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Abstract

Spectra of musical instruments exhibit for-
mants or anti-formants which are important
characteristics of the sounds produced. In the
present paper, it is shown that anti-formants
exist in the spectrum of the mouthpiece pres-
sure of saxophones. Their frequencies are not
far but slightly higher than the natural frequen-
cies of the missing part of the cone. To deter-
mine these frequencies, a first step is the nu-
merical determination of the playing frequency
by using a simple oscillation model. An analyt-
ical analysis exhibits the role of the inharmonic-
ity due to the cone truncation and the mouth-
piece. A second step is the study of the input
impedance values at the harmonics of the play-
ing frequency. As a result, the consideration
of the playing frequency for each note explains
why the anti-formants are wider than those re-
sulting from a Helmholtz motion observed for
a bowed string. Finally numerical results for
the mouthpiece spectrum are compared to ex-
periments for three saxophones (soprano, alto
and baritone). It is shown that when scaled
by the length of the missing cone, the anti-
formants frequencies in the mouthpiece are very

similar for the three instruments and correctly
predicted by the model. Finally, the numerical
computation shows that anti-formants and for-
mants might be found in the radiated pressure.

1 Introduction

The auditory recognition of musical instru-
ments is a rather intricate issue. It is generally
admitted that the existence of formants is an
important element that contributes to the iden-
tification of an instrument. A formant (resp.
an anti-formant) can be defined as a frequency
band reinforced (resp. attenuated) whatever
the played note. Formants are in general re-
garded as an important characteristic of the
tone colour (or of the vowels in speech). It
needs to be distinguished from other timbre
characteristics, such as the weakness of har-
monics of a given rank (e.g., the even harmon-
ics in the clarinet sound). The statement of
the problem is ancient [4, 5]. Smith and Mer-
cer [4] found formants produced by conical in-
struments similar to saxophones. Benade [2]
wrote: “There is in fact almost no simple for-
mant behavior to be recognized in the sound
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production of wind instruments”. However sev-
eral authors observed that the spectrum of the
acoustic pressure in the reed of a bassoon [1]
or in the mouthpiece of a saxophone [2, 3] is
close to the function sin(nq)/nq, where n is the
harmonic number and q can be determined ex-
perimentally.

This implies that anti-formants can appear
around frequencies satisfying sin(nq) = 0.
If formants (or anti-formants) exist, a conse-
quence of the abovementioned definition is that
their frequencies cannot depend on the length
of the tube for a given note. Conversely they
depend either on other geometrical parameters
(length of the missing cone, input radius, apex
angle of the truncated cone, dimensions of the
mouthpiece, geometry of the toneholes) or on
the excitation parameters.

The simplest model, based upon the analogy
with bowed string instruments, was studied by
many authors [6, 7, 8, 9, 10, 11, 12], and a result
is the waveshape approximation of the mouth-
piece pressure by a rectangle signal, i.e., the
waveshape of the ideal Helmholtz motion. For-
merly, some authors explained that an approxi-
mation of the natural frequency of reed conical
instruments is equal to that of an “open-open”
cylinder whose length is the length of the trun-
cated cone extended to its apex [13, 14, 15]. Be-
cause of the length of the missing cone does not
vary with the note, a consequence of the anal-
ogy is that the duration of the negative pressure
episode is common to all notes. Another con-
sequence is the existence of anti-formants close
to the natural frequencies of the missing part of
the truncated cone (which is denoted x1 in the
present paper, see Fig. 1 for the notations).

The analogy with the Helmholtz motion of
bowed strings leads to the result that in the
function sin(nq)/nq, q ≃ πβ, where β is the
ratio of the short length of the string to its total
length. For a truncated cone, β is the ratio of
the length of the missing cone x1 to the total
length x2 = ℓ + x1 :

β =
x1

x1 + ℓ
=

x1

x2

=
R1

R2

(1)

R1 and R2 are the radii at abscissae x1 and x2,
respectively.

0 x

ℓ

Input cross section S1 = πR2

1

Mouthpiece
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ℓ

Input cross section S1 = πR2

1
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x
1

Figure 1: Notations for the geometrical param-
eters. For a soprano saxophone, the length of
the missing part of the cone is approximately
x1=0.126 m. Typical values of the coefficient β
are included in the interval [0.13, 0.3].

It is still the only model that yields analytical
expressions for the sound produced, and there-
fore it is used as a reference for the present
study. In a paper written by some of the
present authors, it was shown that a simple nu-
merical model can largely improve the model
of the Helmholtz motion [16]. We call it the
“Reed-Truncated-Cone” model (RTC model).
The difference between the two models lies in
the resonator model. An example of waveshape
obtained with the two models is shown in Fig.
2. Using the RTC model for the present in-
vestigation on the spectrum, the paper aims at
further understanding of the existence of for-
mants or anti-formants in the mouthpiece pres-
sure spectrum, and, to some extent, of the ex-
ternal pressure. The computation is done ab
initio in the time domain.
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Figure 2: Example of waveshape for a soprano
saxophone (x1 =0.126m and ℓ = 0.55m) for
the excitation parameters γ = 0.4, ζ = 0.65
(see Sect. 3.1). Thick line: RTC model; thin
line: ideal Helmholtz motion model.

The study is limited to the first register,
which resembles the Helmholtz motion (peri-
odic regime, one positive pressure and one neg-
ative pressure episodes). The RTC model is
based upon the observation that in practice the
mouthpiece volume is approximately equal to
that of the missing cone [17], entailing a weak
inharmonicity for the lower notes. The res-
onator is a truncated cone, of length ℓ, with
a pure lumped compliance at its input (that
of the air in the mouthpiece volume). This is
a simplification, because in some instruments,
such as the oboe, the cone of the resonator can
be more complicated, with two different tapers,
entailing a further reduction of inharmonicity
[18]. The double taper is not considered here,
because the waveform of the internal pressure
given by the RTC model seems to compare well
enough with experimental waveforms [16].

The effects of wall losses and radiation are
ignored. The model of toneholes is extremely
simplified: for a given fingering with a given
number of toneholes, the resonator is assumed
to be equivalent to a truncated cone of equiva-
lent length ℓ. Therefore, for a given note, two
parameters are sufficient, the length ℓ and the
radius ratio R2/R1 (actually, without losses, it
is not necessary to define the values of the two

radii, or the apex angle). Therefore, according
to the hypotheses done by the RTC model, the
length of the missing cone is expected to be pre-
dominant in the dependence of the frequencies
of formant and anti-formants.

As an intermediate step, the paper attempts
to determine more precise values for the first
playing frequency, because it has an influence
on the spectrum, as discussed later. This in-
fluence entails the dependence of the pressure
spectra on the fingering, i.e., on the length ℓ,
and the enlargement of the formants.

In Sect. 2 the RTC model is presented
for the resonator, with the calculation of the
transfer functions of the resonator (between in-
put and output quantities). Sect. 3 recalls
some known results about the “cylindrical sax-
ophone” model, which is similar to that of an
ideal bowed string, and gives the classical solu-
tion of the Helmholtz motion. The paradox of
the analogy between a conical instrument and
a cylindrical saxophone is discussed.

Then, in Sec. 4, it is shown how the playing
frequencies for a truncated cone with mouth-
piece differ from those that correspond to the
ideal Helmholtz motion, because they depend
on the excitation parameters, and on the note.

In Sec. 5 the zeros of the transfer functions
are investigated with their dependence on the
playing frequencies.

In Section 6, thanks to the results of numeri-
cal computations obtained with the RTC model
[16] of the sound production, the frequencies of
the minima of the input impedance are com-
pared to those of the mouthpiece pressure, and
the existence of formants and anti-formants is
discussed in both the internal pressure and the
external one.

In Section 7 experimental results are pre-
sented, and compared to the numerical results.

2 Basic model of the res-

onator

2.1 Resonator model of the RTC.

A truncated cone is considered (see Fig. 1),
provided with a mouthpiece of volume equal to
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the volume of the missing cone: V = x1S1/3.
The mouthpiece is assumed to be small with
respect to the wavelength. The shunt acoustic
compliance of the mouthpiece is V/̺c2. The
inertia of the air within the mouthpiece (i.e.
the series acoustic mass), is ignored, because
the sound production by reed instruments oc-
curs at frequencies close to impedance maxima
(this is discussed in Ref. [16]). At abscissae x1

and x2, the cross-section areas are S1 and S2,
respectively.

No resonator losses are considered, and the
output impedance of the cone is assumed to be
zero. This implies that the radiation reactance
is zero too: it could be taken into account by
a slight modification of the length of the trun-
cated cone. In the frequency domain, the so-
lution of the acoustic equations in the conical
tube can be written as the sum of two spherical,
travelling pressure waves P ±(x):

P (x) = P +(x) + P −(x); (2)

U(x) =
S(x)

ρc

(

P +(x) − P −(x) +
P (x)

jkx

)

(3)

P ± = a± exp(∓jkx)/x. (4)

P (x) is the pressure and U(x) is the flow rate.
k = 2πf/c is the wavenumber, f is the fre-
quency, c the speed of sound, ρ the air density.
Standard transfer matrices for the lumped com-
pliance and the truncated cone are used for this
model in the frequency domain. Because the
pressure P2 at the output is zero, the two fol-
lowing transfer functions between the mouth-
piece input quantities (pressure P and flow rate
U) and the output flow rate U2 are found:

P =
j̺c

πR1R2

sin(kℓ)U2, (5)

U = R1

R2

{cos(kℓ) + sin(kℓ)/(kx1)

−sin(kℓ)kx1/3}U2

(6)

These transfer functions have zeros, but no
poles. At the frequencies of the zeros, because
U2 is finite, the input quantities P and U van-
ish.

The external pressure can be derived from
the output flow rate U2, which at low frequen-
cies can be regarded as a monopole source.

Omitting the delay, the low frequency relation-
ship between the external pressure at distance
d and the output flow rate is the following:

Pext = jωρU2

1

4πd
. (7)

ω is the angular frequency. For our purpose,
we have interest in the physical quantities P , U
and U2, which depend on the excitation, as well
as the extrema of the two transfer functions,
which depend on the resonator only. The zeros
of the transfer functions for the pressure and
flow rate (Eqs. (5) and (6)) are the zeros and
poles, respectively, of the input impedance:

Z =
ρc

S1

j sin(kℓ)

cos(kℓ) + sin(kℓ)/(kx1) − sin(kℓ)kx1/3
.

(8)

2.2 Comparison with the “cylin-
drical saxophone” model

A further approximation of the RTC model is
the classical cylindrical saxophone model. The
function 1/x− x/3 is identified with the Taylor
expansion of the function cot(x). The transfer
function equation (6) is unchanged, and, under
the following condition,

kx1 = 2πx1/λ << 1, (9)

where λ is the wavelength. Eq. (6) becomes:

U =
R1

R2

[cos(kℓ) + sin(kℓ) cot(kx1)] U2. (10)

The input impedance becomes:

Z =
j̺c

S1

sin(kℓ) sin(kx1)

sin [k(ℓ + x1)]
. (11)

This formula is equivalent to that of the admit-
tance of a string at the bow position. Therefore
the Helmholtz motion is a particular solution
of the self-sustained oscillation problem. We
call this model “cylindrical saxophone” model
(however for a cylinder R1 = R2, while here
the radii R1 and R2 are different). Compar-
ing Eqs. (6) and (10), it can be noticed that
in the transformation, an infinity of poles have
been added, entailing different behaviours of
the transfer functions and input impedance.
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Formula (11) exhibits that there are two
kinds of input pressure minima, i.e., of in-
put impedance minima: i) the solutions of
sin(kℓ) = 0, which depend on the note; ii) the
solutions of sin(kx1) = 0, which do not depend
on the note. Fig. 3 shows an example of in-
put impedance curve. For this figure, realis-
tic visco-thermal losses (for an average cone ra-
dius) have been taken into account in Eq. (11).
The two kinds of minima appear. For the RTC
model the second kind of minima disappears,
according to Eq. (8). The present paper fo-
cusses on the second kind, which is responsible
for anti-formants of the input pressure. We add
two remarks:

1. The case shown in Fig. 3 corresponds to
an irrational value of the parameter β. For
rational values of β, the frequencies of the
second kind of minima for the cylindrical
saxophone can coincide with those of the
truncated cone, but losses make the dips
distincts.

2. The resonances of the cylindrical saxo-
phone are perfectly harmonic (see the dot-
ted lines in Fig. 3). The figure exhibits
that this is not the case for the truncated
cone with mouthpiece (solid line in Fig.
3). The consequences of inharmonicity are
studied in Sections 4 and 5.
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Figure 3: Example of input impedance modulus
curves (in dB) for x1 = 0.126m and ℓ = 0.55m.
Solid line: RTC model; dotted line: approxima-
tion corresponding to the cylindrical saxophone
model (ideal Helmholtz motion.

3 Oscillation model and

the solution of the ideal
Helmholtz motion

3.1 Helmholtz motion

The complete oscillation model is now inves-
tigated. For the exciter (mouth and reed),
the model used was presented in Ref. [16].
The nonlinear characteristic is deduced from
the model established by Wilson and Beavers
[19]. Nevertheless no reed dynamics is consid-
ered. Two dimensionless parameters were de-
fined by these authors: the mouth pressure γ
and the reed opening ζ at rest (in Ref. [19], the
parameters are the same, with different nota-
tions). The model is based upon the Bernoulli
law and some hypotheses, with a localized non-
linearity. With the approximation (11) for the
impedance, analytical solutions exist for the os-
cillations, in particular the so-called Helmholtz
motion [9], which is a rectangle signal.

Using the subscript H for the Helmholtz
motion, the fundamental frequency is fH1 =
c/2(l + x1) (the wavelength is twice the total
length of the cone). The frequency fHn of the
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nth harmonic is given by:

fHn =
nc

2(ℓ + x1)
. (12)

The value of the signal during the longer
episode is γ (when the reed does not close the
mouthpiece), while the value during the shorter
episode is −(1 − β)γ/β (when the reed closes
the mouthpiece, for the definition of β, see Eq.
(1)). This case corresponds to the condition
γ > β, which is often satisfied in practice (see
Ref. [9]), as well for the choice of parameters in
the theoretical part of the present paper. The
spectrum components of the input pressure p(t)
are as follows:

Pn = −γ (−1)n sin Xn

Xn

(13)

Xn = 2π fHnx1

c = kHnx1 (14)

= nπx1

ℓ+x1

= nπβ. (15)

Here the pressure is dimensionless: all pressures
in the resonator are divided by the reed clo-
sure pressure pM , which is proportional to the
reed stiffness. The waveshape and the relative
pressure spectrum are independent of the ex-
citation parameters. The flow rate u(t) at the
input is constant, in order for the input aver-
age power per period to vanish. For frequencies
fm = mc/(2x1), sin Xm = sin(mπ) = 0: there
is a zero in the pressure spectrum, under the
condition that m/n = β is rational. If β is irra-
tional, there is a minimum amplitude near the
frequencies fm. As a consequence, whatever
the cone length ℓ, there is an amplitude min-
imum around these frequencies, i.e., an anti-
formant, and these frequencies are the natural
frequencies of the length x1 of the missing cone.

Writing x1 = (ℓ + x1) − ℓ, Eq. (13) implies:

sin Xn = (−1)n sin(nπℓ/(ℓ + x1)) (16)

= (−1)n sin(kHnℓ), (17)

thus Eqs. (6) and (13) give the amplitude of
the output flow rate:

U2,n =
γ

Xn

πR1R2

̺c
. (18)

There are no zeros in the spectrum of the
output flow rate. Eqs. (7, 18) shows that the

spectrum of the external pressure Pext is con-
stant and the signal is a Dirac comb. Neither
formants nor anti-formants exist in the radiated
pressure Pext.

3.2 Comparison of a cylindrical
saxophone with a truncated
cone

The present study was motivated by a para-
dox presented in a conference paper by some
authors of the present article [21], and summa-
rized hereafter.

For bassoon sounds, Gokhstein [7] showed
both experimentally and theoretically that the
duration of reed closure is independent of the
played note, i.e., of the equivalent length of
the resonator. This duration is related to the
round trip of a wave over a length equal to that
of the missing part of the cone x1. The cor-
responding frequency is the natural frequency
of this length c/(2x1). This seems to validate
the analogy with the bowed string excited at a
given length of the bridge (or with the cylin-
drical saxophone, which is also analogous to a
kind of stepped cone [10]). This was studied
in several papers [8, 9, 10]. However the anal-
ogy is known to be valid only if the length of
the missing cone is small compared with the
wavelength (see Condition (9)). This condition
is not fulfilled for the natural frequency of the
missing part, which is equal to the half of the
corresponding wavelength.

Thanks to the bowed string analogy, useful
conclusions can be drawn concerning important
features of the sound production, such as oscil-
lation regimes and amplitudes. A priori accu-
rate insight of the tone color for higher frequen-
cies, which do not fullfil the condition (9), can-
not be expected. Nevertheless measured spec-
tra of the internal pressure of saxophones ex-
hibit minima [20] at frequencies corresponding
roughly to the harmonics of the fundamental
frequency c/(2x1). On the one hand this is
an argument in favour of the analogy with the
Helmholtz motion, while on the other hand this
result is paradoxical because for these frequen-
cies, the condition (9) is not fulfilled. . It will
be shown how inharmonicity of the resonator,
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which does exist neither in a perfect string nor
in a cylindrical saxophone, plays a major role
in a real conical instrument. In particular it
implies that the playing frequency differs from
natural frequencies c/(2(x1+ℓ)) of the complete
cone.

In order to make easier the comparison of the
results for a truncated cone with those for the
Helmholtz motion, we define a quantity propor-
tional to the external pressure (Eq. (7)), i.e.,
to the square root of the radiated power, as fol-
lows:

W = U2

̺c

πR1R2γ
kx1. (19)

We call W the normalized output flow rate. For
the Helmholtz motion and the harmonics of the
playing frequency, which is our reference, |W |
is unity (see Eqs. (18) and (15)). For the trun-
cated cone, we re-define the transfer functions
(5 and 6), as follows:

(

P
U

)

=

(

Fp

Fu

)

W (20)

with

Fp =
jγ

kx1

sin(kℓ), (21)

Fu = S1

ρc
γ

kx1

{(cos(kℓ) + sin(kℓ)/(kx1)

− sin(kℓ)kx1/3}.
(22)

4 Playing frequency of a
conical instrument

The playing frequencies of a truncated cone
slightly differ from the resonance frequencies
of the cylindrical saxophone, and the conse-
quences for the pressure spectrum are signifi-
cant. In the present section the values of this
frequency is studied. Then, in section 5 the de-
pendence of the formants and anti-formants on
the playing frequency is investigated.

It is often considered that the playing fre-
quencies are very close to the natural frequen-
cies of the resonator. However several causes
of discrepancies between playing and natural
frequencies were recently investigated for reed
cylindrical instruments [22]. Among them there
is the effect of inharmonicity of the resonator,

and for conical instruments, which are trun-
cated cones, the effect of the truncation is
important, even if it is limited by a proper
choice of the mouthpiece dimensions. When the
approximation of the cylindrical saxophone is
abandoned, the playing frequencies differ from
the natural frequencies of the total length ℓ+x1

(Eq. (12)).

4.1 Numerical estimation of the
playing frequencies (RTC
model)

Using the numerical RTC model, including the
excitation model and the resonator model cor-
responding to Eq. (8), the playing frequency of
the first periodic regime was determined. In or-
der to calculate the playing frequency, we seek
the number of samples between two changes in
sign of the input pressure (when the pressure
is negative and becomes positive). The typical
number of samples for one period is larger than
1000. The relative error on the total equivalent
length is less than 0.1%, and that on the length
correction is less than 1%.

It is convenient to represent the shift between
the playing frequency fp and that of the ideal
Helmholtz motion by a length correction, de-
noted −z , as follows :

kp =
2πfp

c
=

π

ℓ + x1 − z
. (23)

z = 0 corresponds to the case where these two
frequencies are equal. The thin lines in Fig. 4
show, for three pairs of (γ, ζ), that the length
correction is negative, entailing that the play-
ing frequency is higher than the first resonance
frequency. The length z is significantly smaller
than the length x1 of the missing cone, and con-
sequently much smaller than the total length,
whatever the value of the cone length ℓ. How-
ever the comparison of the classical approxi-
mation of the resonance frequency c/2/(ℓ + x1)
and the playing frequency shows that the dif-
ference between them is not negligible: 4% for
ℓ = 0.35m, i.e., 60 cents, and 1% for the lowest
note (ℓ = 0.67m), i.e., 15 cents.
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Figure 4: Length z (−z is the length correction)
related to the playing frequency represented by
the ratio ℓ/x1 for several values of the length
ℓ of the truncated cone (simulation results).
When ℓ varies from 0.35 m to 0.67 m, the ratio
β decreases from 0.26 to 0.16. x1 = 0.126m.
Thin lines: dotted (γ = ζ = 0.4), mixed (γ =
0.45; ζ = 0.85), dashed (γ = 0.4; ζ = 0.65).
+++ Formula (25), for one, two, three terms
of the series (from bottom to top). xxx For-
mula (26), for one, two, three terms of the series
(from bottom to top).

For dimensions close to those of a soprano
saxophone, the choice of 0.35 m as the shortest
value for the cone length is due to the difficulty
for finding a periodic regime with the ab initio
computation and a short ℓ. The playing fre-
quencies are in the range [209Hz, 438Hz] for
c = 340ms−1. The issue of the regime stability
is complicated, and is out of the scope of the
present paper (see [9, 12, 23]).

4.2 Analytical estimation of the
playing frequencies

In order to understand the role of inharmoni-
ciy in the playing frequency, the influence of
the second resonance frequency, which is higher
than twice the first, and that of the third one,
can be estimated in a quantitative way. For
this purpose, the result due to Boutillon [24, 25,
p. 517] is used, valid under the condition that
the reed dynamics is ignored. This is one of

the equations of the Harmonic Balance Method
(HBM), therefore it does not need the compu-
tation of the transient. Considering that the
length correction depends little on the exci-
tation parameters, the spectrum of the input
pressure is aproximated by its value for the
Helmholtz motion, and it is possible to find an-
alytically an order of magnitude of the length
correction. The “reactive power rule” leads to
the equation to be solved for the unkwown play-
ing frequency, denoted ω:

∑

n

n |Pn|
2

Im [Y (nω)] = 0. (24)

Pn is given by Eq. (13). In Appendix A, two
approximate methods of calculation for the cor-
responding length correction z are used. The
first one gives the result:

z =

∑

n
znn2 sin2(nπβ)/Resn

∑

n
n2 sin2(nπβ)/Resn

, (25)

where zn is the length correction correspond-
ing to the nth resonance frequency and Resn

the residue of this resonance in the formula (8)
of the input impedance. If the lengths zn were
equal for all resonance frequencies (no inhar-
monicity), the correction z for the playing fre-
quency would be equal to them.

Fig. 4 compares the numerical results with
those obtained with the results of the two for-
mulas. For the first one, the main features are
the correct order of magnitude when more than
one term are kept in Eq. (25), and the global
decrease when the length ℓ increases. The dif-
ference between the results with 1 and 2 terms
exhibits the importance of the inharmonicity
between the first two resonances, due to the
truncation of the cone (the result limited to
one term is nothing else than the length cor-
rection for the first resonance). It appears that
the playing frequency obtained from the nu-
merical computation lies between the results
of Eq. (25) for 2 and 3 harmonics (i.e., for
2 and 3 terms of the series). The calculation
with 4 terms gives bad results, as explained
in Appendix A, after Eq. (A10). It can be
concluded that the second and third harmon-
ics play an important role in the value of the
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playing frequency. Moreover, even if the exci-
tation is ignored in Eq. (25), this calculation
gives a qualitative agreement with the complete
computation of the oscillations.

The second method is an analytical approxi-
mation of Eq. (25), which is satisfactory for one
harmonic, but for two and three harmonics, it
is satisfactory only for long length ℓ (ℓ >> x1),
i.e., when the resonance frequencies are low. It
gives the following approximation:

z ≃ x1

π4β4

45

1 + 16 cos2(πβ) + 9
[

3 − 4 sin2(πβ)
]2

1 + cos2(πβ) +
[

3 − 4 sin2(πβ)
]2

/9
.

(26)

The three terms of the numerator and the
denominator correspond to the first three terms
of Eq. (25).

Finally, using Eq. (A10), the inharmonicity
between the first two resonance frequencies can
be calculated from the ratio of the two frequen-
cies:

f2

2f1

=
ℓ + x1 − z1

ℓ + x1 − z2

=
45 − π4β5

45 − 16π4β5
. (27)

This gives 8% (more than a semi-tone) for the
shortest length considered (0.35 m), and 1% for
the longest length (0.67 m). As a consequence,
the choice of the mouthpiece volume reduces
the inharmonicity, but inharmonicity remains
important.

5 Analytical study of the

transfer functions for the
harmonics of the playing

frequency

In order to investigate the spectrum of the
acoustic quantities, we need to calculate their
values at the harmonics fo the playing fre-
quency. The anti-formants of the input pres-
sure and flow rate correspond to the frequen-
cies of the minima and maxima of the input
impedance.

5.1 Input impedance extrema for
the harmonics of the playing
frequency

When the length correction for the playing fre-
quency is ignored (or independent of the length
ℓ), it was noticed in [21] that, for the har-
monics of the playing frequency, the frequen-
cies of some extrema of the input impedance
are independent of the cone length, i.e., of
the note. Indeed, for the harmonics of the
playing frequency, f = nc/2(ℓ + x1 − z), i.e.,
kℓ = nπ −k(x1 −z), the following equation can
be written as:

cot(kℓ) = − cot(k(x1 − z)). (28)

If z is independent of the length ℓ, the latter
disappears in the expressions of the zeros of the
transfer functions. The values of the impedance
for the harmonics of the playing frequency are
located on the following curve:

Z =
ρc

S1

j sin(k(x1 − z))

− cos(k(x1 − z)) + sin(k(x1 − z))H(kx1)
.

(29)
where H(kx1) = [1/(kx1) − kx1/3]. Therefore
the extrema of this expression do not depend
on ℓ and are common to all notes. They corre-
spond to the zeros of the following equations,
derived from Eqs. (21 and 22) with Eq. (28):

tan(k(x1 − z)) = 0 (30)

cot(k(x1 − z)) = 1/kx1 − kx1/3. (31)

The first equation gives the frequencies of
the impedance minima, while the second gives
those of the impedance maxima.

What happens if z is slowly varying? The
corresponding extrema vary little with ℓ. Fig-
ure 5 shows the input impedance modulus for
the harmonics of the playing frequency. The
results for 25 values of the length are superim-
posed. A dotted line shows an example of input
impedance for a given note. The length correc-
tion −z, as numerically calculated in Section 4,
slightly varies with the length ℓ, so do the val-
ues of the frequencies of the extrema. They are
are included in a small range. This enlarge the
formants and anti-formants of the impedance

9



curve sampled at the harmonics of the playing
frequencies.

In the next subsections the values of the zeros
of the transfer functions, i.e., the solutions of
Eqs. (30) and (31), are investigated. The zeros
of Eq. (30) give the anti-formants of the input
pressure, while the zeros of Eq. (31) give the
anti-formants of the flow rate.

f
0 1000 2000 3000 4000 5000

|ZS1

ρc |

-80

-60

-40

-20

0

20

40

60

80

Figure 5: Values of the input impedance for
the harmonics of 25 fundamental frequencies
included in the first register of a soprano saxo-
phone, corresponding to 25 values of the trun-
cated cone length ℓ. The impedance is calcu-
lated from Eq. (8), and plotted in dB. The fre-
quency is in Hz. The calculation of the playing
fundamental frequencies uses the results pre-
sented in Fig. 4 for γ = 0.4; ζ = 0.65. In order
to exhibit an example, the results for one length
is indicated by a cross ’X’ for ℓ=0.352 m, and
the complete impedance curve for this length is
drawn by a thin line. .

In order to obtain more general results, we
extend the model of the resonator. The mouth-
piece is assumed to remain lumped and lossless,
with a volume equal to ηS1x1/3 (for η = 1, it is
that of the missing cone), but an acoustic mass
Mm = σ̺x1/S1 is added (for σ = 1, this is that
of a cylinder of length x1 and cross section area
S1). Adding an acoustic mass does not make the
calculation of the resonator more complicated,
while the complete computation algorithm for
the oscillations should be more complicated. It

is the reason why the model extension is limited
to this section. Eqs. (30) and (31) are replaced
by the following:

−1/(σkx1) = − cot(k(x1 − z)) + 1/(kx1)
(32)

kx1η/3 = − cot(k(x1 − z)) + 1/(kx1).
(33)

These equations correspond to the equality of
the admittances (divided by the factor jρc/S1)
on the two sides of the junction. The output of
the mouthpiece is on the left-hand side, while
the input of the truncated cone is on the right-
hand side. For Eq. (32), the input impedance
of the mouthpiece vanishes, i.e., it goes though
a minimum, while for Eq. (33), it is infinite,
i.e., it goes through a maximum. Using Eq.
(28), the parameter ℓ has been replaced by the
parameter z. In the following subsections, ap-
proximated solutions of Eqs. (32) and (33) are
sought with respect to z and σ or η as:

kx1 = nπ(1 + ε)) (34)

Therefore

tan(k(x1 − z)) ≃ nπ(ε − z/x1) (35)

after expanding the tangent function to the first
order in ε and z/x1.

5.2 Frequencies of the input flow
rate anti-formants vs the
playing frequencies

The frequencies of the flow rate anti-formants
(which correspond to impedance maxima) are
first investigated by using Eqs. (33) and (35).
At the first order in ε and z/x1 , a straightfor-
ward algebra leads to the following result:

ε = −
1

αn
+

z

x1

[

1 −
1

αn

]

, with αn =
η

3
n2π2.

(36)
Thus

kx1 = nπ

[

1 −
1

αn

] [

1 +
z

x1

]

. (37)
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Figure 6: Frequency of the impedance maxima
for the harmonics of the playing frequency with
respect to the length z. η = 1. Circles: numeri-
cal results of Eq. (33); dashed lines: Eqs. (37),
for n = 1, 2,3; dotted line: Eq. (38).

Figure 6 shows the comparison between Eq.
(37) and the exact solutions of Eq. (33). The
agreement of Eq. (37) with the exact result is
satisfactory, except for n = 1. For this value
it is found that when z/x1 is small, the quan-
tity ε is not small (equal to −1/3). For n = 1
and small z/x1 the formula (37) needs to be
replaced by the solution of Eq. (A10) of Ap-
pendix A, as follows:

kx1 = (45z/x1)1/4 (38)

if η = 1. Fig. 6 shows the case η = 1. Similar
behaviour are found when the mouthpiece vol-
ume is different (η 6= 1). Eq. (38) shows that
for small z, there is a great variation of the fre-
quency of the first formant. The variation of
the other solutions with z (for n = 2, 3) in Eq.
(37) is significant, but narrower. As an exam-
ple, for the case in study and n = 2, 20% is a
typical variation. This is related to the width
of formants.

5.3 Frequencies of the input pres-
sure anti-formants vs the
playing frequencies

The frequencies of the pressure anti-formants
(which correspond to impedance minima) are

obtained by using Eqs. (33) and (35). The
result is

kx1 = nπ(1 + σ)(1 + z/x1). (39)

These frequencies are also slightly higher than
the values nπ, which would be the values for the
ideal Helmholtz motion. Moreover they vary
significantly with z, i.e., with the playing fre-
quency of the note played. The order of magni-
tude of the variation is the same as that for the
flow rate. Fig. 7 compares this formula with
the exact solutions of Eq. (30). The agreement
is sufficient for an estimation of the influence of
the pair of parameters (z/x1, σ). The value of
the mouthpiece parameters have been chosen as
follows: the mouthpiece is assumed to be cylin-
drical, with a cross section area Sm = 2S1, and
a volume Smℓm is equal to that of the missing
cone length (ℓm is the mouthpiece length)

σ =
S1

Sm

ℓm

x1

=
1

3

(

S1

Sm

)2

=
1

12
. (40)

For a cylindrical saxophone, the common
minimum when x1 is constant and ℓ varies, is
given by kx1 = nπ, i.e., sin(kx1) = 0. Because
z = 0 for a cylindrical saxophone, this is in ac-
cordance with Eq. (39), if the acoustic mass of
the small part of the cylinder is ignored.
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Figure 7: Frequency of the impedance min-
ima for the harmonics of the playing frequency
with respect to the length correction z. Cir-
cles: numerical results; dashed lines: Eq. (39)
for σ = 1/12.
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As a conclusion, the frequencies of the anti-
formants of both the input pressure and the
input flow rate are an increasing function of
the length correction. Furtherore the frequen-
cies of the pressure anti-formants depend in a
non negligible way on the acoustic mass of the
mouthpiece.

6 Numerical results for the

spectra

6.1 Internal and external spectra
for a given length.

After the study of the transfer functions, we use
the numerical solving of the full RTC model, in-
cluding the excitation, and find the input pres-
sure P , the input flow rate U , and the normal-
ized output flow rate W (see Eq. (19)), which
is proportional to the external pressure. The
RTC model [16] gives the input quantities, and
the value of the outgoing pressure wave, which
is denoted P +

2 = P+(x2) (see Eq. (3)). The
output flow rate can be derived as follows:

U2 = 2
S2

ρc
P +

2 , therefore W = 2P +

1

kx1

jγ
. (41)

The chosen model is the simplest (η = 1; σ = 0,
see Eqs. (32, 33)). Fig. 8 (top) shows the com-
parison between the spectrum modulus of the
transfer function Fp (Eq. (21)) and that of the
input pressure signal P . For a cylindrical sax-
ophone, because W is unity, the two spectra
would be identical. It appears that the effect
of the cone truncation and the mouthpiece are
significant, except for the first harmonics. The
output flow rate cannot be infinite, therefore
the zeros of the transfer function are zeros of
the input pressure signal. For a better compari-
son between P and Fp, we complete the transfer
function at intermediate frequencies, by using
Eq. (28), i.e., by replacing kℓ by −k(x1 − z)
in the expressions (21). The values at the har-
monics of the playing frequency are located on
this curve.

The bottom of the figure allows similar obser-
vations when comparing the transfer function

Fu (Eq. (22)) and the spectrum of the input
flow rate U .
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Figure 8: (top) Comparison between the in-
put pressure P (ooo) for the harmonics of the
playing frequency and the transfer function Fp

(+++). x1 = 0.126m, ℓ = 0.4m,γ = 0.4,ζ =
0.65. (bottom) Comparison between the in-
put flow rate U (ooo) for the harmonics of the
playing frequency and the transfer function Fu

(+++). The small crosses (red online) repre-
sent the transfer functions for a continuous vari-
ation of the frequency.

Fig. 9 shows the normalized output flow rate
W . For a cylindrical saxophone, it would be
equal to unity (i.e., the logarithm would van-
ish). In order to check the consistency of the
results, the computation of W was done by us-
ing the direct result of the time-domain calcula-
tion, then the computation of the ratios |P/Fp|,
|U/FU |. The (small) discrepancies can be due
to numerical error in the determination of the
playing frequency, or in the calculation of the
spectra.

It appears that for higher harmonics, the flow
rate is much lower than that of the Helmholtz
motion. A maximum appears at kx1= 6.2. For
a soprano saxophone, this corresponds to a fre-
quency equal to 2700 Hz. Benade and Lutgen
[26] found what they called “notches” in the ex-
ternal pressure signals, when averaged over the
room of the recording. A precise comparison
with our results seems to be difficult, because
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of the simplicity of our model. A comparison
with a more complete model should be useful.
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Figure 9: Normalized output flow rate |W |.
Eq. (19) is computed in 3 ways: direct
computation of the spectrum from the time-
domain (***), |P/Fp|(ooo), |U/FU |(+++) .
Logarithmic scale (for a cylindrical saxophone,
log10(|W |) vanishes. x1 = 0.126m, ℓ = 0.4m,
γ = 0.4, ζ = 0.65.

6.2 Anti-formants in the internal
spectrum

The transfer functions (Eq. (21, 22)) are cal-
culated for 32 values of the length ℓ and for
the harmonics of the playing frequencies. The
curves are superimposed in Fig. 10. Strong
minima appear, therefore anti-formants can be
expected in the spectra of the internal pressure
and the internal flow rate. The figure 10 shows
that despite the variation of the length correc-
tion −z with the note played, the frequencies
of the minima and maxima vary little with the
note, in accordance with the results of Sect. 5.
The central values of the minima depend on a
unique parameter, x1. The first ones are located
at: kx1 = 3.4; 6.7; 10.1 for Fp and 1.6; 6.2; 9.9
for Fu.
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Figure 10: Transfer functions |Fp| and |FU | for
32 values of the the length ℓ (logarithmic scale).
x1 = 0.126m, ℓ = 0.33m to 0.64m γ = 0.4,
ζ = 0.65.
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Figure 11: Input pressure P , input flow rate U ,
normalized output flow rate W for 32 values of
the length ℓ (logarithmic scale). x1 = 0.126m,
ℓ = 0.33m to 0.64m γ = 0.4, ζ = 0.65.

Fig. 11 confirms that anti-formants exist for
the two input quantities, at the position of the
minima of the transfer functions. For a trun-
cated cone, their width depends on the vari-
ation of the length correction with the cone
length. We checked that the influence of the
excitation parameters is weak.

What happens for the external spectrum,
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proportional to that of W ? Formants seem
to exist near kx1 = 6.2 and 10, and maybe
anti-formants near kx1 = 5 and 8. There is a
significant difference with the anti-formants of
the input quantities: we do not know the rela-
tionship with the transfer functions. It could
be supposed that they depend mainly on the
excitation, but this is not the case. Changing
the values of the excitation parameters does not
modify the general shape of the Figure 11, in-
cluding the values of the extrema. Moreover the
dependence on the mouthpiece volume appears
to be slight. The determination of the correla-
tion between the resonator model and the for-
mants and anti-formants remains a topic to be
investigated, but probably with a much more
complete model. This will be discussed now in
the light of experimental results.

7 Experimental results for
the mouthpiece pressure,

comparison with the RTC
model

Decreasing chromatic scales (16 notes of the
first register) were played by a saxophonist for
a soprano saxophone Selmer Mark VI, an alto
saxophone Buffet-Crampon Senzo, and a bari-
tone saxophone (Yanagisawa B-901). A micro-
phone Endevco 8507-C2 is located within the
mouthpiece. The Fourier analysis (FT) is done
on one period, chosing a portion of each note
where the pitch is rather stable.

Figure 12 shows the results for the internal
pressure. The similarity of the results for the
three saxophones, when scaled by the length
x1, is remarkable up to kx1 ≃ 6. This con-
firms the essential significance of the length of
the missing cone at low frequencies. Using a
first order filter, we compute a moving aver-
aged value for the harmonics of different notes.
These experimental results can be compared to
the numerical results of Figure 11. The am-
plitudes of the experimental and theoretical re-
sults seem to be rather similar. However this
direct comparison is not relevant, because the
amplitudes depend on the excitation parame-

ters, which were not measured for the exper-
iment: a mezzo forte note was played with
each instrument, without specific constraint for
the musician. However the amplitude variation
from lower to higher frequencies can be com-
pared for the three curves.

The frequencies of the minima (given by dot-
ted vertical lines) are very similar for the three
measured saxophones. However the frequencies
given by the model are higher than the exper-
imental ones. A reason can be the influence of
the existence of taper variation, or that of the
acoustic mass of the mouthpiece, because it is
in series with the input impedance of the trun-
cated cone. For simplicity, the mass is ignored
in the present model, because taking the mass
into account would require a very different dis-
cretized oscillation model. However, for σ close
to 0.1, Eq. (39) gives a correct order of magni-
tude of the necessary correction for the first fre-
quency of minimum. Obviously, at higher fre-
quencies, the assumption that the mouthpiece
is smaller than the wavelength is questionable
as well. We checked that the excitation pa-
rameters play a weak role on these frequency
values.
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Figure 12: Mouthpiece pressure. From top
to bottom: experimental results for a decreas-
ing chromatic scale played on a soprano saxo-
phone (x1 = .126m), an alto saxophone (x1 =
0.196m) and on a baritone saxophone (x1 =
0.301m) The abscissa is kx1 for the different
saxophones, with different x1. Bottom: numer-
ical results given by Fig. 11.

An attempt to measure the external pres-
sure was done, with a microphone close to the
first tonehole. However, as it is known (see
e.g. [5, 26, 27, 28]), the pressure spectrum
strongly depends on the location of the micro-

phone. Above cutoff, the external pressure field
is the result of complicated interferences, and is
very different from the one of a monopole. For
a soprano saxophone, the cutoff can be evalu-
ated at 1200Hz (kx1 ≃ 2.8): for a discussion
about the definition of the cutoff frequencies
due to toneholes, see Ref. [29]). Moreover at
this frequency the radiation by the bell is not
that of a monopole (kR2 is close to 1.5). Notice
that there are bends in a baritone saxophone,
therefore the interference pattern is necessar-
ily different from that of the (straight) soprano
saxophone.

These reasons are sufficient to explain why
our preliminary results for the soprano and
baritone saxophones are very different. In Ref.
[26], the authors found that the general shapes
of the external spectra can be approximated
by two straight lines, crossing at 618Hz for an
tenor saxophone, and 837Hz for an alto saxo-
phone. The first line was increasing, while the
second was decreasing. The major interest of
the approach of these authors was the measure-
ment of an average pressure in a room.

Concerning the model, it appears that the
simple theoretical model is not able to give any
prediction of the extrenal spectrum. The first
reason lies in the ignorance of the tonehole ef-
fects. Moreover many other phenomena inter-
vene: boundary layer losses, radiation, reed dy-
namics, etc. Therefore complete study remains
to be carried out, and is out of the scope of the
present paper.

8 Conclusion

Conclusions can be drawn for the pressure spec-
trum in the mouthpiece:

• Anti-formants exist in the spectra of the
mouthpiece pressure and input flow rate,
and their frequencies are mainly related to
the resonator. The values of their frequen-
cies are related to the length of the missing
cone. Formants exist as well. Their effect
is less strong, but their existence can be
regarded as a consequence of that of anti-
formants.
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• Concerning the spectra of different instru-
ments of the saxophone family, they ap-
pear to be very similar, taken into account
the scale of missing cone length x1.

• The frequencies of the anti-formants are
close to the natural frequencies of the miss-
ing cone length, but slightly higher. This
is not in contradiction with the hypoth-
esis that the product kx1, i.e. the ratio
of the missing cone length to the wave-
length, can be regarded as a small quantity
for these frequencies, but the explanation
is not straightforward: it is related to the
consideration of thesampling of the input
impedance at the harmonics of the play-
ing frequency. This is a major difference
with a cylindrical saxophone, for which the
harmonicity of the resonance frequencies is
perfect.

• Inharmonicity of a conical instrument im-
plies a variation of the negative length
correction, denoted −z in the present pa-
per, when the length of the truncated cone
varies. This is in particular true for the in-
harmonicity due to the cone truncation. A
consequence is a small variation of the min-
imum pressure frequencies with the length
of the truncated cone, i.e., with the played
note. However despite of this variation,
the existence of anti-formants is clear.

• The simplified model of [16] allows an in-
teresting prediction of the waveshapes, and
of the existence of anti-formants in the
spectra of the input quantities. This is true
at least up to kx1 ≃ 7., i.e., up to a ratio of
the missing cone length to the wavelength
equal to unity.

• Assuming a monopole radiation, the exter-
nal pressure diminishes with the frequency,
much more rapidly than for an ideal cylin-
drical saxophone. Numerical results show
that formants exist for the external spec-
trum and their dependence on the excita-
tion parameters is weak. However their
dependence on the geometrical parameters
remains to be understood. It cannot be

easily derived from that of the input quan-
tities.

• A convincing comparison with experiment
requires both a much more complete model
and measurements at different microphone
locations of the radiated sound.
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Appendix A: Approximate

calculations of the playing
frequency

The formula (24) can be ωrewritten by applying
the residue calculus to the modal expansion of
the input impedance (Eq. (8), see e.g. Ref.
[25], p. 167)):

Z(ω) =
∑

m

Resm

ωp − ωm
. (A1)

The ωm’s are the poles and the Resm’s are the
residues. Because the input impedance is writ-
ten in the form (8), which ensures that the nu-
merator has no pole, the residues are obtained
as the ratio of the numerator to the derivative
of the denominator (see [25] p. 167). Because
no losses are considered, the poles are real. An
approximate value of Z(ω) at a given frequency
can be found by truncating the series to one
term only, which corresponds to the pole which
is closest to this frequency. It is assumed that
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the frequency ωm is close to nω, therefore the
subscript m is replaced by n. With this as-
sumption, Eq. (24) becomes:

∑

n

n |Pn|2 (nωp − ωn)/Resn = 0, (A2)

therefore:

ωp =

∑

n
n |Pn|

2
ωn/Resn

∑

n
n2 |Pn|

2
/Resn

. (A3)

If all natural frequencies are harmonically re-
lated, ωn = nω1, and ωp = ω1. Another ex-
pression can be found by defining the length
corrections zn for the different resonance fre-
quencies, as follows:

kn =
ωn

c
=

nπ

ℓ + x1 − zn
≃

nπβ

x1

(

1 + zn
β

x1

)

.

(A4)
The latter expression is valid at the first or-

der of zn/(ℓ + x1). Using this expression, and
a similar expression for derived from Eq. (23),
Eq. (A2) becomes:

z =

∑

n
znn2 |Pn|2 /Resn

∑

n
n2 |Pn|

2
/Resn

. (A5)

If the pressure spectrum is assumed to be that
of the Helmholtz motion (Eq. (13)), Eq. (25)
is obtained. Two calculations of the values of
zn and Resn are used: i) an exact calculation
of the resonance frequencies, which are zeros
of the the input impedance (Eq. (11)), and
the corresponding residues; ii) an analytical ap-
proximation of these quantities.

It is possible to slightly enlarge the hypothe-
sis for Eq. (25). Now the volume of the mouth-
piece is not necessarily equal to that of the miss-
ing cone. We denote it V = ηx1S1/3. For the
exact volume of the missing cone, η = 1. In the
denominator of Eq. (8), the factor 1/3 is re-
placed by η/3 , thus the resonances are given
by:

cot(kℓ) + 1/(kx1) − ηkx1/3 = 0, (A6)

The poles are numerically computed as solu-
tions of Eq. (A6). From Eq. (8), the residues
are found to be:
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Res−1
n = −

S1

jωρ

ℓ + x1 + k2
nx2

1(ℓ(1 − 2η
3

+ ηx1

3
− 2ℓ

3
k2

nx2
1) + η2 ℓ

9
k4

nx4
1

k2
nx2

1

. (A7)
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where kn = ωn/c are numerically computed
as solutions of Eq. (A6). Using Eq. (A4), the
length corrections of the resonance frequencies
zn are deduced. Then Eq. (25) is directly cal-
culated (remember that Eq. (25) is an approxi-
mation, because the real spectrum of the input
pressure is replaced by that of the Helmholtz
motion). Figure 4 shows that for η = 1 Eq. (25)
gives lower and upper bounds for the exact val-
ues, when two and three terms of the series are
taken into account. When η is slightly different
of unity, the length correction is significantly
modified, but Eq. (25) remains satisfactory.

The second kind of calculation needs a fur-
ther step. A first simplification is to approxi-
mate the resonance frequencies by those of the
Helmholtz motion (kn = nπβ). This is a good
approximation, entailing a small error (of the
second order in z/x1). The second simplifica-
tion is based on the approximated calculation
of the length corrections zn, by using a series
expansion, as follows. From the definition (A4),

cot(knℓ) = − cot(kn(x1 − zn)). (A8)

Therefore Eq. (A6) can be rewritten as:

cot(kn(x1 − zn)) = +
1

kx1

−
ηkx1

3
. (A9)

If the argument of the cotangent function
is small, the following expansion can be used:
cot(x) ≃ 1/x − x/3 − x3/45. At this order of
the cotangent function and at the first order in
zn/x1 (see Eq. (A4)), this leads to the following
result:

zn/x1 =
k2

nx2
1

3

[

1 − η +
k2

nx2
1

3

(

1

5
+ η − 1

)]

.

(A10)
The order of the expansion limits the value of

nk1x1 ≃ nπβ to approximately unity. β being
smaller than unity, the following calculation is
limited to n = 3, and this implies the trunca-
tion of the series in Eq. (A2). For the case
η = 1, the final result is found to be:

z ≃ x1

π4β4

45

3
∑

n=1

n2sin2(nπβ)

3
∑

n=1

n−2sin2(nπβ)

. (A11)

This can be rewritten as Eq. (26). Equations
(A3) and (A5) can be used for other causes of
inharmonicity. For that purpose, it could be
interesting to analyse in details all causes of in-
harmonicity, as did Debut [30] for a clarinet.
As an example, the inharmonicity due to open
toneholes is negative (with a positive length
correction), while that due to the cone trun-
cation is positive. Such an effect can be large
for fork fingerings [31], and entails significant
effect on the playing frequency.
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