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Role of the resonator geometry on the pressure spectrum of reed conical instruments

Spectra of musical instruments exhibit formants or

2 anti-formants which are important characteristics of 3 the sounds produced. In the present paper, it is shown 4 that anti-formants exist in the spectrum of the mouth-5 piece pressure of saxophones. Their frequencies are 6 not far but slightly higher than the natural frequen-7 cies of the truncated part of the cone. To determine 8 these frequencies, a first step is the numerical deter-9 mination of the playing frequency by using a simple 10 oscillation model. An analytical analysis exhibits the 11 role of the inharmonicity due to the cone truncation 12 and the mouthpiece. A second step is the study of 13 the input impedance values at the harmonics of the 14 playing frequency. As a result, the consideration of 15 the playing frequency for each note explains why the 16 anti-formants are wider than those resulting from a 17 Helmholtz motion observed for a bowed string. Fi-18 nally numerical results for the mouthpiece spectrum 19 are compared to experiments for three saxophones 20 (soprano, alto and baritone). It is shown that when 21 scaled by the length of the missing cone, the anti-22 formant frequencies in the mouthpiece are very similar 23 for the three instruments. The frequencies given by 24 the model are close to the natural frequencies of the 25 missing cone length, but slightly higher. Finally, the 26 numerical computation shows that anti-formants and 27 formants might be found in the radiated pressure. 28 input impedance dips: i) the solutions of sin(k ) = 230 0, which depend on the note; ii) the solutions of 231 sin(kx 1 ) = 0, which do not depend on the note. Fig. 232 3 shows an example of input impedance curve. For 233 this figure, realistic visco-thermal losses (for an aver-234 age cone radius) have been taken into account in Eq. 235 (11). The two kinds of dips appear. We add three 236 remarks: 237 1. The case shown in Fig. 3 corresponds to an ir-238 rational value of the parameter β. For rational 239 values of β, the frequencies of the second kind 240 of dips for the cylindrical saxophone can coincide 241 with those of the truncated cone, but losses make 242 the dips distinct.

243 2. The resonances of the cylindrical saxophone are 244 perfectly harmonic (see the dotted lines in Fig. 245 3). The figure exhibits that this is not the 246 case for the truncated cone with mouthpiece 247 (solid line in Fig. 3). For the RTC model 248 the second kind of minima disappears, accord-249 ing to Eq. (8). The comparison between the 250 RTC model and the cylindrical saxophone model 251 shows the effect of inharmonicity. It will be 252 shown in Sections 4 and 5 that, as a conse-253 quence, minima close to dips of the cylindri-254 cal saxophone appear in the input impedance 255 at the harmonics of the playing frequency. For 256 these harmonics, we call the input impedance 257 curve the sampled impedance (see [20]).

258 3. These minima are responsible for anti-formants 259 of the input pressure, because their frequencies 260 depend few of the note.

1 Introduction

29

The auditory recognition of musical instruments is a 30 rather intricate issue. It is generally admitted that 31 the existence of formants is an important element 32 that contributes to the identification of an instrument.

33

A formant (resp. an anti-formant) can be defined 34 as a frequency band reinforced (resp. attenuated) whatever the played note. Formants are in general regarded as an important characteristic of the tone colour (or of the vowels in speech). It needs to be distinguished from other timbre characteristics, such as the weakness of harmonics of a given rank (e.g., the even harmonics in the clarinet sound). The statement of the problem is ancient [START_REF] Fransson | The source spectrum of double-reed wood-wind instruments, Part 1. The bassoon[END_REF][START_REF] Keefe | Woodwind tone hole acoustics and the spectrum transformation function[END_REF]. Smith and Mercer [START_REF] Fransson | The source spectrum of double-reed wood-wind instruments, Part 1. The bassoon[END_REF] found formants produced by conical instruments similar to saxophones. Benade [START_REF] Voigt | Research on the formant formation in sounds of dulcians and bassoons, Kölner Beitäge zur Musikforschung[END_REF] wrote: "There is in fact almost no simple formant behavior to be recognized in the sound production of wind instruments". However several authors observed that the spectrum of the acoustic pressure in the reed of a bassoon [START_REF] Smith | Possible causes of woodwind tone colour[END_REF] or in the mouthpiece of a saxophone [START_REF] Voigt | Research on the formant formation in sounds of dulcians and bassoons, Kölner Beitäge zur Musikforschung[END_REF][START_REF] Benade | Sound generation in winds strings computers[END_REF] is close to the function sin(nq)/nq, where n is the harmonic number and q can be determined experimentally. This implies that anti-formants can appear around frequencies satisfying sin(nq) = 0. If formants (or anti-formants) exist, a consequence of the above mentioned definition is that their frequencies cannot depend on the length of the tube for a given note. Conversely they depend either on other geometrical parameters (length of the missing cone, input radius, apex angle of the truncated cone, dimensions of the mouthpiece, geometry of the toneholes) or on the excitation parameters.

The simplest model, based upon the analogy with bowed string instruments, was studied by many authors [START_REF] Saneyoshi | Theory on Anti-resonance Frequencies of Input Impedance of Conical Horns, ---Oscillation Frequencies of Wind Instruments with a Conical Pipe[END_REF][START_REF] Ya | Pressure jumps in the reflection of a wave from the end of a tube and their effect on the pitch of sound[END_REF][START_REF] Dalmont | Elementary model and cxperiments for the Helmholtz motion in conical woodwinds[END_REF][START_REF] Dalmont | Reed Instruments, from small to large amplitude periodic oscillations and the Helmholtz motion analogy[END_REF][START_REF] Ollivier | Idealized Models of Reed Woodwinds. Part I: Analogy with the Bowed String[END_REF][START_REF] Carral | Influence of the cone parameters on the sound of conical woodwind instruments[END_REF][START_REF] Doc | Sound production on a "coaxial saxophone[END_REF], and a result is the waveshape approximation of the mouthpiece pressure by a rectangle signal, i.e., the waveshape of the ideal Helmholtz motion. Formerly, some authors explained that an approximation of the natural frequency of reed conical instruments is equal to that of an "openopen" cylinder whose length is the length of the truncated cone extended to its apex [START_REF] Irons | On the fingering of conical instruments[END_REF][START_REF] Benade | On woodwind instruments bores[END_REF][START_REF] Nederveen | Acoustical aspects of woodwind instruments[END_REF]. Because x 1 in the present paper, see Fig. 1 for the notations).

78

The analogy with the Helmholtz motion of bowed 79 strings leads to the result that in the function 80 sin(nq)/nq, q πβ, where β is the ratio of the short 81 length of the string to its total length. For a trun-82 cated cone, β is the ratio of the length of the missing 83 cone x 1 to the total length x 2 = + x 1 :

84 β = x 1 x 1 + = x 1 x 2 = R 1 R 2 (1) 
R 1 and R 2 are the radii at abscissae x 1 and x 2 , re-85 spectively.

86

It is still the only model that yields analytical ex-87 pressions for the sound produced, and therefore it is 88 used as a reference for the present study. In a pa-89 per written by some of the present authors, it was 90 shown that a simple numerical model can largely im-91 prove the model of the Helmholtz motion [START_REF] Kergomard | Idealized digital models for conical reed instruments, with focus on the internal pressure waveform[END_REF]. We call 92 it the "Reed-Truncated-Cone" model (RTC model).

93

The difference between the two models lies in the res- inharmonicity for the lower notes. The resonator is a truncated cone, of length , with a pure lumped compliance at its input (that of the air in the mouthpiece volume). This is a simplification, because in some instruments, such as the oboe, the cone of the resonator can be more complicated, with two different tapers, entailing a further reduction of inharmonicity [START_REF] Dalmont | Some aspects of tuning and clean intonation in reed instruments[END_REF]. The double taper is not considered here, because the waveform of the internal pressure given by the RTC model seems to compare well enough with experimental waveforms [START_REF] Kergomard | Idealized digital models for conical reed instruments, with focus on the internal pressure waveform[END_REF].

The effects of wall losses and radiation are ignored. The model of toneholes is extremely simplified: for a given fingering with a given number of toneholes, the resonator is assumed to be equivalent to a truncated cone of equivalent length . Therefore, for a given note, two parameters are sufficient, the length and the radius ratio R 2 /R 1 (actually, without losses, it is not necessary to define the values of the two radii, or the apex angle). Therefore, according to the hypotheses adopted in the RTC model, the length of the missing cone is expected to be predominant in the dependence of the frequencies of formants and antiformants.

As an intermediate step, the paper attempts to determine more precise values for the first playing frequency, because it has an influence on the spectrum, as discussed later. This influence entails the dependence of the pressure spectra on the fingering, i.e., on the length , and the enlargement of the formants.

In Sect. 2 the RTC model is presented for the resonator, with the calculation of the transfer functions of the resonator (between input and output quantities). Sect. 3 recalls some known results about the "cylindrical saxophone" model, which is similar to that of an ideal bowed string, and gives the classical solution of the Helmholtz motion. The paradox of the analogy between a conical instrument and a cylindrical saxophone is discussed.

Then, in Sec. 4, it is shown how the playing frequencies for a truncated cone with mouthpiece differ from those corresponding to the ideal Helmholtz motion, because they depend on the excitation parameters, and on the note.

In Sec. 5 the zeros of the transfer functions are investigated with their dependence on the playing frequencies.

In Section 6, thanks to the results of numerical computations obtained with the RTC model [START_REF] Kergomard | Idealized digital models for conical reed instruments, with focus on the internal pressure waveform[END_REF] of the sound production, the frequencies of the minima of the sampled input impedance are compared to those of the mouthpiece pressure, and the existence of formants and anti-formants is discussed in both the internal pressure and the external one.

In Section 7 experimental results are presented, and compared to the numerical results.

2 Basic model of the resonator

Resonator model of the RTC.

A truncated cone is considered (see Fig. 1), provided with a mouthpiece of volume equal to the volume of the missing cone: V = x 1 S 1 /3. The mouthpiece is assumed to be small with respect to the wavelength.

The shunt acoustic compliance of the mouthpiece is V / c 2 . The inertia of the air within the mouthpiece (i.e. the series acoustic mass), is ignored, because the sound production by reed instruments occurs at frequencies close to impedance maxima (this is discussed in Ref. [START_REF] Kergomard | Idealized digital models for conical reed instruments, with focus on the internal pressure waveform[END_REF]). At abscissae x 1 and x 2 , the cross-section areas are S 1 and S 2 , respectively. No resonator losses are considered, and the output impedance of the cone is assumed to be zero. This implies that the radiation reactance is zero too: it could be taken into account by a slight modification of the length of the truncated cone. In the frequency domain, the solution of the acoustic equations in the conical tube can be written as the sum of two spherical, travelling pressure waves P ± (x) (see e.g. [START_REF] Chaigne | Acoustics of musical instruments[END_REF]):

P (x) = P + (x) + P -(x);
(2)

U (x) = S(x) ρc P + (x) -P -(x) + P (x) jkx (3) 
P ± = a ± exp(∓jkx)/x. (4) 
P (x) is the pressure and U (x) is the flow rate. k = 2πf /c is the wavenumber, f is the frequency, c the speed of sound, ρ the air density. Standard transfer matrices for the lumped compliance and the truncated cone are used for this model in the frequency domain.

Because the pressure P 2 at the output is zero, the two following transfer functions between the mouthpiece input quantities (pressure P and flow rate U ) and the output flow rate U 2 are found: 

194 P = j c πR 1 R 2 sin(k )U 2 , (5) 
P ext = jωρU 2 1 4πd . (7) 
ω is the angular frequency. For our purpose, we have 203 interest in the physical quantities P , U and U 2 , which 204 depend on the excitation, as well as the extrema of 205 the two transfer functions, which depend on the res-206 onator only. The zeros of the transfer functions for 207 the pressure and flow rate (Eqs. ( 5) and ( 6)) are the 208 zeros and poles, respectively, of the input impedance: 209 

Z = ρc S 1 j sin(k ) cos(k ) + sin(k )/(kx 1 ) -sin(k )kx 1 /3 . (8 
kx 1 = 2πx 1 /λ << 1, ( 9 
)
where λ is the wavelength, Eq. ( 6) becomes:

217 U = R 1 R 2 [cos(k ) + sin(k ) cot(kx 1 )] U 2 . ( 10 
)
The input impedance becomes:

218 Z = j c S 1 sin(k ) sin(kx 1 ) sin [k( + x 1 )] . ( 11 
)
This formula is equivalent to that of the admittance of 219 a string at the bow position. Formula [START_REF] Carral | Influence of the cone parameters on the sound of conical woodwind instruments[END_REF] exhibits that there are two kinds of 3 Oscillation model and the solution of the ideal Helmholtz motion

Helmholtz motion

The complete oscillation model is now investigated for the cylindrical saxophone. For the exciter (mouth and reed), the model used was presented in Ref. [START_REF] Kergomard | Idealized digital models for conical reed instruments, with focus on the internal pressure waveform[END_REF]. The nonlinear characteristic is deduced from the model established by Wilson and Beavers [21]. Nevertheless no reed dynamics is considered. Two dimensionless parameters were defined by these authors: the mouth pressure γ and the reed opening ζ at rest (in Ref. [START_REF] Wilson | Operating modes of the clarinet[END_REF], the parameters are the same, with different notations). The model is based upon the stationary Bernoulli law and some hypotheses, with a localized non-linearity. With the approximation [START_REF] Carral | Influence of the cone parameters on the sound of conical woodwind instruments[END_REF] for the impedance, analytical solutions exist for the oscillations, in particular the so-called Helmholtz motion [START_REF] Dalmont | Reed Instruments, from small to large amplitude periodic oscillations and the Helmholtz motion analogy[END_REF], which is a rectangle signal.

Using the subscript H for the Helmholtz motion, the fundamental frequency is f H1 = c/2(l + x 1 ) (the wavelength is twice the total length of the cone). The frequency f Hn of the nth harmonic is given by:

f Hn = nc 2( + x 1 ) . ( 12 
)
The value of the signal during the longer episode is γ (when the reed does not close the mouthpiece), while the value during the shorter episode is -(1β)γ/β (when the reed closes the mouthpiece, for the definition of β, see Eq. ( 1)). This case corresponds to the condition γ > β, which is often satisfied in practice at least for the lowest notes (see Ref. [START_REF] Dalmont | Reed Instruments, from small to large amplitude periodic oscillations and the Helmholtz motion analogy[END_REF]), as well for the choice of parameters in the theoretical part of the present paper. The spectrum components of the input pressure p(t) are as follows:

P n = -γ (-1) n sin Xn Xn (13) X n = 2π f Hn x1 c = k Hn x 1 (14) = nπx1 +x1 = nπβ. (15) 
Here, and in what follows, the pressure is dimensionless: all pressures in the resonator are divided by the reed closure pressure p M , which is proportional to the reed stiffness. The waveshape and the relative pressure spectrum are independent of the excitation parameters. The flow rate u(t) at the input is constant, in order for the input average power per period to vanish. For frequencies f m = mc/(2x 1 ), sin X m = sin(mπ) = 0: there is a zero in the pressure spectrum, under the condition that m/n = β is rational. If β is irrational, there is a minimum amplitude near the frequencies f m . As a consequence, whatever the cone length , there is an amplitude minimum around these frequencies, i.e., an anti-formant, and these frequencies are the natural frequencies of the length x 1 of the missing cone.

Writing x 1 = ( + x 1 ) -, Eq. ( 13) implies:

sin X n = (-1) n sin(nπ /( + x 1 )) (16) = (-1) n sin(k Hn ), (17) 
thus Eqs. ( 6) and ( 13) give the amplitude of the output flow rate:

U 2,n = γ X n πR 1 R 2 c . ( 18 
)
There are no zeros in the spectrum of the output flow rate. Eqs. [START_REF] Ya | Pressure jumps in the reflection of a wave from the end of a tube and their effect on the pitch of sound[END_REF][START_REF] Dalmont | Some aspects of tuning and clean intonation in reed instruments[END_REF] show that the spectrum of the external pressure P ext is constant and the signal is a Dirac comb. Neither formants nor anti-formants exist in the radiated pressure P ext .

Comparison of a cylindrical saxophone with a truncated cone

The present study was motivated by a paradox presented in a conference paper by some authors of the present article [START_REF] Kergomard | What we understand today on formants in saxophone sounds? 44º Congréso Español de Acústica[END_REF], and summarized hereafter.

For bassoon sounds, Gokhstein [START_REF] Ya | Pressure jumps in the reflection of a wave from the end of a tube and their effect on the pitch of sound[END_REF] showed both experimentally and theoretically that the duration of reed closure is independent of the played note, i.e., of the equivalent length of the resonator. This duration is related to the round trip of a wave over a length equal to that of the missing part of the cone x 1 . The corresponding frequency is the natural frequency of this length c/(2x 1 ). This seems to validate the analogy with the bowed string excited at a given length of the bridge (or with the cylindrical saxophone, which is also analogous to a kind of stepped cone [START_REF] Ollivier | Idealized Models of Reed Woodwinds. Part I: Analogy with the Bowed String[END_REF]). This was studied in several papers [START_REF] Dalmont | Elementary model and cxperiments for the Helmholtz motion in conical woodwinds[END_REF][START_REF] Dalmont | Reed Instruments, from small to large amplitude periodic oscillations and the Helmholtz motion analogy[END_REF][START_REF] Ollivier | Idealized Models of Reed Woodwinds. Part I: Analogy with the Bowed String[END_REF]. However the analogy is known to be valid only if the length of the missing cone is small compared with the wavelength (see Condition [START_REF] Dalmont | Reed Instruments, from small to large amplitude periodic oscillations and the Helmholtz motion analogy[END_REF]). This condition is not fulfilled for the natural frequency of the missing part, which is equal to the half of the corresponding wavelength.

Thanks to the bowed string analogy, useful conclusions can be drawn concerning important features of the sound production, such as oscillation regimes and amplitudes. A priori accurate insight of the tone color for higher frequencies, which do not fullfil the condition [START_REF] Dalmont | Reed Instruments, from small to large amplitude periodic oscillations and the Helmholtz motion analogy[END_REF], cannot be expected. Nevertheless measured spectra of the internal pressure of saxophones exhibit minima [START_REF] Dalmont | Scaling of reed instruments: The case of the saxophone family[END_REF] at frequencies corresponding roughly to the harmonics of the fundamental frequency c/(2x 1 ).

On the one hand this is an argument in favour of the analogy with the Helmholtz motion, while on the other hand this result is paradoxical because for these frequencies, the condition ( 9) is not fulfilled. It will be shown how inharmonicity of the resonator, which exists neither in a perfect string nor in a cylindrical saxophone, plays a major role in a real conical instrument. In particular it implies that the playing fre-quency differs from natural frequencies c/(2(x 1 + )) 358 of the complete cone.

359

In order to make easier the comparison of the re-360 sults for a truncated cone with those for the Helmholtz 361 motion, we define a quantity proportional to the ex-362 ternal pressure (Eq. ( 7)) and inversely proportional 363 to the blowing pressure, i.e., to the square root of the 364 radiated power, as follows:

365 W = U 2 c πR 1 R 2 γ kx 1 . (19) 
We call W the normalized output flow rate. For the 366 Helmholtz motion and the harmonics of the playing 367 frequency, which is our reference, |W | is unity (see 368 Eqs. ( 18) and ( 15)). For the truncated cone, we re-369 define the transfer functions (5 and 6), as follows:

370 P U = F p F u W (20) 
with

371 F p = jγ kx 1 sin(k ), (21) 
F u = S1 ρc γ kx1 {(cos(k ) + sin(k )/(kx 1 ) -sin(k )kx 1 /3}. ( 22 
)
4 Playing frequency of a conical 372 instrument 373

The playing frequency is a compromise between the 374 different modes of the resonator and varies with the 375 excitation parameters (see especially [START_REF] Benade | Fundamental of musical acoustics[END_REF][START_REF] Worman | Self-sustained nonlinear oscillations of medium amplitude in clarinet likesystems[END_REF]). For a 376 truncated cone, the playing frequencies slightly differ 377 from the resonance frequencies of the cylindrical sax-378 ophone, and the consequences for the pressure spec-379 trum are significant. In the present section the values 380 of the playing frequency are studied. Then, in section 381 5 the dependence of the formants and anti-formants 382 on the playing frequency is investigated.

383

It is often considered that the playing frequen-384 cies are very close to the natural frequencies of the 385 resonator. However several causes of discrepancies 386 between playing and natural frequencies were re-387 cently investigated for reed cylindrical instruments 388 [START_REF] Coyle | Predicting playing frequencies for clarinets: A comparison between numerical simulations and simplified analytical formulas[END_REF]. Among them there is the effect of inharmonic-389 ity of the resonator for conical instruments, which are 390 truncated cones. The effect of the truncation is im-391 portant, even if it is limited by a proper choice of the 392 mouthpiece dimensions. When the approximation of 393 the cylindrical saxophone is abandoned, the playing 394 frequencies differ from the natural frequencies of the 395 total length + x 1 (Eq. ( 12)). 25), for one, two, three terms of the series (from bottom to top). xxx (red online) Formula ( 26), for one, two, three terms of the series (from bottom to top).

to Eq. ( 8), the playing frequency of the first periodic . The issue of the regime stability is complicated, and is out of the scope of the present paper (see [START_REF] Dalmont | Reed Instruments, from small to large amplitude periodic oscillations and the Helmholtz motion analogy[END_REF][START_REF] Doc | Sound production on a "coaxial saxophone[END_REF][START_REF] Ricaud | Behavior of reed woodwind 1071 instruments around the oscillation threshold[END_REF]).

Analytical estimation of the playing frequencies

In order to understand the role of inharmonicity in the playing frequency, the influence of the second resonance frequency, which is higher than twice the first, and that of the third one, can be estimated in a quantitative way. For this purpose, the result due to Boutillon [START_REF] Boutillon | Analytical investigation of the flat-1075 tening effect-the reactive power balance rule[END_REF] is used, valid under the condition that the reed dynamics is ignored. With this condition, this is one of the equations of the Harmonic Balance Method (HBM, see for an explanation [19, p. 518]), therefore it does not need the computation of the transient. Considering that the length correction depends little on the excitation parameters, the spectrum of the input pressure is approximated by its value for the Helmholtz motion, and it is possible to find analytically an order of magnitude of the length correction. The "reactive power rule" leads to the equation to be solved for the unknown playing frequency, denoted ω:

n n |P n | 2 Im [Y (nω)] = 0. ( 24 
)
P n is given by Eq. ( 13). In Appendix A, two approximate methods of calculation for the corresponding length correction -z are used. The first one gives the result:

z = n z n n 2 sin 2 (nπβ)/Res n n n 2 sin 2 (nπβ)/Res n , ( 25 
)
where z n is the length correction corresponding to the nth resonance frequency and Res n the residue of this resonance in the formula (8) of the input impedance.

If the lengths z n were equal for all resonance frequencies (no inharmonicity), the correction for the playing frequency would be equal to them.

Fig. 4 compares the numerical results with those obtained using the two formulas ( 25) and (26, see hereafter). For the first one, the main features are the correct order of magnitude when more than one term are kept in Eq. ( 25), and the global decrease when the length increases. The difference between the results with 1 and 2 terms exhibits the importance of the inharmonicity between the first two resonances, due to the truncation of the cone (the result limited to one term is nothing else than the length correction for the first resonance). It appears that the playing frequency obtained from the numerical computation lies between the results of Eq. ( 25) for 2 and 3 harmonics (i.e., for 2 and 3 terms of the series). The calculation with 4 terms gives bad results, as explained in Appendix A, after Eq. (A10). It can be concluded that the second and third harmonics play an important role in the value of the playing frequency. Moreover, although the excitation is ignored in Eq. ( 25), this calculation gives a qualitative agreement with the complete computation of the oscillations.

The second method is an analytical approximation of Eq. ( 25), which is satisfactory for one harmonic, but for two and three harmonics, it is satisfactory only for long length ( >> x 1 ), i.e., when the resonance frequencies are low. It gives the following approximation:

z x 1 π 4 β 4 45
1 + 16 cos 2 (πβ) + 9 3 -4 sin 2 (πβ)

2 1 + cos 2 (πβ) + 3 -4 sin 2 (πβ) 2 /9 .
(26) The three terms of the numerator and the denominator correspond to the first three terms of Eq. ( 25).

Finally, using Eq. (A10), the inharmonicity between the first two resonance frequencies can be calculated from the ratio of the two frequencies:

f 2 2f 1 = + x 1 -z 1 + x 1 -z 2 = 45 -π 4 β 5 45 -16π 4 β 5 . (27) 
This gives 8% (more than a semi-tone) for the shortest length considered (0.35 m), and 1% for the longest length (0.67 m). As a consequence, the choice of the mouthpiece volume reduces the inharmonicity, but inharmonicity remains important.

Analytical study of the transfer functions for the harmonics of the playing frequency

In order to investigate the spectrum of the acoustic quantities, we need to calculate their values at the harmonics of the playing frequency. The antiformants of the input pressure and flow rate correspond to the frequencies of the minima and maxima of the input impedance sampled at the harmonics of the playing frequency.

Input impedance extrema for the harmonics of the playing frequency

When the length correction for the playing frequency is ignored (or independent of the length ), it was noticed in [START_REF] Kergomard | What we understand today on formants in saxophone sounds? 44º Congréso Español de Acústica[END_REF] that, for the harmonics of the playing frequency, the frequencies of some extrema of the sampled input impedance are independent of the cone length, i.e., of the note. Indeed, for the harmonics of the playing frequency, f = nc/2( + x 1 -z), i.e., k = nπk(x 1 -z), the following equation can be 522 written as:

523 cot(k ) = -cot(k(x 1 -z)). ( 28 
)
If z is independent of the length , the latter dis-524 appears in the expressions of the zeros of the transfer 525 functions. The values of the impedance for the har-526 monics of the playing frequency are located on the 527 following curve:

528 Z = ρc S 1 j sin(k(x 1 -z)) -cos(k(x 1 -z)) + sin(k(x 1 -z))H(kx 1 )
.

(29) where H(kx 1 ) = [1/(kx 1 ) -kx 1 /3]. Therefore the 529 extrema of this expression do not depend on and are 530 common to all notes. They correspond to the zeros 531 of the following equations, derived from Eqs. (21 and 532 22) with Eq. ( 28):

533 tan(k(x 1 -z)) = 0 (30) cot(k(x 1 -z)) = 1/kx 1 -kx 1 /3. (31) 
The first equation gives the frequencies of the 534 impedance minima, while the second gives those of 535 the impedance maxima.

536

What happens if z is slowly varying with the length 537 ? The corresponding extrema vary little with . 538 Figure 5 shows the input impedance modulus for the 539 harmonics of the playing frequency. The results for 25 540 values of the length are superimposed. A dotted line 541 shows an example of input impedance for a given note. 542 The length correction -z, as numerically calculated 543 in Section 4, slightly varies with the length , so do 544 the values of the frequencies of the extrema. They are 545 included in a small range. This enlarges the formants 546 and anti-formants of the impedance curve sampled at 547 the harmonics of the playing frequencies.

548

In the next subsections the values of the zeros of the 549 transfer functions, i.e., the solutions of Eqs. [START_REF] Kergomard | Internal and external field of wind 1081 instruments[END_REF] and 550 [START_REF] Benade | From Instrument to Ear in a 1084 Room: Direct or via Recording[END_REF], are investigated. The zeros of Eq. ( 30) give the 551 anti-formants of the input pressure, while the zeros of 552 Eq. ( 31) give the anti-formants of the flow rate.

553

In order to obtain more general results, we extend the model of the resonator. The mouthpiece is assumed to remain lumped and lossless, with a volume equal to ηS 1 x 1 /3 (for η = 1, it is that of the missing cone), but an acoustic mass M m = σ x 1 /S 1 is added (for σ = 1, this is that of a cylinder of length x 1 and cross section area S 1 ). Adding an acoustic mass does not make the calculation of the resonator more complicated, while the complete computation algorithm for the oscillations should be more complicated. It is the reason why the model extension is limited to this section. Eqs. [START_REF] Kergomard | Internal and external field of wind 1081 instruments[END_REF] and [START_REF] Benade | From Instrument to Ear in a 1084 Room: Direct or via Recording[END_REF] are replaced by the following: 8), and plotted in dB: 20log(|ZS 1 /ρc|) . The frequency is in Hz. The calculation of the playing fundamental frequencies uses the results presented in Fig. 4 for γ = 0.4; ζ = 0.65. In order to exhibit an example, the results for one length is indicated by a cross 'X' for =0.352 m, and the complete impedance curve for this length is drawn by a thin line (red online).

-1/(σkx 1 ) = -cot(k(x 1 -z)) + 1/(kx 1 ) ( 32 
)
kx 1 η/3 = -cot(k(x 1 -z)) + 1/(kx 1 ). ( 33 
)
These equations correspond to the equality of the For Eq. ( 32), the input impedance of the mouthpiece 559 vanishes, i.e., it goes though a minimum, while for Eq. 560 [START_REF] Debut | Analysis 1091 and optimisation of the tuning of the twelfths for 1092 a clarinet resonator[END_REF], it is infinite, i.e., it goes through a maximum.

561

Using Eq. ( 28), the parameter has been substituted 562 by the parameter z. In the following subsections, ap-563 proximated solutions of Eqs. ( 32) and ( 33) are sought 564 with respect to z and σ or η as:

565 kx 1 = nπ(1 + ε)), ( 34 
)
where ε is a small unknown. Therefore

566 tan(k(x 1 -z)) nπ(ε -z/x 1 ) (35) 
after expanding the tangent function to the first order 567 in ε and z/x 1 . leads to the following result:

ε = - 1 α n + z x 1 1 - 1 α n , with α n = η 3 n 2 π 2 . ( 36 
)
Thus

kx 1 = nπ 1 - 1 α n 1 + z x 1 . ( 37 
)
Figure 6 shows the comparison between Eq. (37) and the exact solutions of Eq. ( 33). The agreement of Eq. (37) with the exact result is satisfactory, except for n = 1. For this value it is found that when z/x 1 is small, the quantity ε is not small (equal to -1/3). For n = 1 and small z/x 1 the formula (37) needs to be replaced by the solution of Eq. (A10) of Appendix A, as follows:

kx 1 = (45z/x 1 ) 1/4
(38)

if η = 1. Fig. 6 shows the case η = 1. Similar behaviour is found when the mouthpiece volume is different (η = 1). Eq. ( 38) shows that for small z, there is a great variation of the frequency of the first formant. The variation of the other solutions with z (for n = 2, 3) in Eq. ( 37) is significant, but narrower.

As an example, for the case in study and n = 2, 20% is a typical variation. This is related to the width of formants.

Frequencies of the input pressure anti-formants vs the playing frequencies

The frequencies of the pressure anti-formants (which correspond to the minima of the sampled impedance) are obtained by using Eqs. ( 33) and ( 35). The result is These frequencies are also slightly higher than the values nπ, which would be the values for the ideal Helmholtz motion. Moreover they vary significantly with z, i.e., with the playing frequency of the note played. The order of magnitude of the variation is the same as that for the flow rate. Fig. 7 compares this formula with the exact solutions of Eq. ( 30). The agreement is sufficient for an estimation of the influence of the pair of parameters (z/x 1 , σ). The value of the mouthpiece parameters have been chosen as follows: the mouthpiece is assumed to be cylindrical, with a cross section area S m = 2S 1 , and a volume S m m is equal to that of the missing cone length ( m is the mouthpiece length)

kx 1 = nπ(1 + σ)(1 + z/x 1 ). ( 39 
)
σ = S 1 S m m x 1 = 1 3 S 1 S m 2 = 1 12 . (40) 
For a cylindrical saxophone, the common minimum when x 1 is constant and varies, is given by kx 1 = nπ, i.e., sin(kx 1 ) = 0. Because z = 0 for a cylindrical saxophone, this is in accordance with Eq. (39), if the acoustic mass of the small part of the cylinder is ignored.

As a conclusion, the frequencies of the antiformants of both the input pressure and the input flow rate are increasing functions of the length z. Furtherore the frequencies of the pressure anti-formants depend in a non negligible way on the acoustic mass of the mouthpiece.

6 Numerical results for the spectra 6.1 Internal and external spectra for a given length.

After the study of the transfer functions, we use the numerical solving of the full RTC model, including the excitation, and find the input pressure P , the input 635 flow rate U , and the normalized output flow rate W 636 (see Eq. ( 19)), which is proportional to the external 637 pressure. The RTC model [START_REF] Kergomard | Idealized digital models for conical reed instruments, with focus on the internal pressure waveform[END_REF] gives the input quan-638 tities, and the value of the outgoing pressure wave, 639 which is denoted P + 2 = P + (x 2 ) (see Eq. ( 3)). The 640 output flow rate can be derived as follows:

641 U 2 = 2 S 2 ρc P + 2 , therefore W = 2P + 1 kx 1 jγ . (41) 
The chosen model is the simplest (η = 1; σ = 0, see 642 Eqs. [START_REF] Moers | On the Cutoff Fre-1087 quency of Clarinet-Like Instruments. Geometri-1088 cal versus Acoustical Regularity[END_REF][START_REF] Debut | Analysis 1091 and optimisation of the tuning of the twelfths for 1092 a clarinet resonator[END_REF]). Fig. 8 (top) shows the comparison 643 between the spectrum modulus of the transfer func-644 tion F p (Eq. ( 21)) and that of the input pressure 645 signal P . For a cylindrical saxophone, because W 646 is unity (see Section 3.2), the two spectra would be 647 identical. It appears that the effect of the cone trun-648 cation and the mouthpiece are significant, except for 649 the first harmonics. The output flow rate cannot be 650 infinite, therefore the zeros of the transfer function 651 F p are zeros of the input pressure signal. For a bet-652 ter comparison between P and F p , we complete the 653 transfer function at intermediate frequencies, by us-654 ing Eq. ( 28), i.e., by replacing k by -k(x 1 -z) in 655 the expressions [START_REF] Wilson | Operating modes of the clarinet[END_REF]. The values at the harmonics of 656 the playing frequency are located on this curve.

657

The bottom of the figure allows similar observations 658 when comparing the transfer function F u (Eq. ( 22)) 659 and the spectrum of the input flow rate U . 660 Fig. 9 shows the normalized output flow rate W . 661 For a cylindrical saxophone, it would be equal to unity 662 (i.e., the logarithm would vanish). In order to check 663 for F p and 1.6; 6.2; 9.9 for F u . functions. For a truncated cone, their width depends 698 on the variation of the length correction with the cone 699 length. We checked that the influence of the excita-700 tion parameters is weak.

701

What happens for the external spectrum, propor-702 tional to that of W ? Formants seem to exist near 703 kx 1 = 6.2 and 10, and maybe anti-formants near 704 kx 1 = 5, 8 and 11. There is a significant difference 705 with the anti-formants of the input quantities: we do 706 not know the relationship with the transfer functions. 707 It could be supposed that they depend mainly on the 708 excitation, but this is not the case. Changing the val-709 ues of the excitation parameters does not modify the 710 general shape of the Figure 11, including the values of 711 the extrema. Moreover the dependence on the mouth-712 piece volume appears to be slight. The determination 713 of the correlation between the resonator model and 714 the formants and anti-formants remains a topic to be 715 investigated, but probably with a much more com-716 plete model. This will be discussed now in the light 717 of experimental results. The frequencies of the minima (given by dotted vertical lines) are very similar for the three measured saxophones. However the frequencies given by the model are higher than the experimental ones. A reason can be the influence of the existence of taper variation, or that of the acoustic mass of the mouthpiece, because it is in series with the input impedance of the truncated cone. For simplicity, the mass is ignored in the present model, because taking the mass into account would require a very different discretized oscillation model. However, for σ close to 0.1, Eq. (39) gives a correct order of magnitude of the necessary correction for the first frequency of minimum. Obviously, at higher frequencies, the assumption that the mouthpiece is smaller than the wavelength is questionable as well. We checked that the excitation parameters play a weak role on these frequency values.

An attempt to measure the external pressure was done, with a microphone close to the first open tonehole. However, as it is known (see e.g. [START_REF] Keefe | Woodwind tone hole acoustics and the spectrum transformation function[END_REF][START_REF] Benade | The saxophone 1078 spectrum[END_REF][START_REF] Kergomard | Internal and external field of wind 1081 instruments[END_REF][START_REF] Benade | From Instrument to Ear in a 1084 Room: Direct or via Recording[END_REF]), the pressure spectrum strongly depends on the location of the microphone. Above cutoff (for a discussion about the definition of the cutoff frequencies due to toneholes, see Ref. [START_REF] Moers | On the Cutoff Fre-1087 quency of Clarinet-Like Instruments. Geometri-1088 cal versus Acoustical Regularity[END_REF]), the external pressure field for which the harmonicity of the resonance frequencies is perfect, and the playing frequency is equal to that of the first impedance peak (for the simplest model).

In other words, the difference between the inharmonicity of the resonator and the harmonicity of the spectrum in the periodic signals explain why minima exist in the input pressure and in the input flow rate.

Furthermore inharmonicity of a conical instrument implies a variation of the negative length correction, denoted -z in the present paper, when the length of the truncated cone varies. This is in particular true for the inharmonicity due to the cone truncation. A consequence is a small variation of the minimum pressure frequencies with the length of the truncated cone, i.e., with the played note, and an enlargement of the anti-formants. However, despite of this variation, existence of anti-formants is clear.

The simplified model of [START_REF] Kergomard | Idealized digital models for conical reed instruments, with focus on the internal pressure waveform[END_REF] allows an interesting prediction of the waveshapes, and of the existence of anti-formants in the spectra of the input quantities. This is true at least up to kx 1 7., i.e., up to a ratio of the missing cone length to the wavelength equal to unity.

Assuming a monopole radiation, the external pressure diminishes with the frequency, much more rapidly than for an ideal cylindrical saxophone (see Fig. 9) . Numerical results show that formants exist for the external spectrum and their dependence on the excitation parameters is weak. However their dependence on the geometrical parameters remains to be understood. It cannot be easily derived from that of the input quantities.

A convincing comparison with experiment requires both a much more complete model and measurements at different microphone locations of the radiated sound.

where k n = ω n /c are numerically computed as so-925 lutions of Eq. (A6). Using Eq. (A4), the length cor-926 rections of the resonance frequencies z n are deduced.

927

Then Eq. ( 25) is directly calculated (remember that 928 Eq. ( 25) is an approximation, because the real spec-929 trum of the input pressure is replaced by that of the 930 Helmholtz motion). Figure 4 shows that for η = 1 

S 1 = πR 2 1 x 1 Figure 1 :

 111 Figure 1: Notations for the geometrical parameters. For a soprano saxophone, the length of the missing part of the cone is approximately x 1 =0.126 m. Typical values of the coefficient β are included in the interval [0.13, 0.3].

94 onator model. Example of waveshapes obtained with 95 the two models are shown in Fig. 2 .Figure 2 :

 9522 Figure 2: Example of waveshape for a soprano saxophone (x 1 =0.126m and = 0.55m) for the excitation parameters γ = 0.4, ζ = 0.65 (see Sect. 3.1). Thick line: RTC model; thin line: ideal Helmholtz motion model.

Figure 3 :

 3 Figure 3: Example of input impedance modulus curves (dB defined by 20log(|ZS 1 /ρc|) for x 1 = 0.126m and = 0.55m. Solid line (red online): RTC model; dotted line (blue online): approximation corresponding to the cylindrical saxophone model (ideal Helmholtz motion).

396 4 . 1 1 Figure 4 :

 4114 Figure 4: Length z (-z is the length correction) related to the playing frequency represented by the ratio /x 1 for several values of the length of the truncated cone (simulation results). When varies from 0.35 m to 0.67 m, the ratio β decreases from 0.26 to 0.16. x 1 = 0.126m. Thin, black lines: dotted (γ = ζ = 0.4), mixed (γ = 0.45; ζ = 0.85), dashed (γ = 0.4; ζ = 0.65). +++ -blue online) Formula (25), for one, two, three terms of the series (from bottom to top). xxx (red online) Formula (26), for one, two, three terms of the series (from bottom to top).

401z

  regime was determined. In order to calculate the play-402 ing frequency, we seek the number of samples between 403 two changes in sign of the input pressure (when the 404 pressure is negative and becomes positive). The typ-405 ical number of samples for one period is larger than 406 1000. The relative error on the total equivalent length 407 is less than 0.1%, and that on the length correction is 408 less than 1%. 409 It is convenient to represent the shift between the 410 playing frequency f p and that of the ideal Helmholtz 411 motion by a length correction, denoted -z , as follows 412 : = 0 corresponds to the case where these two fre-414 quencies are equal. The thin lines in Fig. 4 show, for 415 three pairs of (γ, ζ), that the length correction is neg-416 ative, entailing that the playing frequency is higher 417 than the first resonance frequency. The length z is 418 significantly smaller than the length x 1 of the missing 419 cone, and consequently much smaller than the total 420 length, whatever the value of the cone length . How-421 ever the comparison of the classical approximation of 422 the resonance frequency c/2/( + x 1 ) and the playing 423 frequency shows that the difference between them is 424 not negligible: 4% for = 0.35m, i.e., 60 cents, and 425 1% for the lowest note ( = 0.67 m), i.e., 15 cents. 426 For dimensions close to those of a soprano saxo-427 phone, the choice of 0.35m as the shortest value for 428 the cone length is due to the difficulty for finding a 429 periodic regime with the ab initio computation and 430 a short . The playing frequencies are in the range [209Hz, 438Hz] for c = 340 ms -1

Figure 5 :

 5 Figure 5: Values of the input impedance for the harmonics of 25 fundamental frequencies included in the first register of a soprano saxophone (thick points, blue online), corresponding to 25 values of the truncated cone length . The impedance is calculated from Eq. (8), and plotted in dB: 20log(|ZS 1 /ρc|) . The frequency is in Hz. The calculation of the playing fundamental frequencies uses the results presented in Fig.4for γ = 0.4; ζ = 0.65. In order to exhibit an example, the results for one length is indicated by a cross 'X' for =0.352 m, and the complete impedance curve for this length is drawn by a thin line (red online).

  554 admittances (divided by the factor jρc/S 1 ), when pro-555 jected on the two sides of the junction. The output 556 of the mouthpiece is on the left-hand side, while the 557 input of the truncated cone is on the right-hand side.

  558

568 5 . 2 Figure 6 :

 526 Figure 6: Frequency of the impedance maxima for the harmonics of the playing frequency with respect to the length z. η = 1. Circles: numerical results of Eq. (33) (blue online); dashed lines: Eqs. (37), for n = 1, 2,3; dotted line: Eq. (38).

Figure 7 :

 7 Figure 7: Frequency of the impedance minima for the harmonics of the playing frequency with respect to the length z. Circles: numerical results (blue online); dashed lines: Eq. (39) for σ = 1/12.

Figure 8 :

 8 Figure 8: (top) Comparison between the input pressure P (ooo, blue online) for the harmonics of the playing frequency (275Hz) and the transfer function F p (+++ black online)). x 1 = 0.126m, = 0.4, mγ = 0.4,ζ = 0.65. (bottom) Comparison between the input flow rate U (ooo) for the harmonics of the playing frequency and the transfer function F u (+++) (. The small crosses (red online) represent the transfer functions for a continuous variation of the frequency. Plot in logarithic scale: 20log(|F p |) and 20log(|F u ρc/S 1 |) .

Figure 9 : 1 .

 91 Figure 9: Normalized output flow rate |W |. Eq. (19) is computed in 3 ways: direct computation of the spectrum from the time-domain (*** blue online), |P/F p |(ooo black online), |U/F U |(+++ red online). dB is 20log(|W |) (for a cylindrical saxophone, 20log(|W |) vanishes). x 1 = 0.126m, = 0.4, m γ = 0.4, ζ = 0.65.

Fig. 11 Figure 10 :Figure 11 :

 111011 Fig. 11 is obtained with the RTC model. It confirms that anti-formants exist for the two input quantities, at the position of the minima of the transfer

7

  Experimental results for the mouthpiece pressure, comparison with the RTC model Decreasing chromatic scales (16 notes of the first register) were played by a saxophonist for a soprano saxophone Selmer Mark VI, an alto saxophone Buffet-Crampon Senzo, and a baritone saxophone (Yanagisawa B-901). A microphone Endevco 8507-C2 is located within the mouthpiece. The Fourier analysis (FT) is done on one period, chosing a portion of each note where the pitch is rather stable.

Figure 12

 12 Figure12shows the results for the internal pressure. The similarity of the results for the three saxophones, when scaled by the length x 1 , is remarkable up to kx 1 6. This value corresponds to 2580 Hz, 1650 Hz, and 1080 Hz, respectively. This confirms the essential significance of the length of the missing cone at low frequencies. Using a first order filter, we compute a smoothed value for the harmonics of different notes. These experimental results can be compared to the numerical results of Figure11. The amplitudes of the experimental and theoretical results seem to be rather similar. However this direct comparison is not relevant, because the amplitudes depend on the excitation parameters, which were not measured for the experiment: a mezzo forte note was played with each instrument, without specific constraint for the musician. However the amplitude variation from lower to higher frequencies can be compared for the three instruments.

  exist in the spectra of the mouth-803 piece pressure and input flow rate, and their 804 frequencies are mainly related to the resonator. 805 The values of their frequencies are related to the 806 length of the missing cone. Formants exist as 807 well. Their effect is less strong, but their exis-808 tence can be regarded as a consequence of that 809 of anti-formants. kx 1 , i.e. the ratio of the missing cone length to 819 the wavelength, can be regarded as a small quan-820 tity for these frequencies, but the explanation is 821 not straightforward: it is related to the consider-822 ation of the sampling of the input impedance at 823 the harmonics of the playing frequency. This is 824 a major difference with a cylindrical saxophone,

931

  Eq.[START_REF] Worman | Self-sustained nonlinear oscillations of medium amplitude in clarinet likesystems[END_REF] gives lower and upper bounds for the exact 932 values, when two and three terms of the series are 933 taken into account. When η is slightly different of 934 unity, the length correction is significantly modified, 935 but Eq. (25) remains satisfactory. 936 The second kind of calculation needs a further 937 step. A first simplification is to approximate the res-938 onance frequencies by those of the Helmholtz motion 939 (k n = nπβ). This is a good approximation, entailing 940 a small error (of the second order in z/x 1 ). The sec-941 ond simplification is based on the approximated cal-942 culation of the length corrections z n , by using a series
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different from the one of a monopole. For a soprano 774 saxophone, the cutoff can be evaluated at 1200Hz

Concerning the spectra of different instruments 811 of the saxophone family, they appear to be very 812 similar, taken into account the scaling of the 813 missing cone length x 1 .

814

The frequencies of the anti-formants are close 815 to the natural frequencies of the missing cone 816 length, but slightly higher. This is not in con-817 tradiction with the hypothesis that the product

Appendix A: Approximate calculations of the playing frequency

The formula [START_REF] Benade | Fundamental of musical acoustics[END_REF] can be rewritten by applying the residue calculus to the modal expansion of the input impedance (Eq. [START_REF] Dalmont | Elementary model and cxperiments for the Helmholtz motion in conical woodwinds[END_REF], see e.g. Ref. [START_REF] Chaigne | Acoustics of musical instruments[END_REF], p. 167)):

The ω m 's are the poles and the Res m 's are the residues. Because the input impedance is written in the form [START_REF] Dalmont | Elementary model and cxperiments for the Helmholtz motion in conical woodwinds[END_REF], which ensures that the numerator has no pole, the residues are obtained as the ratio of the numerator to the derivative of the denominator (see [START_REF] Chaigne | Acoustics of musical instruments[END_REF] p. 167). Because no losses are considered, the poles are real. An approximate value of Z(ω) at a given frequency can be found by truncating the series to one term only, which corresponds to the pole which is closest to this frequency. It is assumed that the frequency ω m is close to nω, therefore the subscript m is replaced by n. With this assumption, Eq. ( 24) becomes:

If all natural frequencies are harmonically related, ω n = nω 1 , and ω p = ω 1 . Another expression can be found by defining the length corrections z n for the different resonance frequencies, as follows:

The latter expression is valid at the first order of z n /( + x 1 ). Using this expression, and a similar expression for k p derived from Eq. ( 23), Eq. (A2) becomes:

If the pressure spectrum is assumed to be that of the Helmholtz motion (Eq. ( 13)), Eq. ( 25) is obtained.

Two calculations of the values of z n and Res n are used: i) an exact calculation of the resonance frequencies, which are zeros of the the input impedance (Eq. ( 11)), and the corresponding residues; ii) an analytical approximation of these quantities.

It is possible to slightly enlarge the hypothesis for Eq. [START_REF] Worman | Self-sustained nonlinear oscillations of medium amplitude in clarinet likesystems[END_REF]. Now the volume of the mouthpiece is not necessarily equal to that of the missing cone. We de-916 note it V = ηx 1 S 1 /3. For the exact volume of the 917 missing cone, η = 1. In the denominator of Eq. ( 8), 918 the factor 1/3 is replaced by η/3 , thus the resonances 919 are given by:

The poles are numerically computed as solutions of 921 Eq. (A6). From Eq. ( 8), the residues are found to 922 be:

924 expansion, as follows. From the definition (A4),

Therefore Eq. (A6) can be rewritten as:

If the argument of the cotangent function is small, 946 the following expansion can be used: cot(x) 1/x -947

x/3 -x 3 /45. At this order of the cotangent function 948 and at the first order in z n /x 1 (see Eq. (A4)), this 949 leads to the following result:

The order of the expansion limits the value of 951 nk 1 x 1 nπβ to approximately unity. β being smaller 952 than unity, the following calculation is limited to 953 n = 3, and this implies the truncation of the series 954 in Eq. (A2). For the case η = 1, the final result is 955 found to be:

We remind that the length correction is -z. This 957 can be rewritten as Eq. [START_REF] Coyle | Predicting playing frequencies for clarinets: A comparison between numerical simulations and simplified analytical formulas[END_REF]. Equations (A3) and 958 (A5) can be used for other causes of inharmonicity.

959

For that purpose, it could be interesting to analyse in 960 details all causes of inharmonicity, as did Debut [START_REF] Debut | Analysis 1091 and optimisation of the tuning of the twelfths for 1092 a clarinet resonator[END_REF] 961 for a clarinet. As an example, the inharmonicity due 962 to open toneholes is negative (with a positive length 963 correction), while that due to the cone truncation is 964 positive. Such an effect can be large for fork finger-965 ings [START_REF] Nederveen | Mode lock-1095 ing effects on the playing frequency for fork fin-1096 gerings on the clarinet[END_REF], and entails significant effect on the playing 966 frequency.