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Summary1

Spectra of musical instruments exhibit formants or2

anti-formants which are important characteristics of3

the sounds produced. In the present paper, it is shown4

that anti-formants exist in the spectrum of the mouth-5

piece pressure of saxophones. Their frequencies are6

not far but slightly higher than the natural frequen-7

cies of the truncated part of the cone. To determine8

these frequencies, a first step is the numerical deter-9

mination of the playing frequency by using a simple10

oscillation model. An analytical analysis exhibits the11

role of the inharmonicity due to the cone truncation12

and the mouthpiece. A second step is the study of13

the input impedance values at the harmonics of the14

playing frequency. As a result, the consideration of15

the playing frequency for each note explains why the16

anti-formants are wider than those resulting from a17

Helmholtz motion observed for a bowed string. Fi-18

nally numerical results for the mouthpiece spectrum19

are compared to experiments for three saxophones20

(soprano, alto and baritone). It is shown that when21

scaled by the length of the missing cone, the anti-22

formant frequencies in the mouthpiece are very similar23

for the three instruments. The frequencies given by24

the model are close to the natural frequencies of the25

missing cone length, but slightly higher. Finally, the26

numerical computation shows that anti-formants and27

formants might be found in the radiated pressure.28

1 Introduction29

The auditory recognition of musical instruments is a30

rather intricate issue. It is generally admitted that31

the existence of formants is an important element32

that contributes to the identification of an instrument.33

A formant (resp. an anti-formant) can be defined34

as a frequency band reinforced (resp. attenuated) 35

whatever the played note. Formants are in general 36

regarded as an important characteristic of the tone 37

colour (or of the vowels in speech). It needs to be dis- 38

tinguished from other timbre characteristics, such as 39

the weakness of harmonics of a given rank (e.g., the 40

even harmonics in the clarinet sound). The statement 41

of the problem is ancient [4, 5]. Smith and Mercer [4] 42

found formants produced by conical instruments sim- 43

ilar to saxophones. Benade [2] wrote: “There is in 44

fact almost no simple formant behavior to be recog- 45

nized in the sound production of wind instruments”. 46

However several authors observed that the spectrum 47

of the acoustic pressure in the reed of a bassoon [1] or 48

in the mouthpiece of a saxophone [2, 3] is close to the 49

function sin(nq)/nq, where n is the harmonic number 50

and q can be determined experimentally. 51

This implies that anti-formants can appear around 52

frequencies satisfying sin(nq) = 0. If formants (or 53

anti-formants) exist, a consequence of the above men- 54

tioned definition is that their frequencies cannot de- 55

pend on the length of the tube for a given note. Con- 56

versely they depend either on other geometrical pa- 57

rameters (length of the missing cone, input radius, 58

apex angle of the truncated cone, dimensions of the 59

mouthpiece, geometry of the toneholes) or on the ex- 60

citation parameters. 61

The simplest model, based upon the analogy with 62

bowed string instruments, was studied by many au- 63

thors [6, 7, 8, 9, 10, 11, 12], and a result is the wave- 64

shape approximation of the mouthpiece pressure by 65

a rectangle signal, i.e., the waveshape of the ideal 66

Helmholtz motion. Formerly, some authors explained 67

that an approximation of the natural frequency of 68

reed conical instruments is equal to that of an “open- 69

open” cylinder whose length is the length of the trun- 70

cated cone extended to its apex [13, 14, 15]. Because 71
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Figure 1: Notations for the geometrical parameters.
For a soprano saxophone, the length of the missing
part of the cone is approximately x1=0.126 m. Typ-
ical values of the coefficient β are included in the in-
terval [0.13, 0.3].

the length of the missing cone does not vary with the72

note, a consequence of the analogy is that the dura-73

tion of the negative pressure episode is common to74

all notes. Another consequence is the existence of75

anti-formants close to the natural frequencies of the76

missing part of the truncated cone (which is denoted77

x1 in the present paper, see Fig. 1 for the notations).78

The analogy with the Helmholtz motion of bowed79

strings leads to the result that in the function80

sin(nq)/nq, q ' πβ, where β is the ratio of the short81

length of the string to its total length. For a trun-82

cated cone, β is the ratio of the length of the missing83

cone x1 to the total length x2 = `+ x1 :84

β =
x1

x1 + `
=
x1
x2

=
R1

R2
(1)

R1 and R2 are the radii at abscissae x1 and x2, re-85

spectively.86

It is still the only model that yields analytical ex-87

pressions for the sound produced, and therefore it is88

used as a reference for the present study. In a pa-89

per written by some of the present authors, it was90

shown that a simple numerical model can largely im-91

prove the model of the Helmholtz motion [16]. We call92

it the “Reed-Truncated-Cone” model (RTC model).93

The difference between the two models lies in the res-94

onator model. Example of waveshapes obtained with95

the two models are shown in Fig. 2. Using the RTC96

model for the present investigation on the spectrum,97

the paper aims at further understanding of the exis-98

tence of formants or anti-formants in the mouthpiece99

pressure spectrum, and, to some extent, of the exter-100

nal pressure. The computation is done ab initio in the101

time domain.102

The study is limited to the first register, which re-103

sembles the Helmholtz motion (periodic regime, one104

positive pressure and one negative pressure episodes).105

The RTC model is based upon the observation that106

in practice the mouthpiece volume is approximately107

equal to that of the missing cone [17], entailing a weak108

1500 2000 2500 3000 3500
f(Hz)

-2

-1

0

1

p(t)

Figure 2: Example of waveshape for a soprano saxo-
phone (x1 =0.126m and ` = 0.55m) for the excitation
parameters γ = 0.4, ζ = 0.65 (see Sect. 3.1). Thick
line: RTC model; thin line: ideal Helmholtz motion
model.

inharmonicity for the lower notes. The resonator is a 109

truncated cone, of length `, with a pure lumped com- 110

pliance at its input (that of the air in the mouthpiece 111

volume). This is a simplification, because in some 112

instruments, such as the oboe, the cone of the res- 113

onator can be more complicated, with two different 114

tapers, entailing a further reduction of inharmonicity 115

[18]. The double taper is not considered here, be- 116

cause the waveform of the internal pressure given by 117

the RTC model seems to compare well enough with 118

experimental waveforms [16]. 119

The effects of wall losses and radiation are ignored. 120

The model of toneholes is extremely simplified: for a 121

given fingering with a given number of toneholes, the 122

resonator is assumed to be equivalent to a truncated 123

cone of equivalent length `. Therefore, for a given 124

note, two parameters are sufficient, the length ` and 125

the radius ratio R2/R1 (actually, without losses, it is 126

not necessary to define the values of the two radii, 127

or the apex angle). Therefore, according to the hy- 128

potheses adopted in the RTC model, the length of 129

the missing cone is expected to be predominant in the 130

dependence of the frequencies of formants and anti- 131

formants. 132

As an intermediate step, the paper attempts to de- 133

termine more precise values for the first playing fre- 134

quency, because it has an influence on the spectrum, 135

as discussed later. This influence entails the depen- 136

dence of the pressure spectra on the fingering, i.e., on 137

the length `, and the enlargement of the formants. 138

In Sect. 2 the RTC model is presented for the res- 139

onator, with the calculation of the transfer functions 140

of the resonator (between input and output quanti- 141

ties). Sect. 3 recalls some known results about the 142

“cylindrical saxophone” model, which is similar to 143

that of an ideal bowed string, and gives the classi- 144

cal solution of the Helmholtz motion. The paradox 145

of the analogy between a conical instrument and a 146
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cylindrical saxophone is discussed.147

Then, in Sec. 4, it is shown how the playing fre-148

quencies for a truncated cone with mouthpiece differ149

from those corresponding to the ideal Helmholtz mo-150

tion, because they depend on the excitation parame-151

ters, and on the note.152

In Sec. 5 the zeros of the transfer functions are in-153

vestigated with their dependence on the playing fre-154

quencies.155

In Section 6, thanks to the results of numerical com-156

putations obtained with the RTC model [16] of the157

sound production, the frequencies of the minima of158

the sampled input impedance are compared to those159

of the mouthpiece pressure, and the existence of for-160

mants and anti-formants is discussed in both the in-161

ternal pressure and the external one.162

In Section 7 experimental results are presented, and163

compared to the numerical results.164

2 Basic model of the resonator165

2.1 Resonator model of the RTC.166

A truncated cone is considered (see Fig. 1), provided167

with a mouthpiece of volume equal to the volume of168

the missing cone: V = x1S1/3. The mouthpiece is169

assumed to be small with respect to the wavelength.170

The shunt acoustic compliance of the mouthpiece is171

V/%c2. The inertia of the air within the mouthpiece172

(i.e. the series acoustic mass), is ignored, because the173

sound production by reed instruments occurs at fre-174

quencies close to impedance maxima (this is discussed175

in Ref. [16]). At abscissae x1 and x2, the cross-section176

areas are S1 and S2, respectively. No resonator losses177

are considered, and the output impedance of the cone178

is assumed to be zero. This implies that the radiation179

reactance is zero too: it could be taken into account180

by a slight modification of the length of the truncated181

cone. In the frequency domain, the solution of the182

acoustic equations in the conical tube can be written183

as the sum of two spherical, travelling pressure waves184

P±(x) (see e.g. [19]):185

P (x) = P+(x) + P−(x); (2)

U(x) =
S(x)

ρc

(
P+(x)− P−(x) +

P (x)

jkx

)
(3)

P± = a± exp(∓jkx)/x. (4)

P (x) is the pressure and U(x) is the flow rate. k =186

2πf/c is the wavenumber, f is the frequency, c the187

speed of sound, ρ the air density. Standard transfer188

matrices for the lumped compliance and the truncated189

cone are used for this model in the frequency domain.190

Because the pressure P2 at the output is zero, the two191

following transfer functions between the mouthpiece192

input quantities (pressure P and flow rate U) and the193

output flow rate U2 are found: 194

P =
j%c

πR1R2
sin(k`)U2, (5)

U = R1

R2
{cos(k`) + sin(k`)/(kx1)

−sin(k`)kx1/3}U2
(6)

These transfer functions have zeros, but no poles. 195

At the frequencies of the zeros, because U2 is finite, 196

the input quantities P and U vanish. The external 197

pressure can be derived from the output flow rate 198

U2, which at low frequencies can be regarded as a 199

monopole source. Omitting the delay, the low fre- 200

quency relationship between the external pressure at 201

distance d and the output flow rate is the following: 202

Pext = jωρU2
1

4πd
. (7)

ω is the angular frequency. For our purpose, we have 203

interest in the physical quantities P , U and U2, which 204

depend on the excitation, as well as the extrema of 205

the two transfer functions, which depend on the res- 206

onator only. The zeros of the transfer functions for 207

the pressure and flow rate (Eqs. (5) and (6)) are the 208

zeros and poles, respectively, of the input impedance: 209

Z =
ρc

S1

j sin(k`)

cos(k`) + sin(k`)/(kx1)− sin(k`)kx1/3
. (8)

2.2 Comparison with the “cylindrical 210

saxophone” model 211

A further approximation of the RTC model is the 212

classical cylindrical saxophone model. The function 213

1/x−x/3 is identified with the expansion of the func- 214

tion cot(x). The transfer function equation (6) is un- 215

changed, and, under the following condition, 216

kx1 = 2πx1/λ << 1, (9)

where λ is the wavelength, Eq. (6) becomes: 217

U =
R1

R2
[cos(k`) + sin(k`) cot(kx1)]U2. (10)

The input impedance becomes: 218

Z =
j%c

S1

sin(k`) sin(kx1)

sin [k(`+ x1)]
. (11)

This formula is equivalent to that of the admittance of 219

a string at the bow position. Therefore the Helmholtz 220

motion is a particular solution of the self-sustained 221

oscillation problem. We call this model “cylindrical 222

saxophone” model (however for a cylinder R1 = R2, 223

while here the radii R1 and R2 are different). Com- 224

paring Eqs. (6) and (10), it can be noticed that in the 225

transformation, an infinity of poles have been added, 226

entailing different behaviours of the transfer functions 227

and input impedance. 228
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Figure 3: Example of input impedance modulus
curves (dB defined by 20log(|ZS1/ρc|) for x1 =
0.126m and ` = 0.55m. Solid line (red online): RTC
model; dotted line (blue online): approximation cor-
responding to the cylindrical saxophone model (ideal
Helmholtz motion).

Formula (11) exhibits that there are two kinds of229

input impedance dips: i) the solutions of sin(k`) =230

0, which depend on the note; ii) the solutions of231

sin(kx1) = 0, which do not depend on the note. Fig.232

3 shows an example of input impedance curve. For233

this figure, realistic visco-thermal losses (for an aver-234

age cone radius) have been taken into account in Eq.235

(11). The two kinds of dips appear. We add three236

remarks:237

1. The case shown in Fig. 3 corresponds to an ir-238

rational value of the parameter β. For rational239

values of β, the frequencies of the second kind240

of dips for the cylindrical saxophone can coincide241

with those of the truncated cone, but losses make242

the dips distinct.243

2. The resonances of the cylindrical saxophone are244

perfectly harmonic (see the dotted lines in Fig.245

3). The figure exhibits that this is not the246

case for the truncated cone with mouthpiece247

(solid line in Fig. 3). For the RTC model248

the second kind of minima disappears, accord-249

ing to Eq. (8). The comparison between the250

RTC model and the cylindrical saxophone model251

shows the effect of inharmonicity. It will be252

shown in Sections 4 and 5 that, as a conse-253

quence, minima close to dips of the cylindri-254

cal saxophone appear in the input impedance255

at the harmonics of the playing frequency . For256

these harmonics, we call the input impedance257

curve the sampled impedance (see [20]).258

3. These minima are responsible for anti-formants259

of the input pressure, because their frequencies260

depend few of the note.261

3 Oscillation model and the so- 262

lution of the ideal Helmholtz 263

motion 264

3.1 Helmholtz motion 265

The complete oscillation model is now investigated for 266

the cylindrical saxophone. For the exciter (mouth and 267

reed), the model used was presented in Ref. [16]. The 268

nonlinear characteristic is deduced from the model 269

established by Wilson and Beavers [21]. Neverthe- 270

less no reed dynamics is considered. Two dimension- 271

less parameters were defined by these authors: the 272

mouth pressure γ and the reed opening ζ at rest (in 273

Ref. [21], the parameters are the same, with different 274

notations). The model is based upon the stationary 275

Bernoulli law and some hypotheses, with a localized 276

non-linearity. With the approximation (11) for the 277

impedance, analytical solutions exist for the oscilla- 278

tions, in particular the so-called Helmholtz motion 279

[9], which is a rectangle signal. 280

Using the subscript H for the Helmholtz motion, 281

the fundamental frequency is fH1 = c/2(l + x1) (the 282

wavelength is twice the total length of the cone). The 283

frequency fHn of the nth harmonic is given by: 284

fHn =
nc

2(`+ x1)
. (12)

The value of the signal during the longer episode 285

is γ (when the reed does not close the mouthpiece), 286

while the value during the shorter episode is −(1 − 287

β)γ/β (when the reed closes the mouthpiece, for the 288

definition of β, see Eq. (1)). This case corresponds 289

to the condition γ > β, which is often satisfied in 290

practice at least for the lowest notes (see Ref. [9]), 291

as well for the choice of parameters in the theoretical 292

part of the present paper. The spectrum components 293

of the input pressure p(t) are as follows: 294

Pn = −γ (−1)n sinXn

Xn
(13)

Xn = 2π fHnx1

c = kHnx1 (14)

= nπx1

`+x1
= nπβ. (15)

Here, and in what follows, the pressure is dimension- 295

less: all pressures in the resonator are divided by 296

the reed closure pressure pM , which is proportional 297

to the reed stiffness. The waveshape and the rela- 298

tive pressure spectrum are independent of the exci- 299

tation parameters. The flow rate u(t) at the input 300

is constant, in order for the input average power per 301

period to vanish. For frequencies fm = mc/(2x1), 302

sinXm = sin(mπ) = 0: there is a zero in the pressure 303

spectrum, under the condition that m/n = β is ratio- 304

nal. If β is irrational, there is a minimum amplitude 305

near the frequencies fm. As a consequence, whatever 306

the cone length `, there is an amplitude minimum 307

around these frequencies, i.e., an anti-formant, and 308
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these frequencies are the natural frequencies of the309

length x1 of the missing cone.310

Writing x1 = (`+ x1)− `, Eq. (13) implies:311

sinXn = (−1)n sin(nπ`/(`+ x1)) (16)

= (−1)n sin(kHn`), (17)

thus Eqs. (6) and (13) give the amplitude of the out-312

put flow rate:313

U2,n =
γ

Xn

πR1R2

%c
. (18)

There are no zeros in the spectrum of the output314

flow rate. Eqs. (7, 18) show that the spectrum of the315

external pressure Pext is constant and the signal is a316

Dirac comb. Neither formants nor anti-formants exist317

in the radiated pressure Pext.318

3.2 Comparison of a cylindrical saxo-319

phone with a truncated cone320

The present study was motivated by a paradox pre-321

sented in a conference paper by some authors of the322

present article [23], and summarized hereafter.323

For bassoon sounds, Gokhstein [7] showed both ex-324

perimentally and theoretically that the duration of325

reed closure is independent of the played note, i.e., of326

the equivalent length of the resonator. This duration327

is related to the round trip of a wave over a length328

equal to that of the missing part of the cone x1. The329

corresponding frequency is the natural frequency of330

this length c/(2x1). This seems to validate the anal-331

ogy with the bowed string excited at a given length of332

the bridge (or with the cylindrical saxophone, which333

is also analogous to a kind of stepped cone [10]). This334

was studied in several papers [8, 9, 10]. However the335

analogy is known to be valid only if the length of the336

missing cone is small compared with the wavelength337

(see Condition (9)). This condition is not fulfilled for338

the natural frequency of the missing part, which is339

equal to the half of the corresponding wavelength.340

Thanks to the bowed string analogy, useful conclu-341

sions can be drawn concerning important features of342

the sound production, such as oscillation regimes and343

amplitudes. A priori accurate insight of the tone color344

for higher frequencies, which do not fullfil the condi-345

tion (9), cannot be expected. Nevertheless measured346

spectra of the internal pressure of saxophones exhibit347

minima [22] at frequencies corresponding roughly to348

the harmonics of the fundamental frequency c/(2x1).349

On the one hand this is an argument in favour of350

the analogy with the Helmholtz motion, while on the351

other hand this result is paradoxical because for these352

frequencies, the condition (9) is not fulfilled. It will353

be shown how inharmonicity of the resonator, which354

exists neither in a perfect string nor in a cylindrical355

saxophone, plays a major role in a real conical instru-356

ment. In particular it implies that the playing fre-357

quency differs from natural frequencies c/(2(x1 + `)) 358

of the complete cone. 359

In order to make easier the comparison of the re- 360

sults for a truncated cone with those for the Helmholtz 361

motion, we define a quantity proportional to the ex- 362

ternal pressure (Eq. (7)) and inversely proportional 363

to the blowing pressure, i.e., to the square root of the 364

radiated power, as follows: 365

W = U2
%c

πR1R2γ
kx1. (19)

We call W the normalized output flow rate. For the 366

Helmholtz motion and the harmonics of the playing 367

frequency, which is our reference, |W | is unity (see 368

Eqs. (18) and (15)). For the truncated cone, we re- 369

define the transfer functions (5 and 6), as follows: 370(
P
U

)
=

(
Fp
Fu

)
W (20)

with 371

Fp =
jγ

kx1
sin(k`), (21)

Fu = S1

ρc
γ
kx1
{(cos(k`) + sin(k`)/(kx1)

− sin(k`)kx1/3}.
(22)

4 Playing frequency of a conical 372

instrument 373

The playing frequency is a compromise between the 374

different modes of the resonator and varies with the 375

excitation parameters (see especially [24, 25]). For a 376

truncated cone, the playing frequencies slightly differ 377

from the resonance frequencies of the cylindrical sax- 378

ophone, and the consequences for the pressure spec- 379

trum are significant. In the present section the values 380

of the playing frequency are studied. Then, in section 381

5 the dependence of the formants and anti-formants 382

on the playing frequency is investigated. 383

It is often considered that the playing frequen- 384

cies are very close to the natural frequencies of the 385

resonator. However several causes of discrepancies 386

between playing and natural frequencies were re- 387

cently investigated for reed cylindrical instruments 388

[26]. Among them there is the effect of inharmonic- 389

ity of the resonator for conical instruments, which are 390

truncated cones. The effect of the truncation is im- 391

portant, even if it is limited by a proper choice of the 392

mouthpiece dimensions. When the approximation of 393

the cylindrical saxophone is abandoned, the playing 394

frequencies differ from the natural frequencies of the 395

total length `+ x1 (Eq. (12)). 396

4.1 Numerical estimation of the play- 397

ing frequencies (RTC model) 398

Using the numerical RTC model, including the exci- 399

tation model and the resonator model corresponding 400
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Figure 4: Length z (−z is the length correction) re-
lated to the playing frequency represented by the ratio
`/x1 for several values of the length ` of the trun-
cated cone (simulation results). When ` varies from
0.35 m to 0.67 m, the ratio β decreases from 0.26
to 0.16. x1 = 0.126m. Thin, black lines: dotted
(γ = ζ = 0.4), mixed (γ = 0.45; ζ = 0.85), dashed
(γ = 0.4; ζ = 0.65). +++ -blue online) Formula (25),
for one, two, three terms of the series (from bottom
to top). xxx (red online) Formula (26), for one, two,
three terms of the series (from bottom to top).

to Eq. (8), the playing frequency of the first periodic401

regime was determined. In order to calculate the play-402

ing frequency, we seek the number of samples between403

two changes in sign of the input pressure (when the404

pressure is negative and becomes positive). The typ-405

ical number of samples for one period is larger than406

1000. The relative error on the total equivalent length407

is less than 0.1%, and that on the length correction is408

less than 1%.409

It is convenient to represent the shift between the410

playing frequency fp and that of the ideal Helmholtz411

motion by a length correction, denoted −z , as follows412

:413

kp =
2πfp
c

=
π

`+ x1 − z
. (23)

z = 0 corresponds to the case where these two fre-414

quencies are equal. The thin lines in Fig. 4 show, for415

three pairs of (γ, ζ), that the length correction is neg-416

ative, entailing that the playing frequency is higher417

than the first resonance frequency. The length z is418

significantly smaller than the length x1 of the missing419

cone, and consequently much smaller than the total420

length, whatever the value of the cone length `. How-421

ever the comparison of the classical approximation of422

the resonance frequency c/2/(`+ x1) and the playing423

frequency shows that the difference between them is424

not negligible: 4% for ` = 0.35m, i.e., 60 cents, and425

1% for the lowest note (` = 0.67 m), i.e., 15 cents.426

For dimensions close to those of a soprano saxo-427

phone, the choice of 0.35m as the shortest value for428

the cone length is due to the difficulty for finding a429

periodic regime with the ab initio computation and430

a short `. The playing frequencies are in the range 431

[209Hz, 438Hz] for c = 340 ms−1. The issue of the 432

regime stability is complicated, and is out of the scope 433

of the present paper (see [9, 12, 27]). 434

4.2 Analytical estimation of the play- 435

ing frequencies 436

In order to understand the role of inharmonicity in 437

the playing frequency, the influence of the second 438

resonance frequency, which is higher than twice the 439

first, and that of the third one, can be estimated in 440

a quantitative way. For this purpose, the result due 441

to Boutillon [28] is used, valid under the condition 442

that the reed dynamics is ignored. With this con- 443

dition, this is one of the equations of the Harmonic 444

Balance Method (HBM, see for an explanation [19, 445

p. 518]), therefore it does not need the computation 446

of the transient. Considering that the length correc- 447

tion depends little on the excitation parameters, the 448

spectrum of the input pressure is approximated by 449

its value for the Helmholtz motion, and it is possi- 450

ble to find analytically an order of magnitude of the 451

length correction. The “reactive power rule” leads to 452

the equation to be solved for the unknown playing 453

frequency, denoted ω: 454∑
n

n |Pn|2 Im [Y (nω)] = 0. (24)

Pn is given by Eq. (13). In Appendix A, two approx- 455

imate methods of calculation for the corresponding 456

length correction −z are used. The first one gives the 457

result: 458

z =

∑
n
znn

2 sin2(nπβ)/Resn∑
n
n2 sin2(nπβ)/Resn

, (25)

where zn is the length correction corresponding to the 459

nth resonance frequency and Resn the residue of this 460

resonance in the formula (8) of the input impedance. 461

If the lengths zn were equal for all resonance frequen- 462

cies (no inharmonicity), the correction for the playing 463

frequency would be equal to them. 464

Fig. 4 compares the numerical results with those 465

obtained using the two formulas (25) and (26, see 466

hereafter). For the first one, the main features are 467

the correct order of magnitude when more than one 468

term are kept in Eq. (25), and the global decrease 469

when the length ` increases. The difference between 470

the results with 1 and 2 terms exhibits the importance 471

of the inharmonicity between the first two resonances, 472

due to the truncation of the cone (the result limited to 473

one term is nothing else than the length correction for 474

the first resonance). It appears that the playing fre- 475

quency obtained from the numerical computation lies 476

between the results of Eq. (25) for 2 and 3 harmonics 477

(i.e., for 2 and 3 terms of the series). The calcula- 478

tion with 4 terms gives bad results, as explained in 479
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Appendix A, after Eq. (A10). It can be concluded480

that the second and third harmonics play an impor-481

tant role in the value of the playing frequency. More-482

over, although the excitation is ignored in Eq. (25),483

this calculation gives a qualitative agreement with the484

complete computation of the oscillations.485

The second method is an analytical approximation486

of Eq. (25), which is satisfactory for one harmonic,487

but for two and three harmonics, it is satisfactory only488

for long length ` (` >> x1), i.e., when the resonance489

frequencies are low. It gives the following approxima-490

tion:491

z ' x1
π4β4

45

1 + 16 cos2(πβ) + 9
[
3− 4 sin2(πβ)

]2
1 + cos2(πβ) +

[
3− 4 sin2(πβ)

]2
/9

.

(26)

The three terms of the numerator and the denomi-492

nator correspond to the first three terms of Eq. (25).493

Finally, using Eq. (A10), the inharmonicity be-494

tween the first two resonance frequencies can be cal-495

culated from the ratio of the two frequencies:496

f2
2f1

=
`+ x1 − z1
`+ x1 − z2

=
45− π4β5

45− 16π4β5
. (27)

This gives 8% (more than a semi-tone) for the short-497

est length considered (0.35 m), and 1% for the longest498

length (0.67 m). As a consequence, the choice of the499

mouthpiece volume reduces the inharmonicity, but in-500

harmonicity remains important.501

5 Analytical study of the trans-502

fer functions for the harmon-503

ics of the playing frequency504

In order to investigate the spectrum of the acous-505

tic quantities, we need to calculate their values at506

the harmonics of the playing frequency. The anti-507

formants of the input pressure and flow rate corre-508

spond to the frequencies of the minima and maxima509

of the input impedance sampled at the harmonics of510

the playing frequency.511

5.1 Input impedance extrema for the512

harmonics of the playing fre-513

quency514

When the length correction for the playing frequency515

is ignored (or independent of the length `), it was516

noticed in [23] that, for the harmonics of the play-517

ing frequency, the frequencies of some extrema of the518

sampled input impedance are independent of the cone519

length, i.e., of the note. Indeed, for the harmonics520

of the playing frequency, f = nc/2(` + x1 − z), i.e.,521

k` = nπ − k(x1 − z), the following equation can be 522

written as: 523

cot(k`) = − cot(k(x1 − z)). (28)

If z is independent of the length `, the latter dis- 524

appears in the expressions of the zeros of the transfer 525

functions. The values of the impedance for the har- 526

monics of the playing frequency are located on the 527

following curve: 528

Z =
ρc

S1

j sin(k(x1 − z))
− cos(k(x1 − z)) + sin(k(x1 − z))H(kx1)

.

(29)
where H(kx1) = [1/(kx1)− kx1/3]. Therefore the 529

extrema of this expression do not depend on ` and are 530

common to all notes. They correspond to the zeros 531

of the following equations, derived from Eqs. (21 and 532

22) with Eq. (28): 533

tan(k(x1 − z)) = 0 (30)

cot(k(x1 − z)) = 1/kx1 − kx1/3. (31)

The first equation gives the frequencies of the 534

impedance minima, while the second gives those of 535

the impedance maxima. 536

What happens if z is slowly varying with the length 537

` ? The corresponding extrema vary little with `. 538

Figure 5 shows the input impedance modulus for the 539

harmonics of the playing frequency. The results for 25 540

values of the length are superimposed. A dotted line 541

shows an example of input impedance for a given note. 542

The length correction −z, as numerically calculated 543

in Section 4, slightly varies with the length `, so do 544

the values of the frequencies of the extrema. They are 545

included in a small range. This enlarges the formants 546

and anti-formants of the impedance curve sampled at 547

the harmonics of the playing frequencies. 548

In the next subsections the values of the zeros of the 549

transfer functions, i.e., the solutions of Eqs. (30) and 550

(31), are investigated. The zeros of Eq. (30) give the 551

anti-formants of the input pressure, while the zeros of 552

Eq. (31) give the anti-formants of the flow rate. 553

In order to obtain more general results, we extend
the model of the resonator. The mouthpiece is as-
sumed to remain lumped and lossless, with a volume
equal to ηS1x1/3 (for η = 1, it is that of the missing
cone), but an acoustic mass Mm = σ%x1/S1 is added
(for σ = 1, this is that of a cylinder of length x1 and
cross section area S1). Adding an acoustic mass does
not make the calculation of the resonator more com-
plicated, while the complete computation algorithm
for the oscillations should be more complicated. It
is the reason why the model extension is limited to
this section. Eqs. (30) and (31) are replaced by the
following:

−1/(σkx1) = − cot(k(x1 − z)) + 1/(kx1) (32)

kx1η/3 = − cot(k(x1 − z)) + 1/(kx1). (33)
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Figure 5: Values of the input impedance for the har-
monics of 25 fundamental frequencies included in the
first register of a soprano saxophone (thick points,
blue online), corresponding to 25 values of the trun-
cated cone length `. The impedance is calculated from
Eq. (8), and plotted in dB: 20log(|ZS1/ρc|) . The fre-
quency is in Hz. The calculation of the playing funda-
mental frequencies uses the results presented in Fig. 4
for γ = 0.4; ζ = 0.65. In order to exhibit an example,
the results for one length is indicated by a cross ’X’
for `=0.352 m, and the complete impedance curve for
this length is drawn by a thin line (red online).

These equations correspond to the equality of the554

admittances (divided by the factor jρc/S1), when pro-555

jected on the two sides of the junction. The output556

of the mouthpiece is on the left-hand side, while the557

input of the truncated cone is on the right-hand side.558

For Eq. (32), the input impedance of the mouthpiece559

vanishes, i.e., it goes though a minimum, while for Eq.560

(33), it is infinite, i.e., it goes through a maximum.561

Using Eq. (28), the parameter ` has been substituted562

by the parameter z. In the following subsections, ap-563

proximated solutions of Eqs. (32) and (33) are sought564

with respect to z and σ or η as:565

kx1 = nπ(1 + ε)), (34)

where ε is a small unknown. Therefore566

tan(k(x1 − z)) ' nπ(ε− z/x1) (35)

after expanding the tangent function to the first order567

in ε and z/x1.568

5.2 Frequencies of the input flow rate569

anti-formants vs the playing fre-570

quencies571

The frequencies of the flow rate anti-formants (which572

correspond to the maxima of the sampled impedance)573

are first investigated by using Eqs. (33) and (35). At574

the first order in ε and z/x1, straightforward algebra575

0 0.05 0.1 0.15 0.2 0.25
0

0.5
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Figure 6: Frequency of the impedance maxima for
the harmonics of the playing frequency with respect
to the length z. η = 1. Circles: numerical results of
Eq. (33) (blue online); dashed lines: Eqs. (37), for
n = 1, 2,3; dotted line: Eq. (38).

leads to the following result: 576

ε = − 1

αn
+

z

x1

[
1− 1

αn

]
, with αn =

η

3
n2π2. (36)

Thus 577

kx1 = nπ

[
1− 1

αn

] [
1 +

z

x1

]
. (37)

578

Figure 6 shows the comparison between Eq. (37) 579

and the exact solutions of Eq. (33). The agreement of 580

Eq. (37) with the exact result is satisfactory, except 581

for n = 1. For this value it is found that when z/x1 582

is small, the quantity ε is not small (equal to −1/3). 583

For n = 1 and small z/x1 the formula (37) needs to 584

be replaced by the solution of Eq. (A10) of Appendix 585

A, as follows: 586

kx1 = (45z/x1)1/4 (38)

if η = 1. Fig. 6 shows the case η = 1. Similar 587

behaviour is found when the mouthpiece volume is 588

different (η 6= 1). Eq. (38) shows that for small z, 589

there is a great variation of the frequency of the first 590

formant. The variation of the other solutions with z 591

(for n = 2, 3) in Eq. (37) is significant, but narrower. 592

As an example, for the case in study and n = 2, 20% 593

is a typical variation. This is related to the width of 594

formants. 595

5.3 Frequencies of the input pressure 596

anti-formants vs the playing fre- 597

quencies 598

The frequencies of the pressure anti-formants (which 599

correspond to the minima of the sampled impedance) 600

are obtained by using Eqs. (33) and (35). The result 601

is 602

kx1 = nπ(1 + σ)(1 + z/x1). (39)
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Figure 7: Frequency of the impedance minima for the
harmonics of the playing frequency with respect to
the length z. Circles: numerical results (blue online);
dashed lines: Eq. (39) for σ = 1/12.

These frequencies are also slightly higher than the603

values nπ, which would be the values for the ideal604

Helmholtz motion. Moreover they vary significantly605

with z, i.e., with the playing frequency of the note606

played. The order of magnitude of the variation is607

the same as that for the flow rate. Fig. 7 compares608

this formula with the exact solutions of Eq. (30). The609

agreement is sufficient for an estimation of the influ-610

ence of the pair of parameters (z/x1, σ). The value611

of the mouthpiece parameters have been chosen as612

follows: the mouthpiece is assumed to be cylindrical,613

with a cross section area Sm = 2S1, and a volume614

Sm`m is equal to that of the missing cone length (`m615

is the mouthpiece length)616

σ =
S1

Sm

`m
x1

=
1

3

(
S1

Sm

)2

=
1

12
. (40)

For a cylindrical saxophone, the common minimum617

when x1 is constant and ` varies, is given by kx1 = nπ,618

i.e., sin(kx1) = 0. Because z = 0 for a cylindrical619

saxophone, this is in accordance with Eq. (39), if620

the acoustic mass of the small part of the cylinder is621

ignored.622

As a conclusion, the frequencies of the anti-623

formants of both the input pressure and the input624

flow rate are increasing functions of the length z. Fur-625

therore the frequencies of the pressure anti-formants626

depend in a non negligible way on the acoustic mass627

of the mouthpiece.628

6 Numerical results for the629

spectra630

6.1 Internal and external spectra for a631

given length.632

After the study of the transfer functions, we use the633

numerical solving of the full RTC model, including the634

0 5 10
-100

-50

0
|F

p
|(dB)

0 5 10
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-50

0
|F

u
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Figure 8: (top) Comparison between the input pres-
sure P (ooo, blue online) for the harmonics of the
playing frequency (275Hz) and the transfer function
Fp (+++ black online)). x1 = 0.126m, ` = 0.4,mγ =
0.4,ζ = 0.65. (bottom) Comparison between the in-
put flow rate U (ooo) for the harmonics of the playing
frequency and the transfer function Fu (+++) (. The
small crosses (red online) represent the transfer func-
tions for a continuous variation of the frequency. Plot
in logarithic scale: 20log(|Fp|) and 20log(|Fuρc/S1|) .

excitation, and find the input pressure P , the input 635

flow rate U , and the normalized output flow rate W 636

(see Eq. (19)), which is proportional to the external 637

pressure. The RTC model [16] gives the input quan- 638

tities, and the value of the outgoing pressure wave, 639

which is denoted P+
2 = P+(x2) (see Eq. (3)). The 640

output flow rate can be derived as follows: 641

U2 = 2
S2

ρc
P+
2 , therefore W = 2P+

1

kx1
jγ

. (41)

The chosen model is the simplest (η = 1; σ = 0, see 642

Eqs. (32, 33)). Fig. 8 (top) shows the comparison 643

between the spectrum modulus of the transfer func- 644

tion Fp (Eq. (21)) and that of the input pressure 645

signal P . For a cylindrical saxophone, because W 646

is unity (see Section 3.2), the two spectra would be 647

identical. It appears that the effect of the cone trun- 648

cation and the mouthpiece are significant, except for 649

the first harmonics. The output flow rate cannot be 650

infinite, therefore the zeros of the transfer function 651

Fp are zeros of the input pressure signal. For a bet- 652

ter comparison between P and Fp, we complete the 653

transfer function at intermediate frequencies, by us- 654

ing Eq. (28), i.e., by replacing k` by −k(x1 − z) in 655

the expressions (21). The values at the harmonics of 656

the playing frequency are located on this curve. 657

The bottom of the figure allows similar observations 658

when comparing the transfer function Fu (Eq. (22)) 659

and the spectrum of the input flow rate U . 660

Fig. 9 shows the normalized output flow rate W . 661

For a cylindrical saxophone, it would be equal to unity 662

(i.e., the logarithm would vanish). In order to check 663
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Figure 9: Normalized output flow rate |W |. Eq.
(19) is computed in 3 ways: direct computation of
the spectrum from the time-domain (*** blue on-
line), |P/Fp|(ooo black online), |U/FU |(+++ red on-
line). dB is 20log(|W |) (for a cylindrical saxophone,
20log(|W |) vanishes). x1 = 0.126m, ` = 0.4,m
γ = 0.4, ζ = 0.65.

the consistency of the results, the computation of664

W was done by using the direct result of the time-665

domain calculation, then the computation of the ra-666

tios |P/Fp|, |U/FU |. The (small) discrepancies can667

be due to numerical error in the determination of the668

playing frequency, or in the calculation of the spectra.669

It appears that for higher harmonics, the flow rate670

is much lower than that of the Helmholtz motion. A671

maximum appears at kx1= 6.2. For a soprano saxo-672

phone, this corresponds to a frequency equal to 2700673

Hz. Benade and Lutgen [29] found what they called674

“notches” in the external pressure signals, when aver-675

aged over the room of the recording. A precise com-676

parison with our results seems to be difficult, because677

of the simplicity of our model. A comparison with a678

more complete model should be useful.679

6.2 Anti-formants in the internal spec-680

trum681

The transfer functions (Eq. (21, 22)) are calculated682

for 32 values of the length ` and for the harmonics683

of the playing frequencies. The curves are superim-684

posed in Fig. 10. Strong minima appear, therefore685

anti-formants can be expected in the spectra of the686

internal pressure and the internal flow rate. The fig-687

ure 10 shows that despite the variation of the length688

correction −z with the note played, the frequencies of689

the minima and maxima vary little with the note, in690

accordance with the results of Sect. 5. The central691

values of the minima depend on a unique parameter,692

x1. The first ones are located at: kx1 = 3.4; 6.7; 10.1693

for Fp and 1.6; 6.2; 9.9 for Fu.694

Fig. 11 is obtained with the RTC model. It con-695

firms that anti-formants exist for the two input quan-696

tities, at the position of the minima of the transfer697
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Figure 10: Transfer functions |Fp| and |FU | for 32
values of the the length `. Plot in dB 20log(|Fp|) and
20log(|Fuρc/S1|) . x1 = 0.126m, ` = 0.33m to 0.64m
γ = 0.4, ζ = 0.65.
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Figure 11: Input pressure P , input flow rate U , nor-
malized output flow rate W for 32 values of the length
` (in dB: 20log(|P |), 20log(|Uρc/S1|), 20log(|W |)).
x1 = 0.126m, ` = 0.33m to 0.64m γ = 0.4, ζ = 0.65.

functions. For a truncated cone, their width depends 698

on the variation of the length correction with the cone 699

length. We checked that the influence of the excita- 700

tion parameters is weak. 701

What happens for the external spectrum, propor- 702

tional to that of W? Formants seem to exist near 703

kx1 = 6.2 and 10, and maybe anti-formants near 704

kx1 = 5, 8 and 11. There is a significant difference 705

with the anti-formants of the input quantities: we do 706

not know the relationship with the transfer functions. 707

It could be supposed that they depend mainly on the 708

excitation, but this is not the case. Changing the val- 709

ues of the excitation parameters does not modify the 710

general shape of the Figure 11, including the values of 711

the extrema. Moreover the dependence on the mouth- 712

piece volume appears to be slight. The determination 713

of the correlation between the resonator model and 714

the formants and anti-formants remains a topic to be 715

investigated, but probably with a much more com- 716

plete model. This will be discussed now in the light 717
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of experimental results.718

7 Experimental results for the719

mouthpiece pressure, com-720

parison with the RTC model721

Decreasing chromatic scales (16 notes of the first reg-722

ister) were played by a saxophonist for a soprano sax-723

ophone Selmer Mark VI, an alto saxophone Buffet-724

Crampon Senzo, and a baritone saxophone (Yanagi-725

sawa B-901). A microphone Endevco 8507-C2 is lo-726

cated within the mouthpiece. The Fourier analysis727

(FT) is done on one period, chosing a portion of each728

note where the pitch is rather stable.729

Figure 12 shows the results for the internal pres-730

sure. The similarity of the results for the three saxo-731

phones, when scaled by the length x1, is remarkable732

up to kx1 ' 6. This value corresponds to 2580 Hz,733

1650 Hz, and 1080 Hz, respectively. This confirms the734

essential significance of the length of the missing cone735

at low frequencies. Using a first order filter, we com-736

pute a smoothed value for the harmonics of different737

notes. These experimental results can be compared738

to the numerical results of Figure 11. The amplitudes739

of the experimental and theoretical results seem to be740

rather similar. However this direct comparison is not741

relevant, because the amplitudes depend on the exci-742

tation parameters, which were not measured for the743

experiment: a mezzo forte note was played with each744

instrument, without specific constraint for the musi-745

cian. However the amplitude variation from lower to746

higher frequencies can be compared for the three in-747

struments.748

The frequencies of the minima (given by dotted ver-749

tical lines) are very similar for the three measured sax-750

ophones. However the frequencies given by the model751

are higher than the experimental ones. A reason can752

be the influence of the existence of taper variation, or753

that of the acoustic mass of the mouthpiece, because754

it is in series with the input impedance of the trun-755

cated cone. For simplicity, the mass is ignored in the756

present model, because taking the mass into account757

would require a very different discretized oscillation758

model. However, for σ close to 0.1, Eq. (39) gives759

a correct order of magnitude of the necessary correc-760

tion for the first frequency of minimum. Obviously,761

at higher frequencies, the assumption that the mouth-762

piece is smaller than the wavelength is questionable763

as well. We checked that the excitation parameters764

play a weak role on these frequency values.765

An attempt to measure the external pressure was766

done, with a microphone close to the first open tone-767

hole. However, as it is known (see e.g. [5, 29, 30, 31]),768

the pressure spectrum strongly depends on the loca-769

tion of the microphone. Above cutoff (for a discussion770

about the definition of the cutoff frequencies due to771

toneholes, see Ref. [32]), the external pressure field772
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Figure 12: Mouthpiece pressure. From top to bot-
tom: experimental results for a decreasing chromatic
scale played on a soprano saxophone (x1 = .126m), an
alto saxophone (x1 = 0.196m) and on a baritone sax-
ophone (x1 = 0.301m) The abscissa is kx1 for the dif-
ferent saxophones, with different x1. Bottom: numer-
ical results given by Fig. 11. Plot in dB: 20log(|P |).
Solid, line (blue online): smoothed value of the har-
monics.
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is the result of complicated interferences, and is very773

different from the one of a monopole. For a soprano774

saxophone, the cutoff can be evaluated at 1200Hz775

(kx1 ' 2.8): . Moreover at this frequency the ra-776

diation by the bell is not that of a monopole (kR2 is777

close to 1.5). Notice that there are bends in baritone778

saxophones, therefore the interference pattern is nec-779

essarily different from that of the (straight) soprano780

saxophone.781

These reasons are sufficient to explain why our pre-782

liminary results for the soprano and baritone saxo-783

phones are very different. In Ref. [29], the authors784

found that the general shapes of the external spectra785

can be approximated by two straight lines, crossing786

at 618 Hz for an tenor saxophone, and 837 Hz for an787

alto saxophone. The first line was increasing, while788

the second was decreasing. The major interest of the789

approach of these authors was the measurement of an790

average pressure in a room.791

Concerning the model, it appears that the simple792

theoretical model is not able to give any prediction of793

the external spectrum. The first reason lies in the ig-794

norance of the tonehole effects. Moreover many other795

phenomena intervene: boundary layer losses, radia-796

tion, reed dynamics, etc. Therefore complete study797

remains to be carried out, and is out of the scope of798

the present paper.799

8 Conclusion800

Conclusions can be drawn for the pressure spectrum801

in the mouthpiece:802

� Anti-formants exist in the spectra of the mouth-803

piece pressure and input flow rate, and their804

frequencies are mainly related to the resonator.805

The values of their frequencies are related to the806

length of the missing cone. Formants exist as807

well. Their effect is less strong, but their exis-808

tence can be regarded as a consequence of that809

of anti-formants.810

� Concerning the spectra of different instruments811

of the saxophone family, they appear to be very812

similar, taken into account the scaling of the813

missing cone length x1.814

� The frequencies of the anti-formants are close815

to the natural frequencies of the missing cone816

length, but slightly higher. This is not in con-817

tradiction with the hypothesis that the product818

kx1, i.e. the ratio of the missing cone length to819

the wavelength, can be regarded as a small quan-820

tity for these frequencies, but the explanation is821

not straightforward: it is related to the consider-822

ation of the sampling of the input impedance at823

the harmonics of the playing frequency. This is824

a major difference with a cylindrical saxophone,825

for which the harmonicity of the resonance fre- 826

quencies is perfect, and the playing frequency is 827

equal to that of the first impedance peak (for the 828

simplest model). 829

� In other words, the difference between the inhar- 830

monicity of the resonator and the harmonicity of 831

the spectrum in the periodic signals explain why 832

minima exist in the input pressure and in the in- 833

put flow rate. 834

� Furthermore inharmonicity of a conical instru- 835

ment implies a variation of the negative length 836

correction, denoted −z in the present paper, 837

when the length of the truncated cone varies. 838

This is in particular true for the inharmonicity 839

due to the cone truncation. A consequence is a 840

small variation of the minimum pressure frequen- 841

cies with the length of the truncated cone, i.e., 842

with the played note, and an enlargement of the 843

anti-formants. However, despite of this variation, 844

existence of anti-formants is clear. 845

� The simplified model of [16] allows an interesting 846

prediction of the waveshapes, and of the existence 847

of anti-formants in the spectra of the input quan- 848

tities. This is true at least up to kx1 ' 7., i.e., 849

up to a ratio of the missing cone length to the 850

wavelength equal to unity. 851

� Assuming a monopole radiation, the external 852

pressure diminishes with the frequency, much 853

more rapidly than for an ideal cylindrical sax- 854

ophone (see Fig. 9) . Numerical results show 855

that formants exist for the external spectrum and 856

their dependence on the excitation parameters is 857

weak. However their dependence on the geomet- 858

rical parameters remains to be understood. It 859

cannot be easily derived from that of the input 860

quantities. 861

� A convincing comparison with experiment re- 862

quires both a much more complete model and 863

measurements at different microphone locations 864

of the radiated sound. 865
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.879

Appendix A: Approximate calcu-880

lations of the playing frequency881

The formula (24) can be rewritten by applying the882

residue calculus to the modal expansion of the input883

impedance (Eq. (8), see e.g. Ref. [19], p. 167)):884

Z(ω) =
∑
m

Resm
ωp − ωm

. (A1)

The ωm’s are the poles and the Resm’s are the885

residues. Because the input impedance is written in886

the form (8), which ensures that the numerator has887

no pole, the residues are obtained as the ratio of the888

numerator to the derivative of the denominator (see889

[19] p. 167). Because no losses are considered, the890

poles are real. An approximate value of Z(ω) at a891

given frequency can be found by truncating the se-892

ries to one term only, which corresponds to the pole893

which is closest to this frequency. It is assumed that894

the frequency ωm is close to nω, therefore the sub-895

script m is replaced by n. With this assumption, Eq.896

(24) becomes:897 ∑
n

n |Pn|2 (nωp − ωn)/Resn = 0, (A2)

therefore:898

ωp =

∑
n
n |Pn|2 ωn/Resn∑
n
n2 |Pn|2 /Resn

. (A3)

If all natural frequencies are harmonically related,899

ωn = nω1, and ωp = ω1. Another expression can900

be found by defining the length corrections zn for the901

different resonance frequencies, as follows:902

kn =
ωn
c

=
nπ

`+ x1 − zn
' nπβ

x1

(
1 + zn

β

x1

)
. (A4)

The latter expression is valid at the first order of903

zn/(` + x1). Using this expression, and a similar ex-904

pression for kp derived from Eq. (23), Eq. (A2) be-905

comes:906

z =

∑
n
znn

2 |Pn|2 /Resn∑
n
n2 |Pn|2 /Resn

. (A5)

If the pressure spectrum is assumed to be that of the907

Helmholtz motion (Eq. (13)), Eq. (25) is obtained.908

Two calculations of the values of zn and Resn are909

used: i) an exact calculation of the resonance frequen-910

cies, which are zeros of the the input impedance (Eq.911

(11)), and the corresponding residues; ii) an analyti-912

cal approximation of these quantities.913

It is possible to slightly enlarge the hypothesis for914

Eq. (25). Now the volume of the mouthpiece is not915

necessarily equal to that of the missing cone. We de- 916

note it V = ηx1S1/3. For the exact volume of the 917

missing cone, η = 1. In the denominator of Eq. (8), 918

the factor 1/3 is replaced by η/3 , thus the resonances 919

are given by: 920

cot(k`) + 1/(kx1)− ηkx1/3 = 0, (A6)

The poles are numerically computed as solutions of 921

Eq. (A6). From Eq. (8), the residues are found to 922

be: 923

13



Res−1n = − S1

jωρ

`+ x1 + k2nx
2
1(`(1− 2η

3 + ηx1

3 −
2`
3 k

2
nx

2
1) + η2 `9k

4
nx

4
1

k2nx
2
1

. (A7)
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where kn = ωn/c are numerically computed as so-925

lutions of Eq. (A6). Using Eq. (A4), the length cor-926

rections of the resonance frequencies zn are deduced.927

Then Eq. (25) is directly calculated (remember that928

Eq. (25) is an approximation, because the real spec-929

trum of the input pressure is replaced by that of the930

Helmholtz motion). Figure 4 shows that for η = 1931

Eq. (25) gives lower and upper bounds for the exact932

values, when two and three terms of the series are933

taken into account. When η is slightly different of934

unity, the length correction is significantly modified,935

but Eq. (25) remains satisfactory.936

The second kind of calculation needs a further937

step. A first simplification is to approximate the res-938

onance frequencies by those of the Helmholtz motion939

(kn = nπβ). This is a good approximation, entailing940

a small error (of the second order in z/x1). The sec-941

ond simplification is based on the approximated cal-942

culation of the length corrections zn, by using a series943

expansion, as follows. From the definition (A4),944

cot(kn`) = − cot(kn(x1 − zn)). (A8)

Therefore Eq. (A6) can be rewritten as:945

cot(kn(x1 − zn)) = +
1

kx1
− ηkx1

3
. (A9)

If the argument of the cotangent function is small,946

the following expansion can be used: cot(x) ' 1/x−947

x/3 − x3/45. At this order of the cotangent function948

and at the first order in zn/x1 (see Eq. (A4)), this949

leads to the following result:950

zn/x1 =
k2nx

2
1

3

[
1− η +

k2nx
2
1

3

(
1

5
+ η − 1

)]
. (A10)

The order of the expansion limits the value of951

nk1x1 ' nπβ to approximately unity. β being smaller952

than unity, the following calculation is limited to953

n = 3, and this implies the truncation of the series954

in Eq. (A2). For the case η = 1, the final result is955

found to be:956

z ' x1
π4β4

45

3∑
n=1

n2sin2(nπβ)

3∑
n=1

n−2sin2(nπβ)

. (A11)

We remind that the length correction is −z. This957

can be rewritten as Eq. (26). Equations (A3) and958

(A5) can be used for other causes of inharmonicity.959

For that purpose, it could be interesting to analyse in960

details all causes of inharmonicity, as did Debut [33]961

for a clarinet. As an example, the inharmonicity due962

to open toneholes is negative (with a positive length963

correction), while that due to the cone truncation is964

positive. Such an effect can be large for fork finger-965

ings [34], and entails significant effect on the playing966

frequency.967
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