b(x, D, τ )u(x) = Op(b)u(x) := (2π) -d R d e ix•ξ b(x, ξ, τ ) u(ξ) dξ. It is known that Op(b) : S (R d ) → S (R d ) is continuous and Op(b) can be uniquely extended to S ′ (R d ) continuously. The following two lemmas are consequences of Theorem 18.5.4 and 18.5.10 in [12]. Let b ∈ S(m, g) where m is an admissible weight and g is defined by (2.1). Then there exists c ∈ S(m, g) such that Op(b) * = Op(c) and c(x, ξ) = b(x, ξ) + r(x, ξ) where the remainder r ∈ S(λ µ -1 m, g). Let b ∈ S(m 1 , g) and c ∈ S(m 2 , g) where m j are admissible weights for j = 1, 2 and g is defined by (2.1). Denote by [Op(b), Op(c)] = Op(b) • Op(c) -Op(c) • Op(b) and Poisson bracket {b, c}(x, ξ, τ ) = 1≤j≤d (∂ ξj b ∂ xj c -∂ xj b ∂ ξj c)(x, ξ, τ ). Then, (i) there exists d ∈ S(m 1 m 2 , g) such that Op(b) Op(c) = Op(d) and d(x, ξ) = b(x, ξ)c(x, ξ)+ r(x, ξ)

5 4 ,, it holds τ e τ ϕ u 2 W3 + τ -1 e τ ϕ Du 2 W3 d j=0 e τ ϕ f j 2 Ω

 4222 1}+ λ e τ ϕ u 2 {x∈Ω : a(x)≥δ/2} , where the positive constant δ is defined as in Remark 3.2.Proof. Let χ 1 , χ 2 ∈ C ∞ (Ω) be non-negative and satisfy the following assumption (i) 0 ≤ χ 1 , χ 2 ≤ 1; χ 1 and χ 2 are supported on W 1 and W 2 , respectively.(ii) χ 1 + χ 2 ≥ 1 in W 3 . In particular, χ 1 ≡ 1 on [O(∂Ω) ∩ Ω] \ O(suppa), and χ 2 ≡ 1 on O(supp a) \ {x ∈ Ω : a(x) ≥ δ 2 }.

1 2 e τ ϕ Dχ 2 u 2 Ω d j=0 e τ ϕ f j 2 Ω

 122 + e τ ϕ u 2 {x∈Ω : δ 2 <a(x)<δ}∪(Ω\supp a) + λ e τ ϕ u 2 {x∈Ω : δ 2 <a(x)<δ} .

τ 3 e τ ϕ χ 1 u 2 Ω + τ e τ ϕ Dχ 1 u 2 Ω 2 Ωτ -2 e τ ϕ f 0 2 Ω

 2222 e τ ϕ (P -iλDa(x)D)χ 1 u 2 Ω .(3.34)Since χ 1 ∂ xj f j = 0 for j = 1, • • • , d, we haveP χ 1 u = χ 1 f 0 + [P, χ 1 ]u.Therefore, combining these with (3.34) and O(supp a)∩ supp χ 1 = ∅ yields τ e τ ϕ χ 1 u 2 Ω + τ -1 e τ ϕ Dχ 1 u + e τ ϕ [P, χ 1 ]u 2 Ω .(3.35)Adding up (3.35) and (3.33), using (1 + λ 2 a(x) 2 ) ≥ 1 and τ ≥ 1, we obtain

Theorem 4 . 1 . 1 L

 411 Suppose conditions in Theorem 1.1 hold. Then, for every λ ∈ R with |λ| large enough, there exists C > 0 such that (Aiλ) -

Lemma 4 . 1 .

 41 For y 1 , f 1 , f 2 satisfying (4.3) and |λ| large enough, it holds

λ 2 χy 1 2 Ω = Ω ∇y 1 f 1 χ 2 y 1 dx + Ω f 2 χ 2 y 1

 211 • ∇(χ 2 y 1 )dx + iλ Ω a(x)∇y 1 • ∇(χ 2 y 1 )dx +iλ Ω dx + Ω a(x)∇f 1 • ∇(χ 2 y 1 )dx.

(4. 4 ) 2 {x∈Ω≤ 2 ∇y 1 2 {x∈Ω

 422 Since ∇(χ 2 y 1 ) = χ 2 ∇y 1 + 2y 1 χ∇χ, we have Ω a(x)∇y 1 • ∇(χ 2 y 1 )dx ∇y 1 : a(x)>η} + χy 1 Ω ∇y 1 {x∈Ω : a(x)>η}

(4. 5 )λ 2 χy 1 2 Ω 1 2Ω + λ -2 f 2 2 Ω 2 H 1

 521221 By the similar argument, we can deal with the rest terms on the right hand side of (4+ (|λ| + 1) ∇y 1 2 {x∈Ω : a(x)>η} + f + (λ -2 + 1) ∇f 1 (Ω) .

(4. 6 )

 6 Then, (i) is reached.(ii) Multiplying the first equation in (4.3) by y 1 and using y 2 = iλy 1 + f 1 , we obtain,Ω [-(iλa(x) + 1)|∇y 1 | 2 + λ 2 |y 1 | 2 ]dx = Ω [a(x)∇f 1 • ∇y 1 + (iλf 1 + f 2 )y 1 ]dx. (4.7)Taking the imaginary part of (4.7) yieldsΩ a(x)|∇y 1 | 2 dx = -λ -1 Im Ω [a(x)∇f 1 • ∇y 1 + (iλf 1 + f 2 )y 1 ]dx.(4.8)Thus, by the Cauchy-Schwarz inequality, one can conclude from (4.8) thatΩ a(x)|∇y 1 | 2 dx ≤ |λ | -1 Ω a(x)|∇y 1 | 2 dx

Proof of Theorem 4 . 1 . 1 2 1 2 2 H 1 ( 2 H 1 ( 2 H 1 (Ω) + f 2 2 L 2 (e τ ϕ y 1 2 Ω + τ -1 e τ ϕ ∇y 1 2 Ω λ 2 e τ ϕ f 1 2 Ω + e τ ϕ f 2 2 Ω + d j=1 e τ ϕ a ∂ xj f 1 2 Ω+(λ + τ ) e τ ϕ y 1 2 {x∈Ωe τ ϕ ∇y 1 2 {x∈Ω 5 4 , 1} that τ e 2c1τ y 1 2 Ω + τ -1 e 2c1τ ∇y 1 2 Ω λ 2 e 2c2τ f 1 2 H 1 (Ω) + e 2c2τ f 2 2 Ω + τ e 2c2τ y 1 2 H 1

 411121212122222222252221221 Due to Lemma 4.1 (i) and (ii), we havey {x∈Ω : a(x)>2η} ∇y {x∈Ω : a(x)>η} + f 1 Ω) + ( f 1 Ω + f 2 Ω ) y 1 Ω . Ω) + ( f 1 Ω + f 2 Ω ) y 1 Ω . (4.11)On the other hand, by (4.3), one has that y 1 satisfies div (∇y 1 + iλa(x)∇y 1 ) + λ 2 y 1 = iλf 1 + f 2div(a(x)∇f 1 ). (4.12)Then, applying Theorem 3.4 to y 1 satisfying (4.12), we obtainτ : a(x)≥δ/2} + τ -1 : a(x)≥δ/2} .Let c 1 = min x∈Ω ϕ(x) and c 2 = max x∈Ω ϕ(x). We conclude from the above inequality and τ ≥ max{ K|λ| ({x∈Ω : a(x)≥δ/2}) .

(4. 13 ) 2 Ω 2 Ω τ 2 e 2c2τ f 1 2 H 1 2 Ω

 1322212 Setting η = δ 8 and substituting (4.11) into (4.13), we obtain τ e 2c1τ y 1 + τ -1 e 2c1τ ∇y 1 (Ω) + τ e 2c2τ f 2 + τ e 2c2τ ( f 1 Ω + f 2 Ω ) y 1 Ω .
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where q 2 = |ξ| 2τ 2 |∇ϕ(x)| 2 -2λτ a(x)ξ • ∇ϕ(x), q 1 = 2τ ξ • ∇ϕ(x) + λa(x)(|ξ| 2τ 2 |∇ϕ(x)| 2 ) belong to S(νµ 2 , g) and the symbols of R j is in S(λ 1 2 νµ, g) for j = 1, 2, 3. It is clear that

In what follows, several Carleman estimates are introduced. First, we give an estimation on the subdomain which is far away from the boundary Γ. Theorem 3.1. Suppose ϕ satisfies sub-ellipticity condition in V ⊂ Ω. Then, there exist positive constants C, K and λ 0 , such that for every v ∈ C ∞ 0 (V ), it holds

where λ ≥ λ 0 and τ ≥ max{ K|λ| 5 4 , 1}.

Proof. Let w = ν(x)v in (2.15). We obtain

Consequently, for τ ≥ Cλ with C > 0 sufficiently large, it holds

Next, we are going to estimate the last two terms on the right side hand of (3.6). It follows from (3.1) and (3.9) that

(3.15)

Combining this with the fact that the symbols of R j are in S(λ 1 2 νµ, g) for j = 1, 2, we have

Consequently, for τ ≥ Cλ with C large enough, it holds

(3.17)

Finally, by (3.6), (3.14) and (3.17), one can choose τ ≥ max{ K|λ| 5 4 , 1} with K sufficiently large such that for some C > 0,

where ε > 0 is arbitrary. Choosing ε small with respect to C, using (3.2), (3.7) and (3.18), we obtain

Remark 3.1. The estimates in (3.12) impose the assumption τ ≥ K|λ| 5 4 . The other remainder terms only impose the condition τ ≥ Cλ. This condition is related with the principal normal condition. Indeed for a complex operator, with symbol p 1 + ip 2 where p 1 , p 2 are both real valued, the Carleman estimate is only true if {p 1 , p 2 } = 0 on p 1 = p 2 = 0. Here the symbol of operator before conjugation by weight is |ξ| 2 -λ 2 +iλa(x)|ξ| 2 , and the Poisson bracket is {|ξ| 2 -λ 2 , λa(x)|ξ| 2 } = 2λ(ξ•∇a(x))|ξ| 2 . We can estimate this term, uniformly in a neighborhood of a(x) = 0, by Cλa Theorem 3.2. Suppose ϕ satisfies sub-ellipticity condition in V ⊂ Ω. Then, there exist positive constants K and λ 0 , such that for every u ∈ C ∞ 0 (V ), it holds

where λ ≥ λ 0 and τ ≥ max{ K|λ| 12 Proof. Set v = e τ ϕ u. From Theorem 3.1, it suffices to prove that (3.19) is equivalent to

First, assume (3.20) holds. Then, Dv = e τ ϕ (Duiτ ∇ϕ u) and e τ ϕ Du = Dv + iτ ∇ϕ v. Then there exist positive constants c 1 , c 2 such that

Combining this with (3.20), we conclude that

On the other hand, (3.19) implies that

Then, we proved (3.20) from the above estimate and (3.21).

Since there is higher order term div(a(x)∇y t ) in system (1.1), it is necessary to deal with the term div(a(x)∇f ) for f ∈ H 1 (Ω) when proving the resolvent estimate. The following result is analogue to the work by Imanuvilov and Puel ([14]).

Theorem 3.3. Suppose ϕ satisfies sub-ellipticity condition on V ⊂ Ω. Then, there exist C, K, λ 0 > 0, such that for all u ∈ C ∞ 0 (V ) satisfying

it holds

where λ ≥ λ 0 and τ ≥ max{ K|λ| Proof. First, from (3.1), we have

Using (3.3), (3.24) and the fact that ν(x

Let u and χ be in C ∞ 0 (Ω) such that χ = 1 on a neighborhood of supp u. Similarly to (3.21), we obtain

Then, combining this with Fourier transform and the following inequality

From Lemma 2.3, we have Op(µ -1 )νχ = νχ Op(µ -1 ) + R 1 , where R 1 has a symbol in S(µ -2 νλ 1 2 , g), and D 2 Op(µ -1 )νχ = νD 2 χ Op(µ -1 ) + R 2 , where R 2 has a symbol in S(νλ 1 2 , g). Then, it follows from (3.26) that

For τ ≥ max{Cλ, 1} with C large enough, one has the following result from the above inequality.

Now, we apply (3.25) to v = χ Op(µ -1 ) u to have

Thus, combining this with (3.27) yields

Finally, note that P ϕ has a symbol in S(νµ 2 , g). Consequently, P ϕ χ Op(µ -1 ) = Op(µ -1 )P ϕ χ+ R, where R has a symbol in S(νλ 1 2 , g). Then, we can deduce from (3.28) that

When τ ≥ Cλ with C large enough, the error term λ ν u 2 V can be absorbed by the left hand side.