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1. Introduction

The distribution of the maximum of a Gaussian vector, process or fields has
many application in Statistics and Spatial Modeling (see Worsley et al. [26] or
Cressie [10]). For instance, in the "signal plus noise model" on the real line, we
assume that the observation Y = (Y (t))t is the sum of a signal µ = (µ(t))t and
a noise χ = (X(t))t which is a centered stationary Gaussian process. If we want
to test the null hypothesis H0 : µ ≡ 0, a natural statistic is

MT = max
t∈[0,T ]

X(t),

the observed maximum over the interval [0, T ]. Note that the maximum of the
absolute value is also a relevant statistics, but for the sake of simplicity, we will
not consider this last case which is very similar. Computing thresholds and power
in our case involve some computations on the distribution of MT . Unfortunately,
it is a largely unsolved problem and exact closed formulas exist only in some
particular cases. In the other cases, some bound or asymptotic expansions have
been constructed starting from the pioneering work of Rice [24] then Pickands
[22] and Adler [1].

These expansions have generally good properties when T is fixed and u is
large (u → ∞), but in statistical applications as computation of 0.95 fractile for
MT , T and u are linked and both can be "rather large". In such a case nothing is
known on the properties of the considered expansions. For example, if we focus
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2 1 INTRODUCTION

on the Pickands approximation given by equations (2) or (3), a numerical study
in the case of the Ornstein-Uhlenbeck process show a very interesting behaviour.
Indeed, Figure 1 suggests that the Pickands approximations are sharp for large
values of T . In this example the approximation derived from equation (2) is a
little more precise that the one of equation (3) but it is not always the case,
see Section 4.4.1. We can also see that the approximation are unsuitable for
small-size intervals.
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Figure 1. Exact level of a test constructed for a nominal level of α = 5% using the Pickands

method and the Ornstein-Uhlenbeck process. On the left: small intervals, on the right: large
intervals (see Section 2). The level corresponding to equation (2) is given in brown while the
one of equation (3) is given in green. Both are computed thanks to the pou program (see
Section 3.1.1)

{figure1}

Moreover, if we want to compute now the median of MT , and if we use the
Rice method defined in Section 2.2, Figure 2 shows that the method does not
perform accurately for large values of T .
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Figure 2. Exact probability to be above the approximate median computed using the Rice

method (see Section 2). An upper bound (red line) and a lower bound (blue line) of the
level are computed by the program MGP (see Section 3.1.1). The dotted lines indicate a
relative variation of 50% with respect to the nominal level i.e. 47.5% and 52.5%. The process
considered has covariance function ρ(t) = exp(−t2/2).

{figure2}

In light of the above examples, the main contribution of this paper will be
threefold.

• In Section 2.3 we present a new approximation based on a Poisson ap-
proximation.
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• In Section 3.2.1 and 3.2.2, we present an extension of the MGP program
of Genz (see [6]), firstly to non-stationary case, secondly to random fields.

• In Section 4, we use these programs and MGP to address the quality of
the above-mentioned expansions for two precise problems.

– Computing a critical value at level α for statistical purpose.

– Computing the median of the distribution of the maximum.

As far as we know, it is the first time that such a numerical experiment is
conducted.

In addition, Section 2 describes the approximations widely encountered in
the literature as well as the new Poisson approximation. Section 3 describes the
numerical methods that, except for those of Section 3.1, are modifications or
improvements of the seminal work of [14].

2. Description of the approximations

{s:approx}
We provide here a brief summary of approximation methods for P(M > u) where
M is the maximum of a Gaussian process or random field on sets detailed below.
Before that we defined our assumption and notation.

• χ = (X(t))t is a Gaussian process defined on [0, T ] or a Gaussian field
defined on the rectangle [0, T1] × [0, T2] (excepting the Bessel process of
Section 3.1.1). Its expectation is m(t), its covariance is r(s, t) in the general
case and ρ(h) = r(t, t+ h) if χ is stationary.

• MT and MT1,T2
are respectively the maximum of X(t) on [0, T ] and

[0, T1]× [0, T2].
• φ and Φ denote respectively the probability density function and the cu-

mulative distribution function of a standard normal variable. Moreover,
set Φ̄ = 1− Φ.

• In case of stationarity, we suppose that χ is centered and reduced, i.e.
ρ(0) = 1.

• In case of stationarity and differentiability, we suppose that χ is centered,
reduced with unit speed, i.e. Var(X ′(t)) = −ρ′′(0) = 1.

• x+ = max(x, 0) is the positive part.
• PZ(z) denotes the density of the random variable Z at point z when it

exists.

2.1. Pickands method.
{s: pic}

Let 0 < β ≤ 2 and χ be a β-process i.e. stationary Gaussian process with
covariance function ρ satisfying

ρ(t) = 1− C|t|β + o(|t|β) as t → 0, (1) {cov:pic}{cov:pic}

then the Pickands approximations, as u tends to infinity, are given by

P{MT > u} ≃ TC1/βu(2/β)−1φ(u)Hβ , (2) {Pickands:born1}{Pickands:born1}

see Pickands [22], Piterbarg [23] or

P{MT > u} ≃ TC1/βu(2/β)Φ̄(u)Hβ , (3) {Pickands:born2}{Pickands:born2}
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see Pickands [22], Albin and Choi [3] or Michna [20]. More precisely, the Hβ are
the Pickands constants and T > 0.

The main drawback of the method is that the constants Hβ are known ex-
plicitly only in the cases H1 = 1 and H2 = (π)−1/2 (see Leadbetter, Lindgren
and Rootzén [17] or Albin and Choi [3]). In the other cases, some numerical
approximation must be used as in Dieker and Yakir [13] where the conjecture

Hβ =
(

Γ(β−1)
)−1

,

with Γ the Gamma function, is discussed. Indeed, this conjecture has been
proved to be false by Harper [16] for small values of β.

In addition, the approximations given by (2) and (3) are obviously not ef-
ficient when T is small. An heuristic improvement would be to add the factor
Φ̄(u) that appears in the Rice method hereunder leading to four versions of the
Pickands approximation and raising the question:

Which method is the best one?

This question will be addressed in Section 4. Finally, note that the Pickands
method, also called double sum method, has received a lot of generalization to
various situations. The interested reader may consult Debicki, Hashorva, Ji et
al. [11] and references therein.

2.2. Rice method.
{s:riz}

Let χ be a stationary Gaussian differentiable process then the Rice bound is
given by

P{MT > u} ≤ Φ̄(u) + T
φ(u)√
2π

. (4){chap5:approxi:rice}{chap5:approxi:rice}

Note that both Rice and Pickands apply when β = 2 in (1). In that case, Rice
is asymptotically more precise as u → +∞ (see Azaïs and Wschebor [9], chap-
ter 4). Moreover, the Rice bound, under some regularity conditions, is super-
exponentially sharp in the sense that the error is bounded by

C exp−
(

u2(1 + δ)

2

)

,

for some positive constants C and δ > 0.Finally, there exists a non stationary
version of formula (4) given by

P(MT > u) ≤ P(X(0) > u) +

∫ T

0

E
(

(X ′(t))+|X(t) = u
)

pX(t)(u)dt,

where the conditional expectation may be easily computed in the Gaussian case.

2.3. Poisson method :A new approximation{section:poiss}

Let us focus on stationary differentiable Gaussian processes. In that case, we
already know that the Rice method, see [9], gives the following bound

P{MT > u} ≤ Φ̄(u) +
Tφ(u)√

2π
. (5){f:rice}{f:rice}
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This bound is very efficient for small intervals and rather high levels. But of
course it cannot be very accurate if u is fixed and T is very large, as it can
be even larger than 1, so, almost every time, a better approximation is given
by using the Poisson Clamping heuristic of Aldous [4]. Basically, it assumes
that the number Uu(χ, [0, T ]) of up-crossings of the level u on [0, T ] follows a
Poisson distribution so that the probability of having at least one crossing is
approximatively 1− exp(E(Uu(χ, [0, T ]))). Note that when u and T tend jointly
to infinity so that E(Uu(χ, [0, T ])) is constant, the Volkonskii Rozanov theorem
(see [25]) implies that the limit is actually Poisson. Taking into account the
fact that the limit as T goes to 0 should be Φ̄(u), we are conducted to use the
approximation

P{MT > u} ≃ Φ̄(u) + Φ(u)
(

1− exp

(

− Tφ(u)√
2πΦ(u)

)

)

. (6) {e:poiss}{e:poiss}

Theoretically, a Taylor expansion show that the bound from the Rice method
and the Poisson approximation are equivalent when u → +∞. A discussion
concerning it’s numerical validity and performance is given in Section 4.

2.4. Euler characteristic method.

The Euler Characteristic method is defined in its full generality for random fields
defined on stratified manifold of Rd having constant variance (say equal to one).
However, the formula is cumbersome and no numerical application exists. For
simplicity we limit our attention to a particular case.

Let χ be a Gaussian centered differentiable isotropic random field on the
rectangle [0, T1] × [0, T2]. Denote ρ(‖t − s‖) = Cov(X(s), X(t)) and suppose
that χ is centered, reduced and with unit speed (this can always be obtained by
a scaling) then the Euler characteristic approximation is given by

P{MT1,T2
> u} ≃ Φ̄(u) + (T1 + T2)

φ(u)√
2π

+ T1T2u
φ(u)

2π
,

see Adler and Taylor [2] or Azaïs and Delmas [5] for more details. In particular,
the Euler Characteristic method is the natural generalization of the Rice method
to dimension 2.

3. Numerical methods and programs

{section:num}

In this section we present the juges of the numerical comparison of Section 4.

3.1. Existing programs

{section:existing:programs}

The simplest cases are the few situations cases where the exact result is known
by a closed formula and when this formula is simple enough so that a numerical
program is available (the second condition being more restrictive that the first
one).
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3.1.1. Exact results
{s:exact}

Among the few classical cases where an explicit formula exists, see [7], some are
rather easy to compute and have been incorporated to the Maxgbbox toolbox
Ṁore precisely, the following cases are covered:

• The Brownian motion or Wiener process : functions pbm, qbm, pnbm and

qnbm.
• The Brownian bridge: pbb, qbb, pnbb, qnbb.
• The sine-cosine process: psc, qsc, pnsc and qnsc.
• The Ornstein-Uhlenbeck process: pou, qou, pnou, qnou.
• The Bessel process: pbp, qbp, pnbp, qnbp.

The prefix p is for the cumulative distribution, q is for the inverse distribution
function or fractile function and n is for the norm or the absolute value.

3.1.2. A first approach for Gaussian vector

{s:genz}
The first program QSIMVN written by Genz [14] deals with integration of
Gaussian densities over hyper-rectangles. It uses Quasi Monte-Carlo integration.
In particular, considering an hyper rectangle in R

n which is the product n times
of (−∞, u), it allow us to compute numerically the distribution of the maximum
of a Gaussian vector.
A complementary version named QSIMVNEF computes the expectation of a
function with respect to the Gaussian density.

3.1.3. Record method and Quasi Montecarlo integration for Gaussian processes

The method relies on the record method (see Mercadier [19] and Azaïs Wschebor
[9]) which is a refinement of the Rice method.

{record:dim:1}
Theorem 1. Suppose that the process χ is Gaussian with C1 paths and satisfies:

• ∀(s, t) ∈ [0, T ]2, s < t, the distribution of (X(s), X(t)) does not degenerate,
• ∀t ∈ [0, T ], the distribution of (X(t), X ′(t)) does not degenerate,

then

P(MT > u) = P(X(0) > u) +

∫ T

0

E

(

X ′(t)+1X(s)≤u∀s<t

∣

∣

∣
X(t) = u

)

pX(t)(u)dt.

(7){e:r2}{e:r2}

The formula (7) is in fact an implicit formula which has its own theoreti-
cal interest but is not directly usable for a numerical purpose. The condition
X(s) ≤ u∀s < t has to be discretized using a grid on the set [0, T ] giving now
the following upper-bound:

P(X(0) > u) +

∫ T

0

E
(

X ′(t)+1X(s)≤u∀s<t∈Dn(T )

∣

∣X(t) = u
)

pX(t)(u)dt, (8){record:dim:11}{record:dim:11}

where Dn(T ) := {t0 = 0, t1 = T/n, . . . , tn = T } is, for example, the regular
grid of [0, T ]. To complete this study, a lower bound is obtained simply by
discretization of time and using the routine QSIMVN of Section 3.1.2.
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After the pioneering work of Mercadier [19] with the toolbox MAGP, this
method has been fully detailed in the program MGP written by Genz and
described in [6], including a majoration of the error.

3.2. New programs

3.2.1. Record method for non stationary processes
{section:MAXNSGP}

We present here a generalization of MGP called MAXNSGP. At cost of
being rather slower, it is adapted to non-centered non-stationary differentiable
Gaussian processes.

This program provides an upper bound and a lower bound for the cumulative
distribution function of the maximum. The lower bound is based on a time
discretisation similar to the one of MGP. As for the upper bound, we consider
the equation (8) and

• Use a trapezoidal rule to compute the integral using the same grid Dn(T )
so that we limit our attention to the computation of integrands at points
ti = i/n, i ≤ n.

• For each ti ∈ Dn(T ), set Y = (X ′(ti), X(t0), . . . , X(ti)) = (Y1, . . . , Yi+2)
and note that

E
(

X ′(ti)
+
1X(s)≤u∀s<t∈Dn(T ))

∣

∣X(ti) = u
)

pX(ti)(u)

=

∫ +∞

0

y1

∫

]−∞,u]i+1

pY (y1, . . . , yi+1, u)dy1 . . . dyi+1,

where pY denotes the density of the Gaussian vector Y and let Σi be its
variance-covariance matrix.

• Use the change of variable Y = Σ
1/2
i Z where Σ

1/2
i is the square root of Σi

obtained via the Cholesky decomposition.
• Use the change of variable Uj = Φ(Zj) where the Uj are independant and

follow a uniform distribution for all choice of j.
• Reduce the problem to the hypercube [0, 1]i.
• Finally use MCQMC (Monte-Carlo Quasi Monte-Carlo) integration method

on [0, 1]i. By this last method we mean that in general Quasi Monte-Carlo
are very precise but do not give a reliable estimation of their error. To get
this estimation we add an extra Monte-Carlo layer. See [14] and [6] for
more details.

Contrary to MGP, the non stationarity of χ do not allow to construt re-
cursively the numerous variance-covariance matrices Σi as i varies. By con-
sequence, MAXNSGP is slower but more general. An exemple of application
of MAXNSGP, available at [21], is given in Section A.

3.2.2. Record method in dimension 2
{section:MAXNSGP2}

In dimension two, the record method is adapted to a Gaussian field defined
on compact, convex subsets having a.s. a piecewise C1 parametrization of the
boundary. Here we limit our presentation to the case where the parameter set
is the rectangle [0, T1]× [0, T2]. We use the lexicographic order defined by

s = (s1, s2)⊳ (t1, t2) = t ⇐⇒ {s2 < t2} or {s2 = t2; s1 < t1}
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and define the record set similarly to the one dimensional case with the relation
⊳ instead of <. Our aim is to apply a Kac-Rice formula on the rectangle, which
imply the application of Kac-Rice formula in dimension higher than 1. To do
so, set X ′

1 = ∂X
∂t1

and define the following mild hypotheses for χ:

(A1) The sample paths of the random field Z = (X,X ′
1) are a.s. C1.

(A2) The distribution of Z(t) does not degenerate.

(A3) For every t ∈ R
2,P(∃s ∈ S; Z(s) = t, det(Z ′(s)) = 0) = 0.

Sufficient conditions for (A1)−(A3) are generic. They are almost always satisfied
in the case of a process χ which is stationary. In that context, Mercadier [19]
proved the following theorem.

{record:dim:2}
Theorem 2. With assumption above, for every u ∈ R,

P(MT1,T2
> u) = P(X(0) > u)

+

3
∑

i=1

∫

Bi

E
(

|X ′
T (t)|1X(s)<X(t),∀s⊳t

∣

∣X(t) = u
)

pX(t)(u)dσ(t) (9)

+

∫ T1

0

∫ T2

0

E

(

X
′′−
11 X

′+
2 (t)1X(s)<X(t),∀s⊳t

∣

∣(X,X ′
1)(t) = (u, 0)

)

pX(t),X′

1
(t)(u, 0)dt,

(10){record:dim2:2}{record:dim2:2}

where

• B1 = [(0, 0), (T1, 0)], B2 = [(0, 0), (0, T2)], B3 = [(T1, 0), (T1, T2)] are the
three relevant boundaries of the rectangle: the fourth one does not con-
tribute because of the conditions.

• σ is the surfacic measure (here the length) on the boundary.

• X ′
i(t) =

∂X
∂ti

, X ′′
11(t) =

∂2X
∂t2

1

and X ′
T denote the derivative of X along Bi

for i = 1, 2, 3.

From formula (10), we can derive a numerical routine to bound P(MT1,T2
>

u) for non-stationary non-centered differentiable Gaussian fields. This program
uses the same tricks than MAXNSGP, the only main difference is that we
don’t consider the same grids to compute the two dimensional integral over
[0, T1] × [0, T2] and to discretize the condition 1X(s)<X(t), ∀s⊳t. As a matter of
fact, this last discretization is time consuming and can be faster performed on
a coarser grid without impacting the precision.

More precisely, let

Gn1,n2
(T1, T2) =

{

(

t1i , t
2
j

)

; t1i =
i

n1
T1, t2j =

j

n2
, 0 ≤ i ≤ n1, 0 ≤ j ≤ n2

}

be the grid for the trapezoidal rule and let m1 dividing n1 and m2 dividing n2,
then the subgrid of Gn1,n2

(T1, T2) defined for the discretization of the condition

X(s) < X(t), ∀s⊳ t

is

Dm1,m2
(T1, T2) =

{

(

s1k, s
2
l

)

; s1k =
k

m1
T1, s2l =

l

m2
T2, 0 ≤ k ≤ m1, 0 ≤ l ≤ m2

}

.
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In particular, for each point t of Gn1,n2
(T1, T2), we define the past of t (with

respect to the order ⊳) as the set

Pt = {s ; s⊳ t} ∩Dm1,m2
(T1, T2)

in order to construct our numerical routine MAXNSGP2 similarly to MAXNSGP.
To do so, we consider the one dimensional algorithm of Section 3.2.1 on the vec-
tors

•
(

X ′
1

(

t1i , 0
)

, P(t1i ,0)
, X

(

t1i , 0
)

)

0≤i≤n1

for B1,

•
(

X ′
2

(

0, tj2

)

, P(0,tj2)
, X

(

0, tj2

))

0≤j≤n2

for B2,

•
(

X ′
2

(

T1, t
j
2

)

, P(T1,t
j

2)
, X

(

T1, t
j
2

))

0≤j≤n2

for B3,

while the computation of the interior is based on a trapezoidal rule on the grid
Gn1,n2

(T1, T2) combined with the previous algorithm on the vector

(

X ′
1

(

t1i , t
2
j

)

, X ′
2

(

t1i , t
2
j

)

, X ′′
11

(

t1i , t
2
j

)

, P(t1i ,t2j)
, X

(

t1i , t
2
j

)

)

0≤i≤n1,0≤j≤n2

.

An exemple of application of MAXNSGP2, available at [21], is given in Sec-
tion B. Finally, note that MAGP by Mercadier [18, 19] is another version that
uses the WAFO toolbox and that does not give an estimation of the error. As
far as we can tell, MAGP was until recently the only program that concerns
two-dimensional stationary Gaussian fields.

3.2.3. A program for the Poisson method

Finally, the Poisson approximation is illustrated by functions pPOISSON and
qPOISSON, that can be found at [21]. An example of utilization is given by

p = qPoisson(0.05,10,1)

where α = 0.05 is the level fixed by the user, T = 10 is the length of the interval
and γ2 = 1.

4. Applications to Statistics {section:appli:stat}

In this section we want to consider the three classical approximations (with their
variants) given in introduction and the Poisson approximation of Section 2.3.
Our aim is to compare these tools in various scenarii.

4.1. Simulation procedure

Our computation scheme is the following. For a given size of interval (or rectan-
gle), we use the relevant approximation of Section 2 to compute a α approximate
threshold uα and then we use the relevant numerical program to compute the
corresponding actual level ᾱ. The approximation is said satisfactory is there is
a small discrepancy between α and ᾱ.
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Such a kind of study has been performed in the numerical study of the domain
of validity of the classical χ2 test. Indeed, the well-known condition "the expected
size of each cell must be greater than 5" corresponds to conditions that ensures
that the actual level ᾱ differs from the nominal level α by less than 20 % in
relative variation (see [15]). In other words, for a nominal level α of 5% (resp
1%) we demand the actual level to be in (4%, 6%) (resp. (0.8%, 1.2%)).

In the interpretation of our numerical experiments we will generally consider
a more restrictive rule of relative varaition of 5% instead of 20%. In ther words
we will demand, for a nominal level of 5 %, (resp. 1%) the true level to belong
to [4.75%, 5%] (resp.[0.95%, 1.05%] .

4.2. The processes

{section:processes}
� For the Pickands approximation,

• the stationary Gaussian process with covariance ρ(t) = exp(−t2/2)
for which the result is known from the MGP program,

• the stationary Gaussian process with covariance ρ(t) = exp(−t1.95)
for which the result is approximatively known from the lower bound
of the MGP program.

• the Ornstein-Uhlenbeck process with covariance ρ(t) = exp(−|t|) for
which the result is exactly known from the pou function.

These are the few case where we are able to perform a numerical study
for β processes.

� For the Rice and the Poisson approximation, we consider three stationary
processes with covariance

• ρ(t) = exp(−t2/2) ,

• ρ(t) = 1/ cosh(t) ,

• ρ(t) = sinc(
√
3t) = sin(

√
3t)√

3t
.

� For the Euler characteristic, we consider isotropic and stationary Gaussian
fields with covariances

• ρ(t) = exp(−‖t‖2/2),
• ρ(t) = (1+ ‖t‖) exp(−‖t‖) which is a Matern covariance with param-

eter 3/2.

To give a precise meaning to the interpretation, we will always normalize our
processes with ρ(0) = 1 and "unit speed transformation" −ρ′′(0) = 1.

4.3. General presentation of the figures

In a first part we consider the problem of determination of a threshold for test
of level α = 0.01 and α = 0.05. In the second part we consider the problem of
the determination of the median α = 0.5.

Let us consider the example of Figure 3, the others being very similar. As a
function of the length T of the set, in abscissa, a threshold u has been computed
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using the Rice bound given by (4) for α = 0.05. This bound is only approxima-
tive. So the true level is not really α and is measured using a numerical tool here
MGP. Recall that the upper bound is in general closer to the reality. From left
to right, the three processes of Section 4.2 are considered.

4.4. Results and comments

We give a list of the main points

• Figures 3 and 4 show that the Rice method is, in general, satisfactory for
statistical application: the upper-bound in red which is the more precise
is very close to the nominal value.

• Figures 5, 6 and 7 show that the form 2 or 3 of the Pickands methods
perform for large time intervals but neither is preferable to the other in
the general case. Moreover, for small intervals, both give too low levels.
If the heruristic correction for small intervals is performed, the method
performs well in every conditions. Note that there is some instability for
very small intervals which is studied Figure 8: a "zoom" of Figure 5. It
shows that the local increase around T = 0 of the actual level is not that
important.

• Both Rice (Figure 2) and Pickands (not displayed) methods are not rele-
vant to compute the median as soon as T is not very small.

• In case of smooth processes, the Poisson method performs well in every
situation.

• The problem of computing the median of MT for β processes β 6= 2 remains
open.

• The Euler characteristic method performs rather well, except for α = 0.5
and very small rectangles. In our interpretation this is due to the fact that
in almost every considered case the level u is high.

4.4.1. 1% and 5% critical values

{jma:}
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Figure 3. Exact level of a test constructed for a nominal level of α = 5% using the Rice

method (see Section 2). An upper bound (red line) and a lower bound (blue line) of the level
are computed by the program MGP (see Section 3.1.1). From left to right, the processes con-
sidered have covariance function ρ(t) = exp(−t2/2), ρ(t) = 1/ cosh(t) and ρ(t) = sinc(

√
3t).

{figure3}
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Figure 4. Same as Figure 3 except that α = 0.01.
{figure4}
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Figure 5. Exact level of a test constructed for the Ornstein-Ulhenbeck process and a nominal
level of α = 1% (left) or α = 5% (right) using the Pickands method and the program pou.
The level corresponding to equation (2) is given in brown, the one of equation (3) is given in
green while the modified versions including Φ̄(u) are given in dashed.

{figure5}
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Figure 6. The process considered here has covariance ρ(t) = exp(−t1.95); Exact level of a
test constructed for a nominal level of α = 1% (left) or α = 5% (right) using the Pickands

method. Our numerical computation uses the lower bound of MGP, thus it provides an under
estimation. The meaning of the colours and dashed lin is the same as in Figure 5.

.{figure5.1}
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Figure 7. Same as Figure 6 except that (a) the covariance is now ρ(t) = exp(−t2/2) , (b)
the computation uses the upper-bound of MGP which is known to be precise

{figure5.2}
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Figure 8. Zoom of Figure 5 for the dotted lines and small values of T.
{figure5.3}

4.4.2. Computing the median of MT
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Figure 9. Exact level of a test constructed for a nominal level of α = 50% using the Rice

method (see Section 2). An upper bound (red line) and a lower bound (blue line) of the level
are computed by the program MGP (see Section 3.1.1). From left to right, the processes con-
sidered have covariance function ρ(t) = exp(−t2/2), ρ(t) = 1/ cosh(t) and ρ(t) = sinc(

√
3t).

{figure6}
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Figure 10. Exact probability of MT to be above the approximate median computed with
the Poisson method (see Section 2). An upper bound (red line) and a lower bound (blue
line) of the probability are computed by MGP (see Section 3.1.1). From left to right, the
processes considered have covariance function ρ(t) = exp(−t2/2), ρ(t) = 1/ cosh(t) and ρ(t) =
sinc(

√
3t).

{figure7}

4.4.3. Two dimensional case
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Figure 11. Exact level of a test constructed for a nominal level of α = 5% using the Euler

characteristic method (see Section 2) on subsets of [0, 50]2. The upper bound presented here
is computed by the program MAXNSGP2 (see Section 3.1.1) and the processes considered
have covariance function ρ(t) = exp(−t2/2) (left) and ρ(t) = (1 + ‖t‖) exp(−‖t‖) (right).

{figure9}
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Figure 12. Same as Figure 11 except that : The covariance is always ρ(t) = exp(−t2/2) and
α = 0.01 (left) and α = 0.5 (right)

{figure10}
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Figure 13. Exact level of a test constructed for a nominal level of, from left to right,
α = 1%, α = 5% and α = 50%, using the Euler characteristic method (see Section 2)
on subsets of the diagonal of [0, 50]2. The upper bound presented here is computed by the pro-
gram MAXNSGP2 (see Section 3.1.1) and the process considered has covariance function
ρ(t) = exp(−t2/2).

{figure11}

5. Conclusion

The present paper has shown that the classical bounds are efficient for statistical
application as soon as the good version of Pickands method is used. However,
they are not efficient for computing the median of the maximum. In that case,
the proposed Poisson method performs well and is equivalent to the Rice method
in the previous situations. In addition, Figure 14 show that it performs well for
the computation of others fractiles. Finally, the Euler characteristic method is
efficient in almost every cases.
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Figure 14. Exact probability of MT to be above the approximate 1− 0.40 (left top); 1− 0.70
(right top) 1− 0.30 (left bottom) 1− 0.60 (right bottom) fractile computed with the Poisson

method (see Section 2) on subsets of [0, 50]. An upper bound (red line) and a lower bound
(blue line) of the level are computed by the program MGP (see Section 3.1.1). The process
considered has covariance function ρ(t) = exp(−t2/2).

{toto}
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Appendix A: MAXNSGP

{section:annex1}
The syntax of MGP and MAXNSGP are very similar. For instance, to

compute the probability that the maximum of the Gaussian process satisfying
m(t) = 4 and r(s, t) = est−1√

es2−1
√

et2−1
exceed the level u = 1 on the set [1, 3], it

reads as

r = @(t,s) (exp(s.*t) - 1)./sqrt(exp(s.^2)-1)./sqrt(exp(t.^2)-1)

[p_low,p_upp,e_low,e_upp] = MAXNSGP(12,10,5000,1,@(t) sqrt(t), @(t,s) r(t,s),1,3)

where

• 12 is the typical value for the number of Monte-Carlo (MC) replications
in the MCQMC integration;

• 10 is the number of discretization point of the interval [1, 3];
• 5000 is the number of points used for the QMC routine;
• 1 is the level of comparison;
• @(t) sqrt(t) is the mean function of the process;
• @(t,s) r(t,s) is the covariance function of the process;
• 1 is the beginning of the interval;
• 3 is the end of the interval.

Note that this kind of processes appear in the asymptotic theory of Likelihood
Ratio Test in the case of a mixture, see [12] for more details. In case of discrep-
ancy, the upper-bound is, in general, more precise. Finally, the upper-bound is
very efficient even for small values of n.

Appendix B: MAXNSGP2

{section:annex2}
Again, the syntax is very similar to the one of MGP and MAXNSGP. For
instance, to compute the probability that the maximum of the Gaussian field
satisfying m(t) = 0 and ∀(s, t) ∈ (R2)2, r(s, t) = exp(−‖t − s‖22) exceed the
level u = 2 on [0, 5]× [0, 10], it reads as

r = @(a,b,c,d) exp(-(a-c).^2/2 - (b-d).^2/2)

[p_low,p_upp,e_low,e_upp] = MAXNSGP2(12,20,40,2,4,1000,2,@(t,s) 0,r,5,10)
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where

• 12 is the typical value for the number of Monte-Carlo (MC) replications
in the MCQMC integration;

• 20 is the number of discretization points for trapezoidal rule on the x-axis;
• 40 is the number of discretization points for trapezoidal rule on the y-axis;
• 2 is the number of points used for the record set on the x-axis;
• 4 is the number of points used for the record set on the y-axis;
• 1000 is the number of points used for the QMC routine;
• 2 is the level of comparison;
• @(t,s) 0 is the mean function of the process;
• r is the covariance function of the process;
• 5 and 10 denote the length of each side of the rectangle, here [0, 5]× [0, 10];

Note again that in case of discrepancy, the upper-bound is, in general, more
precise.

Appendix C: Maxgpbox

{section:annex3}
Maxgpbox is a collection of matlab programs available at [8] that performs exact
calculations for the few cases for which an exact formula is known. It includes
in particular the pou function devoted to the Ornstein-Uhlenbeck process.
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