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Abstract

We consider a finite-difference semi-discrete scheme for the approximation of internal con-

trols of a one-dimensional evolution problem of hyperbolic type involving the spectral frac-

tional Laplacian. The continuous problem is controllable in arbitrary small time. However,

the high frequency numerical spurious oscillations lead to a loss of the uniform (with respect

to the mesh size) controllability property of the semi-discrete model in the natural setting.

For all initial data in the natural energy space, if we filter the high frequencies of these initial

data in an optimal way, we restore the uniform controllability property in arbitrary small

time. The proof is mainly based on a (non-classic) moment method.

Keywords: fractional Laplacian, hyperbolic equations, control approximation, moment prob-

lem, biorthogonal families.

Mathematical subject codes: 35R11, 93B05, 30E05, 65M06.

1 Introduction

1.1 Motivation

In many realistic models coming from different branches of sciences (e.g. physics, chemistry,

engineering), fractional Laplacians naturally arise to describe various phenomena.

More specifically, since the seminal paper by Richardson on turbulence diffusion [39], systems

with weaker/strongly diffusivity (subdiffusion, superdiffusion) modelled by fractional equations

are frequently used and are usually related with Brownian diffusion and the deviation of the

statistics of fluctuation from the Gaussian law, see e.g. [14, 30, 43] and the references therein.

Notably, examples of fractional parabolic dynamical system in the subdiffusive regime include (but
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or not limited to): transport in amorphous semiconductors ([41]), nuclear magnetic resonance

diffusometry in porous media ([22]), transport on fractal geometries ([38]), dynamics of a bead in

a polymeric network ([1]), etc.

Concerning hyperbolic equations or systems involving fractional Laplacian, they are often used in

order to model attenuation (and then velocity dispersion) that characterizes the wave propagation

in real media, notably viscoelastic ones. The first modelization using only fractional Laplacian

(instead of fractional time derivatives) has been derived in [11]. This approach has been extended

to many different cases notably in [8, 46], and for some heterogeneous media in [52]. Let us

mention that some numerical studies of the viscoelastic wave equation with fractional Laplacian

are notably proposed in [10, 44, 51, 47].

From the point of view of control theory, the study of models involving fractional Laplacians has

been recently studied, see e.g. [33] for the internal controllability of the one-dimensional fractional

heat and wave equations, [35] for a multi-dimensional result in the superdiffusive regime, [4] for

internal controllability results in the multi-dimensional case for fractional Schrödinger or wave

equations, [50] for an extension for measurable sets of control and and [27, 28, 29] for precise

studies of the cost of controllability for one-dimensional fractional heat or Schrödinger equations.

Let us mention that many definitions of the fractional Laplacians co-exist (see e.g. [42]). However,

they basically have the same behaviour at high frequency, meaning that choosing one definition

instead of another should not change the controllability properties of the system under study,

even if it may cause some additional technical difficulties. Here, for the sake of simplicity, we will

consider the spectral definition of the fractional Laplace operator, which has the great advantage

to enjoy explicit eigenfunctions and eigenvalues.

On the other hand, the approximation of controls of PDEs is a very popular direction of research

and has attracted a lot of attention these last twenty years, due to the necessity of understanding

how to achieve effective implementation of controls problems. This study has been initialized in [21]

for the boundary controls of the wave equation and in [25] concerning the boundary controls beam

equation (these equations appear to be limiting cases of the present study, in a sense explained in

details afterwards). However, to our knowledge, the question of the approximation of controls in

the case of fractional wave equations has never been investigated so far, despite its interest from

a theoretical and applicative point of view. To conclude, let us mention that a numerical study of

the one-dimensional fractional heat equation with finite element method has been performed in

[5].

The aim of the present paper is to study the semi-discrete approximation of the controls of a

one-dimensional evolution problem of hyperbolic type involving a family of spectral fractional

Laplacian. Note that a more realistic framework would be to consider a fully discretized (i.e.

in space and time) version of the problem. However, in the case of conservative systems, the

study of a semi-discrete version is sufficient to derive also a result for a fully discretized version

of the system under study, involving some natural CFL-like condition on both time and space

discretization steps (for more details see [15] and notably Section 4.2 of this article).

Mathematically speaking, our model can be seen as an intermediate case between the cases of the

wave equation and the beam equation. We consider the simplest numerical approximation of such

an equations as a finite difference semi-discrete scheme for the approximation of internal controls.

It is well-known that, due to the high frequency numerical spurious oscillations, the uniform (with

respect to the mesh-size) controllability property of the semi-discrete model fails in the natural
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setting. Consequently, the convergence of the approximate internal controls corresponding to an

initial data in the energy space cannot be guaranteed.

Many possibilities have been proposed to overcome this difficulty: a Tychonov regularization of

the HUM cost functional (see [21, 49]), a change of the numerical scheme (mixed finite elements

[9], vanishing viscosity [6, 32] and other type of finite difference schemes [37]), the introduction

of non-uniform meshes ([18, 19]), an approximation of discrete controls [12] (which does not lead

exactly the discrete solution to zero, but converges to an exact control of the continuous problem),

and finally an appropriate filtering technique, introduced in [31] and notably used in [13, 34, 26]

in the context of wave or beam equation, which consists in relaxing the control requirement by

controlling only the low-frequency part of the solution. This later approach will be considered in

this paper.

Our approach consider a filtering technique which cut the frequencies of the initial conditions.

Even if the initial condition is filtered, the control will excite all frequencies. This creates a lot

of technical difficulties, because the spectral is not uniform with respect to the discretization step

h (see Remark 1.1). For more general uniform controllability results by using filtered spaces and

resolvent estimates, the interested reader is referred to [16, 17, 36].

Most of the above results treated the boundary controllability problems and we have seen that

the negative results are due to the bad numerical approximation of the high eigenmodes. Since we

are dealing with a fractional Laplacian problem of order α ∈ (1, 2), and the question of prescribing

non-homogeneous boundary conditions for these kinds of fractional Laplace operators is a tricky

question (see e.g. [48]), we will not consider the case of boundary controls here, but rather the

case when the control acts in the interior of the domain.

In the case α = 2 (i.e. the beam equation), the spurious numerical high eigenmodes do not

play such an important role as in the case of boundary controls and the uniform controllability

property holds automatically. For more details, see [6, Section 7].

The case α ∈ [1, 2) is more intricate. The best result in the case α = 1 (i.e. the wave equation)

has recently been obtained by the authors in [26] for boundary controls (the same result would

hold for internal controls). It is notably proved an optimal result with respect to the range of

filtration of the initial condition, together with precise (but non-optimal) estimates on the minimal

time of uniform controllability. Even if the spirit of the present article is quite similar to [26], we

would like to emphasize that the present study is more intricate and is far from being a direct

consequence of the computations made in [26]. This is due to the following facts:

• Contrary to the corresponding product in [26], it is not clear at all that the product Rm(x)

is uniformly bounded with respect to the discretization step h and x in the all range |x| 6
(2/h)α. Notably, it can be proved numerically that the product Sm is not bounded in the

previous range. Hence, we had to understand what kind of estimates are needed, and to

exhibit some very precise (and quite tricky to prove, see Section 2.2) estimates in this range,

that depend both on x, h and the discrete eigenvalues (see Remark 2.2), and are difficult to

handle. These estimates are likely to be non-optimal but are enough for our purpose.

• The use of the Paley-Wiener Theorem requires to compensate the explosion of the product

Rm by an adequate multiplier. Because of the bad behaviour of the product Rm emphasized

above, the construction given in [26] is not sufficient to ensure the uniform boundedness of

the discrete control with respect to h. Here, we use a new construction of the multiplier

in the context of semi-discrete control problems. This construction is made of two parts.
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The first part is similar to the multiplier is similar to the one given in [26], and enables to

compensate Rm(x) for high |x|. The second part is similar to the construction used in [29]

in the context of continuous fractional control problems, and is used to compensate the bad

behaviour of the product Rm(x) for low |x| (this is the main difference with [26]). However,

the use we make of this multiplier is quite different from the continuous case. Notably, we

must analyze very precisely in different ranges how it can compensate the product Rm by

obtaining at the end uniform estimates in h (see Section 2.3). To our knowledge, such a

(quite complex) construction of a multiplier has never been considered in the context of

semi-discrete problems, and might be of interest for a larger class of semi-discrete control

problems. Note that for this later construction, it is crucial that α > 1.

• Contrary to [26] (and many papers on this topic), we are able to work in the natural energy

space. This is due to the use of a refinement of the moment method that has been introduced

in [24] and rediscovered recently in [7]. However, this construction requires to be much more

careful about the estimation of the L2-norm of the discrete control introduced in (3.1). It

is also likely that the use of this refined moment method is of wider interest and might be

used in many other context, probably improving many results of the literature concerning

technical restrictions on the space of initial conditions.

Let us mention some perspectives and open question related to the present work. Concerning

the model under study, one very natural question is to ask if we can study non-uniform mesh grids

with the same technique. This will clearly require a deeper understanding of the phenomena under

study, since the present work mainly relies on the fact that we know exactly the eigenvectors and

eigenvalues of our discrete operator.

To finish, a more long-term remaining open question consists in finding the sharp filtering scale

in a general setting, which should depend both on the defect of uniform discrete spectral gap, the

asymptotics of the discrete/continuous eigenvalues and properties of localization of the discrete

eigenvectors. We hope that the present study can be of help to reach this distant goal.

1.2 Presentation of the problem

This paper is concerned with the internal null-controllability (which is equivalent to the exact in-

ternal controllability) for a finite-difference semi-discrete scheme of the one-dimensional fractional

wave equation on the space interval (0, 1).

More precisely, let us consider the 1-D Laplacian ∆ with domain H2(0, 1) ∩H1
0 (0, 1), and state

space L2(0, 1). It is well-known that −∆ : D(∆) → L2(0, 1) is a positive definite operator with

compact resolvent, the k-th eigenvalue is λk = k2π2, with associated normalized eigenvector

ek(x) :=
√

2 sin (kπx) .

Thanks to the continuous functional calculus for positive self-adjoint operators, one can define

any positive power of −∆. We consider some s > 0. Then, we introduce

D((−∆D)s) = {f ∈ L2(Ω)
∣∣ ∞∑
k=1

λ2s
k | < f, ek > |2L2(0,1) <∞}.
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For f =
∑∞
k=1 < f, ek > ek ∈ D((−∆D)s), we define

(−∆D)sf(x) =

∞∑
k=1

λsk < f, ek > ek.

Let us consider some T > 0 and some α ∈ (1, 2) (for α > 2, the problem becomes trivial, see

Remark 1.2). We consider 0 < a < b < 1. We are interested in the following controlled equation:


u′′(t, x) + (−∆D)αu(t, x) = χ(a,b)(x)v(t, x) t ∈ (0, T ), x ∈ (0, 1),

u(t, 0) = 0 t ∈ (0, T ),

u(t, 1) = 0 t ∈ (0, T ),

u(0, x) = u0(x), u′(0, x) = u1(x) x ∈ (0, 1),

(1.1)

where v ∈ L2((0, T )× (0, 1)) is a control, assumed to be localized in (a, b). Let us remark that we

have existence and uniqueness of solutions of (1.1) as soon as the initial condition (u0, u1) lies in

D((−∆D)α/2)×L2(0, 1). More precisely, from now on we consider the following notations for the

space of initial conditions

H = D((−∆D)α/2)× L2(0, 1) =

{
(u0, u1) =

∑
k∈Z∗

ak

(
1

kαi
,−1

)
sin(kπx) |

∑
k∈Z∗

|ak|2 <∞

}
.

(1.2)

It is well-known that for this kind of fractional wave equation (see [33, Section 6] for a result

with a scalar control and an imposed profile, but the result can be easily extended to (1.1) using a

technique similar to [24]), null-controllability for initial conditions in the spaceH holds in arbitrary

small time if and only if α > 1.

Let N ∈ N∗ and h = 1
N+1 . We introduce

U(t) :=


u(t, h)

u(t, 2h)

. . .

u(t,Nh)

 ,

U0 :=


u0(h)

u0(2h)

. . .

u0(Nh)

 and U1 :=


u1(h)

u1(2h)

. . .

u1(Nh)

 .

For any T > 0, we consider the following semi-discrete space approximation of the fractional

wave equation (1.1) by the following explicit finite-difference method, that we write directly in

matrix form: {
U ′′ +AαhU = Bh(vh(t)) 1 ≤ j ≤ N, t ∈ (0, T ),

U(0, ·) = U0, U ′(0, ·) = U1,
(1.3)
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where Ah ∈MN (R) is the discrete Laplacian given by

Ah :=
1

h2



2 −1 0 . . . . . . . . . 0

−1 2 −1 0 . . . . . . 0

0 −1 2 −1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 0 −1 2 −1

0 . . . . . . . . . 0 −1 2


and Bh ∈MN (R) is the discrete control operator given by

Bh(v1, . . . vN ) := (χ(a,b)(jh)v(j))T16j6N .

Note that Ah is a symmetric positive matrix, so that by usual continuous functional calculus, it is

very easy to define any of its positive powers. Moreover, since the eigenfunctions and eigenvalues

of Ah are known explicitly, it is also very easy to compute numerically such powers. To conclude,

it is easy to prove that for any α ∈ (1, 2), the semi-discrete scheme given by (1.3) is consistant of

order (at least) 2 with respect to equation (1.1) (see [45, Theorem 1]), so that it can be proved to

be convergent and hence to be a reasonable approximation of (1.1).

Given T > 0, h > 0 and ((u0
j , u

1
j ))1≤j≤N ∈ C2N , we study the existence of a control function

vh ∈ L2(0, T ) such that the solution of the equation (1.3) verifies

uj(T ) = u′j(T ) = 0 (j = 1, 2, ..., N).

More precisely, our aim is to study the existence of a uniformly bounded sequence of controls

(vh)h>0 with respect to the mesh size h, by using the moment method introduced in [20] for the

boundary controllability of the heat equation. Note that here, contrary to what is done in general,

the control is not a scalar control (i.e. it is not of the form f(x)g(t), with f some imposed profile

in space in an adequate class, and g ∈ L2(0, T ) some scalar control function). For the continuous

system (1.1), the control lives in an infinite dimensional subspace, whereas in the discrete case of

(1.3), the control lives in a finite dimensional space of dimension N . This generalization of the

moment method has been introduced for the internal control of the wave equation in [24], used

notably in the context of parabolic equations in [3, 7] and studied in a more general setting in [2].

It enables us to get rid of technical assumptions on the initial conditions, that can be taken in the

natural energy space H, contrary to many previous results in the literature.

On the other hand, the choice of an appropriate approximation ((u0
j , u

1
j ))1≤j≤N ∈ C2N for the

initial datum (u0, u1) ∈ H is very important in order to ensure the uniform boundedness of the

sequence of controls (vh)h>0.

Let us introduce some additional notations. We consider Lαh ∈M2N×2N (R) given by

Lαh :=

 0 −In

Aαh 0

 ,

where In ∈Mn(R) is the identity matrix of size n.
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The eigenvalues of the discretization matrix Lαh are given by the family (i λn(h))1≤|n|≤N , where

λn(h) = sgn(n)

(
2

h
sin

(
|n|πh

2

))α
, 1 ≤ |n| ≤ N, (1.4)

and the corresponding eigenvectors are

Φnh =

(
1
iλn

ϕnh
−ϕnh

)
(1 ≤ |n| ≤ N),

where

(ϕnh)1≤|n|≤N =


sin(nπh)

sin(2nπh)

· · ·
sin(Nnπh)

 ∈ CN .

For the sake of simplicity, we will often write λn instead of λn(h) in what follows, when there is

no ambiguity. Note that the eigenvalues of the matrix Aαh are (λ2
n)1≤n≤N and (Φnh)1≤|n|≤N forms

an orthonormal basis in C2N (see [31, Proposition 3.1]).

We conclude this preliminary section with some gap estimates which we believe that determine

the real behavior of the sequence of discrete controls.

Remark 1.1. Let us consider α ≥ 1 and M > 0. We remark that the gap between the eigenvalues

λn(h) from (1.4) depends dramatically on the position of α. More precisely, it is easy to prove

that, for any h > 0 sufficiently small, the following statements hold:

• if α = 1 then

|λn+1 − λn| =
{

Θ(1) 1 ≤ |n| ≤ δN, ∀δ ∈ (0, 1)

Θ(h) N −M ≤ |n| ≤ N ,

• if α ∈ (1, 2) then

|λn+1 − λn| =


Θ(1) 1 ≤ |n| ≤M
Θ( 1

hα−1 ) δN
2 ≤ |n| ≤ δN, ∀δ ∈ (0, 1)

Θ(h2−α) N −M ≤ |n| ≤ N ,

• if α = 2 then

|λn+1 − λn| =


Θ(1) 1 ≤ |n| ≤M
Θ( 1

h ) δN
2 ≤ |n| ≤ δN, ∀δ ∈ (0, 1)

Θ(1) N −M ≤ |n| ≤ N ,

• if α > 2 then

|λn+1 − λn| =


Θ(1) 1 ≤ |n| ≤M
Θ( 1

hα−1 ) δN
2 ≤ |n| ≤ δN, ∀δ ∈ (0, 1)

Θ( 1
hα−2 ) N −M ≤ |n| ≤ N ,

where the Bachmann-Landau notation Big Theta has to be understood in the asymptotics h→ 0.
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Remark 1.2. Note that, our problem deals with the difficult case α ∈ (1, 2). Indeed, if α > 2,

we proceed as in [6, Section 7](see also[25]), taking into account the uniform gap estimates given

in Remark 1.1, we can use a generalization of Ingham’s inequality [[23], Theorem 4.6].

More precisely, if we have a family with the gap tending to infinity when h goes to zero and

another finite family (depending on T) with gap O(1), then we can use an Ingham-type inequality

for the reunion of the two families, for any time T > 0 (with a constant depending only on T ).

Hence, for α ≥ 2 the uniform controllability property holds automatically in the context of internal

controls.

1.3 Main results and structure of the article

Let us consider some increasing function f : N∗ :→ N∗ (that will play the role of our filtration).

Our main Theorem is the following.

Theorem 1.1. Let

(u0, u1) =
∑
k∈Z∗

ak

(
1

kαi
,−1

)
sin(kπx) ∈ H.

Assume that

lim
N→∞

f(N) =∞ and Γ := lim sup
N→∞

f(N)

N
< 1. (1.5)

For any (u0
j , u

1
j )1≤j≤N =

∑
1≤|n|≤f(N) anΦnh there exists a uniformly bounded sequence of controls

(vh)h>0 for the discrete control problem (1.3) verifying that for any h > 0, the solution (u1, . . . uN )

of (1.3) verifies (u1(T ), . . . , uN (T )) = (0, . . . , 0).

Remark that our theorem is optimal in the sense that we can work on the natural energy space

H and that uniform controllability may fail if we do not filtrate the initial conditions. This last

phenomenon has notably been highlighted in [31] in the case of the wave equation α = 1, and is

stated in the following Theorem.

Theorem 1.2. Let

(u0, u1) =
∑
k∈Z∗

ak

(
1

kαi
,−1

)
sin(kπx) ∈ H.

We introduce (u0
j , u

1
j )1≤j≤N =

∑
1≤|n|≤N anΦnh. There exists initial conditions (u0, u1) for which

no sequence of controls (vh)h>0 for the discrete control problem (1.3) (i.e., verifying that for any

h > 0, the solution (u1, . . . uN ) of (1.3) verifies (u1(T ), . . . , uN (T )) = (0, . . . , 0)) can be uniformly

bounded in h.

Theorem 1.2 is standard and relies on the non-uniform gap property at high frequency stated in

Remark 1.1. For the sake of completeness, Theorem 1.2 is proved in Appendix A.

As a corollary of Theorem 1.1, we obtain the following convergence result.
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Corollary 1. Let (u0, u1) =
∑

1≤|n|≤f(N) anΦn be the initial datum for the continuous problem

(1.1) and let us consider the initial datum of the semi-discrete problem (1.3)

(u0
j , u

1
j )1≤j≤N =

∑
1≤|n|≤f(N)

anΦ̃n(h), (1.6)

where Φ̃n(h) is the discretization of the eigenfunction Φn of the form

Φ̃n(h) =

((
1

nαi
sin(jnπh)

)
1≤j≤N

, (− sin(jnπh))
1≤j≤N

)T
.

Let v ∈ L2(0, T ) a weak limit of a subsequence of the bounded controls (vh)h>0 given by Theorem

1.1, with initial datum given in (1.6). Then v is a control for the continuous problem (1.1).

The structure of the article is as follows.

In Section 2.1, we will give some spectral properties of the semi-discretized problem and we will

set our equivalent moment problem, that we will solve by applying the Paley-Wiener Theorem.

This means that one has first to study some appropriate product (the product Rm introduced

in (2.26)) involving the discrete eigenfunctions and then construct an adequate multiplier. As

already mentioned, contrarily to many work on the controllability of distributed systems, we do

not impose a fixed profile in space and we do not work with a scalar control depending only on

time. This enables to get rid of technical assumptions on the initial condition (see e.g. [33, Section

6]) and to work in the natural energy space, which is also a novelty of this article.

In Section 2.2, we will give crucial estimates on an auxiliary product Pm, defined in (2.8) and

related to Rm by (2.27). The main novelty is that we are able to prove precise (and difficult)

estimates on this product, that is bounded independently on the parameter h in some appropriate

range (see (2.9)). This leads to a new and very precise estimate on the product Rm.

It is worth to mention that, in contrast to the case of wave equation α = 1, where the Weierstrass

product Rm is bounded in the range less than 2
h , for α ∈ (1, 2) we have a smaller domain on

boundedness. This fact is really crucial for the wave case and we need to solve this problem with

a precise and smart multiplier.

Concerning the multiplier, in Section 2.3, we will use a new construction in the context of semi-

discrete problems, taking into account both regimes described above. We will mix a part similar

to the construction of [26] for the semi-discrete wave equations in order to compensate the “bad”

dependance in h of Rm for large x, and another part, which is similar to the construction made

in [29] in the case of (continuous) fractional heat or Schrödinger equations, and will be useful to

compensate the estimation of Rm for small x coming from inequality (2.9).

In Section 2.4, we construct our biorthogonal family using the Paley-Wiener Theorem, and we

give some estimations on this biorthogonal family.

Finally, Sections 3.1 and 3.2 are devoted to the proofs of Theorem 1.1 and Corollary 1, i.e. the

construction of the discrete controls, the proof of uniform estimates with respect to h for filtered

initial conditions, and the proof of convergence result for the discretized control.
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2 The moment problem. Construction of a biorthogonal

family

2.1 Reduction to a moment problem

The aim of this subsection is to explain how the control result given in Theorem 1.1 can be reduced

to the study of an adequate moment problem.

We start the study of the controllability properties for (1.3) by considering the following adjoint

system:


w′′j (t) + (AαhW )j = 0 1 ≤ j ≤ N, t > 0,

w0(t) = 0 t ∈ (0, T ),

wN+1(t) = 0 t ∈ (0, T ),

wj(0) = w0
j , w′j(0) = w1

j 1 ≤ j ≤ N,

(2.1)

where W (t) = (w1(t), . . . , wN (t))T .

We can rewrite the adjoint system (2.1) in an abstract Cauchy form as

{
W ′′(t) +AαhW = 0, t > 0,

W (0) = W 0, W ′(0) = W 1,

where W (t) = (w1(t), . . . , wN (t))T , W 0 = (w0
j )1≤j≤N and W 1 = (w1

j )1≤j≤N .

Moreover, if we consider Z = (W,W ′)T , we have the following equivalent form

{
Z ′(t) + LαhZ(t) = 0, t > 0,

Z(0) = Z0 = (W 0,W 1)T ,
(2.2)

where Lh ∈M2N×2N (R) is given by

Lαh :=

 0 −I

Aαh 0

 .

Let us define the corresponding discrete energy as

E(t) =
h

2

N∑
j=0

(
(AαhW )jwj + |w′j(t)|2

)
. (2.3)

In fact, the above energy is generated by the following inner product

〈W1

U1

 ,

W2

U2

〉
α

= 〈AαhW1,W2〉+ 〈U1, U2〉.

10



We can easily deduce that, if Z0 = (W 0,W 1) verifies

Z0 =
∑

1≤|n|≤N

a0
nΦnh,

then the solution of the system (2.2) is given by

Z(t) =
∑

1≤|n|≤N

a0
ne
iλntΦnh. (2.4)

Now, we have all the ingredients to derive our moment problem. Let us go back to equation

(1.3).

The following lemma gives a variational characterization of the controllability problem (1.3).

Lemma 2.1. The problem (1.3) is controllable if and only if, for any initial datum Z0 =

(u0
j , u

1
j )1≤j≤N ∈ C2N there exist a function vh ∈

(
L2(0, T )

)N
such that

∑
1≤j≤N

(u0
jw

1
j − u1

jw
0
j ) =

∑
1≤j≤N

∫ T

0

χ(a,b)(jh)wj(t)vh(t, jh) dt, (2.5)

for any (w0
j , w

1
j )1≤j≤N ∈ C2N and w = (w1(t), . . . , wN (t)) solution of the adjoint system (2.1).

Proof of Lemma 2.1 Let (u0
j , u

1
j )1≤j≤N ∈ C2N and let U = (u1(t), . . . , uN (t)) be the cor-

responding solution of the primal system (1.3). We consider (w0
j , w

1
j )1≤j≤N ∈ C2N and let

w = (w1(t), . . . , wN (t)) be the corresponding solution of the adjoint system (2.1).

For each, 1 ≤ j ≤ N , multiplying the (j +N)-th equation in (1.3) by wj(t), integrating by parts

and summing up we obtain∑
1≤j≤N

∫ T

0

(u′′j (t)wj(t) + (AαhU)jwj(t)) dt =
∑

1≤j≤N

∫ T

0

χ(a,b)(jh)wj(t)vh(t, jh) dt,

from where it follows ∑
1≤j≤N

(u′j(t)wj(t)− uj(t)w′j(t))
∣∣∣T
0

+
∑

1≤j≤N

∫ T

0

uj(t)(w
′′
j (t) + (AαhW )j) dt =

∑
1≤j≤N

∫ T

0

χ(a,b)(jh)wj(t)vh(t, jh) dt.

Finally, since the controllability of problem (1.3) is equivalent with

uj(T ) = u′j(T ) = 0 (j = 1, 2, ..., N),

the proof of Lemma 2.1 is complete.

Remark 2.1. Note that, using similar estimates as in [31, Remark 6], the left hand term in

(2.5) for (u0
j , u

1
j )1≤j≤N = Φkh and (w0

j , w
1
j )1≤j≤N = Φnh is given by∑

1≤j≤N

(u0
jw

1
j − u1

jw
0
j ) =

i

hλn
δnk. (2.6)

11



Now, we are able to transform our controllability problem into a moment problem.

Proposition 2.1. The problem (1.3) is controllable if and only if, for any initial datum Z0 =∑
1≤|k|≤N αkΦkh ∈ C2N there exist a function vh ∈

(
L2(0, T )

)N
such that

h
∑

1≤j≤N

χ(a,b)(jh) sin(jπnh)

∫ T

0

e−iλntvh(t, jh) dt = αn (1 ≤ |n| ≤ N). (2.7)

Proof of Proposition 2.1 Using Lemma 2.1, we deduce that system (1.3) is controllable if and

only if, for any initial datum (u0
j , u

1
j )1≤j≤N , there exists a function vh ∈ L2(0, T ) such that (2.5)

holds for

(w0
j , w

1
j )1≤j≤N = Φnh (1 ≤ |n| ≤ N),

which gives the solution from (2.4) as

Z(t) = eiλntΦnh.

Hence, for (u0
j , u

1
j )1≤j≤N =

∑
1≤|k|≤N αkΦkh ∈ C2N from (2.6) we have

∑
1≤j≤N

(u0
jw

1
j − u1

jw
0
j ) =

iαn
hλn

.

Since wj(t) = − sin(jπnh)
iλn

e−iλnt we get

h
∑

1≤j≤N

χ(a,b)(jh) sin(jπnh)

∫ T

0

e−iλntvh(t, jh) dt = αn,

hence the proof of (2.7) is finished.

From now on, our aim is to construct and evaluate an explicit biorthogonal sequence to the

family (eiλnt)1≤|n|≤N in L2
(
−T2 ,

T
2

)
.

2.2 New product estimates

In this subsection we introduce a product Rm which has the property that Rm(λn) = δmn. We

are able to get very precise estimates of the product Rm on the real axis.

For every 1 ≤ |m| ≤ f(N), we define first the following auxiliary product, that will be of interest

for what follows (see notably (2.27)):

Pm(x) :=
∏

1≤n≤N
n 6=m

(
1− x

λ2
n − λ2

m

)
. (2.8)

We have the following result.

12



Proposition 2.2. Let A > 0. There exists a constant DA > 0 (depending on α > 1 and A) such

that for every h > 0 small enough, |m| 6 f(N) and every x such that |x| 6 A
h2α , we have

|Pm(x)| 6 DA exp
(
DA|x|

1
2α

)
. (2.9)

Moreover, we also have the existence of C > 0 (depending only on α and Γ defined in (1.5)) such

that for any x ∈ R,

|Pm(x)| 6 C exp

(
C

(
h|x| 1α +

|x| ln(m)

m2α−1

))
. (2.10)

Proof of Proposition 2.2. In all what follows, C > 0 is a constant depending only on α and Γ

(and possibly A if we restrict to the range |x| 6 A
h2α ) that may vary from inequality to inequality.

We assume without loss of generality that λm > 0 (the case λm 6 0 can be treated in a similar

way). First of all, we remark that

|Pm(x)| =
∏

1≤n≤N
n6=m

∣∣∣∣1− x

λ2
n − λ2

m

∣∣∣∣ 6 ∏
1≤n≤N
n6=m

(
1 +

|x|
|λ2
n − λ2

m|

)
= Q1

m(x)Q2
m(x), (2.11)

where

Q1
m(x) =

∏
1≤n≤N

n 6=m,n+m> 1
h

(
1 +

|x|
|λ2
n − λ2

m|

)
, Q2

m(x) =
∏

1≤n≤N
n6=m,n+m< 1

h

(
1 +

|x|
|λ2
n − λ2

m|

)
. (2.12)

We have that

λ2
n − λ2

m =

(
2

h

)2α
(

sin

(
nπh

2

)2α

− sin

(
mπh

2

)2α
)
.

• First regime: n+m > 1
h .

Since |xα − yα| ≥ |x− y|α, for all x, y ∈ R and α > 1, it follows that

|λ2
n − λ2

m| >
(

2

h

)2α
∣∣∣∣∣sin

(
nπh

2

)2

− sin

(
mπh

2

)2
∣∣∣∣∣
α

.

Following the computations made in [26] and using the inequality sin(πx2 ) > x, true for any

x ∈ [0, 1], we deduce that

|λ2
n−λ2

m| >
(

2

h

)2α ∣∣∣∣sin( (n−m)πh

2

)
sin

(
(n+m)πh

2

)∣∣∣∣α >

(
4|n−m|

h

)α ∣∣∣∣sin( (n+m)πh

2

)∣∣∣∣α .
Now, let us study into more details sin

(
(n+m)πh

2

)
. Using our hypothesis n + m > 1

h , we

have that h(n+m)π
2 > π

2 . Since x 7→ sin(x) is decreasing on [π/2, π], we deduce that

sin

(
(n+m)πh

2

)
> sin

(
(N + f(N))πh

2

)
> sin

(
N

N + 1

(
1 +

f(N)

N

)
π

2

)
.
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Using Hypothesis (1.5), we obtain that lim suph→0
N
N+1

(
1 + f(N)

N

)
π
2 = (1 + Γ)π2 . Hence,

there exists C < 1 such that for h small enough, we have

sin

(
N

N + 1

(
1 +

f(N)

N

)
π

2

)
> sin

(
(1 + C)

π

2

)
.

Since C < 1, we deduce that sin
(
(1 + C)π2

)
> C > 0, so that finally, we obtain

sin

(
(n+m)πh

2

)
> C.

Hence, we deduce

|λ2
n − λ2

m| > C

(
|n−m|

h

)α
. (2.13)

We deduce by plugging this inequality into the first term of (2.12) that

Q1
m(x) 6

∏
1≤n≤N
n6=m

(
1 +

Chα|x|
|n−m|α

)
. (2.14)

Then,

ln
(
Q1
m(x)

)
6
∑

1≤n≤N
n 6=m

ln

(
1 +

Chα|x|
|n−m|α

)
.

6
∑

1≤n≤N
n 6=m

∫ C|x|hα

0

dt

t+ |n−m|α

6
∫ C|x|hα

0

∑
1≤n≤N
n 6=m

dt

t+ |n−m|α

6
∫ C|x|hα

0

∑
1≤n≤N
n 6=m

∫ ∞
|n−m|α

ds

(t+ s)2
dt

6
∫ C|x|hα

0

∫ |N−m|α
infn |n−m|α

Lm(s)ds

(t+ s)2
dt,

where

Lm(s) := card{1 ≤ n 6 N s.t. |n−m|α 6 s}.

It is easy to estimate this counting function. We have

|n−m|α 6 s⇔
(
m− s 1

α

)+

6 n 6 m+ s
1
α .

Hence, we deduce that

ln
(
Q1
m(x)

)
6
∫ C|x|hα

0

∫ (N−m)α

1

(m+ s
1
α )−

(
m− s 1

α

)+

(t+ s)2
dsdt

6 C|x|hα
∫ (N−m)α

1

(m+ s
1
α )−

(
m− s 1

α

)+

s(s+ C|x|hα)
ds.
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We introduce the change of variables s = mαt. We deduce that

ln
(
Q1
m(x)

)
6
C|x|hα

mα−1

∫ |N−m|α
|mα|

1
mα

(
1 + t

1
α

)
−
(

1− t 1
α

)+

t
(
t+ C|x|hα

mα

) dt

6
C|x|hα

mα−1

∫ ∞
0

(
1 + t

1
α

)
−
(

1− t 1
α

)+

t
(
t+ C|x|hα

mα

) dt.

(2.15)

Let us introduce, for y > 0,

U(y) =

∫ 1

0

2t
1
α

t (t+ y)
dt and V (y) =

∫ ∞
1

1 + t
1
α

t(t+ y)
dt.

Using the change of variables t = yvα, we obtain

U(y) =

∫ y−
1
α

0

2αyvα−1y
1
α v

y2vα (1 + vα)
dv 6 y

1
α−1

∫ ∞
0

2α

(1 + vα)
dv 6 Cy

1
α−1.

Hence, we have obtained

U(y) 6
C

y1− 1
α

. (2.16)

On the other hand,

V (y) =

∫ ∞
1

t
1
α

t(t+ y)
dt+

∫ ∞
1

1

t(t+ y)
dt.

Concerning the first integral, using as before the change of variables t = yvα, we obtain that∫ ∞
1

t
1
α

t(t+ y)
dt 6 y1− 1

α

∫ ∞
0

α

(1 + vα)
dt 6

C

y1− 1
α

.

Concerning the second integral, its value is exactly log(1+y)/y 6 C

y1−
1
α

, ∀y > 0, by compared

growth.

Hence, we can deduce that for any y > 0 we have

V (y) 6
C

y1− 1
α

. (2.17)

Combining (2.16) and (2.17), we deduce that for any y > 0,

U(y) + V (y) 6
C

y1− 1
α

. (2.18)

Using (2.18) with y = C|x|hα/mα together with (2.15), we obtain that

ln
(
Q1
m(x)

)
6 Ch|x| 1α .
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Coming back to (2.14), we deduce that

Q1
m(x) 6 exp

(
Ch|x| 1α

)
. (2.19)

Now, if we restrict to the range |x| 6 A
h2α , we deduce that h|x| 1α 6 DA|x|

1
2α , so we have that

Q1
m(x) 6 DA exp

(
DA|x|

1
2α

)
. (2.20)

• Second regime: n+m 6 1/h.

We use the following basic inequality, true for any x ∈ (0, π/2), any y ∈ (0, π/2 − x), and

any α > 1:

| sin(x)2α − sin(y)2α| ≥

((
2

π

)2α

|x2α − y2α|

)
.

We deduce that

|λ2
n − λ2

m| > 2α
∣∣n2α −m2α

∣∣ . (2.21)

Plugging this inequality into the second term from (2.12), we obtain that

Q2
m(x) 6

∏
1≤n≤N
n6=m

(
1 +

|x|
|n2α −m2α|

)
.

Then,

ln
(
Q2
m(x)

)
6
∑

1≤n≤N
n6=m

ln

(
1 +

|x|
|n2α −m2α|

)

6
∑
n≥1
n6=m

∫ |x|
0

dt

t+ |n2α −m2α|

6
∫ |x|

0

∑
1≤n≤N
n6=m

dt

t+ |n2α −m2α|

6
∫ |x|

0

∑
1≤n≤N
n6=m

∫ ∞
|n2−m2|α

ds

(t+ s)2
dt

6
∫ |x|

0

∫ supn |n
2α−m2α|

infn |n2α−m2α|

Lm(s)ds

(t+ s)2
dt

6
∫ |x|

0

∫ 1
h2α

m2α−1

Lm(s)ds

(t+ s)2
dt,

where

Lm(s) := card{n ∈ N∗ s.t. |n2α −m2α| 6 s}.

Following the computations made in [27, Proof of Lemma 2.1], we can already infer that

ln
(
Q2
m(x)

)
6 C|x| 1

2α ,

which gives (2.9) when combined with (2.11) and (2.20).
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Now, let us give another estimate on Q2
m. It is easy to compute this counting function Lm.

We have

|n2α −m2α| 6 s⇔
((
m2α − s

)+) 1
2α

6 n 6
(
m2α + s

) 1
2α .

Hence, we deduce that

ln
(
Q2
m(x)

)
6
∫ |x|

0

∫ 1
h2α

m2α−1

(
m2α + s

) 1
2α −

((
m2α − s

)+) 1
2α

(t+ s)2
dsdt

6 |x|
∫ 1

h2α

m2α−1

(
m2α + s

) 1
2α −

((
m2α − s

)+) 1
2α

s(s+ |x|)
ds.

We introduce the change of variables s = m2αt. We deduce that

ln
(
Q2
m(x)

)
6

|x|
m2α−1

∫ 1
(mh)2α

1
m

(1 + t)
1
2α −

(
(1− t)+

) 1
2α

t
(
t+ |x|

m2α

) dt. (2.22)

Let us introduce, for y > 0,

U(y) =

∫ 1

1
m

(1 + t)
1
2α − (1− t)

1
2α

t (t+ y)
dt and V (y) =

∫ 1
(hm)2α

1

(1 + t)
1
2α

t(t+ y)
dt.

Using the inequality (1 + t)
1
2α − (1− t)

1
2α 6 αt, true for any x ∈ [0, 1], we obtain

U(y) 6
∫ 1

1
m

α

t+ y
dt 6 ln(m). (2.23)

On the other hand, concerning V , we remark that

V (y) 6
∫ ∞

1

(1 + t)
1
2α

t2
dt 6 C. (2.24)

Hence, using (2.22) together with (2.23) and (2.24), we deduce that

ln
(
Q2
m(x)

)
6 C
|x| ln(m)

m2α−1
. (2.25)

Finally, using (2.11) together with (2.19) and (2.25), we deduce estimate (2.10).

We see that contrary to the computations made for the wave equation in [26], the product Pm
is only bounded in the small range |x| 6 C. As soon as x > C

hs for some s > 0, we have an upper

bound that may explode as h→ 0.

Now, we consider
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Rm(z) =
∏

1≤|n|≤N
n 6=m

(
z

λn
− 1

) ∏
1≤|n|≤N
n6=m

λn
λm − λn

:= R1
m(z)Sm (z ∈ C),

(2.26)

where

R1
m(z) =

∏
1≤|n|≤N
n 6=m

(
z

λn
− 1

)
,

and

Sm =
∏

1≤|n|≤N
n 6=m

λn
λm − λn

.

We remark that

Rm(λn) = δnm.

Moreover, Rm is related to the product Pm defined in (2.8) by the following relation:

(
1− x− λm

λ−m − λm

)
Pm(x2 − λ2

m) = Rm(x), (2.27)

so that our estimates on Pm will give estimates on Rm. We start our estimates with the following

technical result concerning the product Sm.

Lemma 2.2. For every 1 ≤ |m| ≤ N , we have that

|Sm| 6 cos2α mπh

2
. (2.28)

Proof of Lemma 2.2. From the symmetry of the sequence (λn)1≤|n|≤N (i.e. λ−n = −λn), it is

sufficient to consider only the case 1 ≤ m ≤ N .

Firstly, we obtain that

|Sm| =
∏

1≤|n|≤N
n6=m

∣∣∣∣ λn
λn − λm

∣∣∣∣ =
1

2

∏
1≤n≤N
n6=m

∣∣∣∣ λ2
n

λ2
n − λ2

m

∣∣∣∣ =
1

2

∏
1≤n≤N
n 6=m

∣∣∣∣∣ sin2α
(
nπh

2

)
sin2α

(
nπh

2

)
− sin2α

(
mπh

2

) ∣∣∣∣∣ .
Since |xα − yα| ≥ |x− y|α, for all x, y ∈ R and α > 1, it follows that

|Sm| 6
1

2

∏
1≤n≤N
n6=m

∣∣∣∣∣ sin2
(
nπh

2

)
sin2

(
nπh

2

)
− sin2

(
mπh

2

) ∣∣∣∣∣
α

=
1

2

∏
1≤n≤N
n6=m

∣∣∣∣∣∣ sin2
(
nπh

2

)
sin
(

(m−n)πh
2

)
sin
(

(m+n)πh
2

)
∣∣∣∣∣∣
α

. (2.29)
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Now we proceed similar to the wave equation (see [26]). We study the above product by splitting

it into two parts. We have that

∏
1≤n≤N
n6=m

sin
(
nπh

2

)∣∣∣sin( (n−m)πh
2

)∣∣∣ =

∏
1≤n≤m−1

sin

(
nπh

2

) ∏
m+1≤n≤N

sin

(
nπh

2

)
∏

1≤n≤m−1

sin

(
nπh

2

) ∏
1≤n≤N−m

sin

(
nπh

2

)

=

N∏
k=m+1

sin

(
kπh

2

)
N−m∏
k=1

sin

(
kπh

2

) =

N∏
k=m+1

sin

(
kπh

2

)
N∏

k=m+1

cos

(
kπh

2

) ,
and also ∏

1≤n≤N
n6=m

sin
(
nπh

2

)
sin
(

(n+m)πh
2

) =
sin
(
πh
2

)
. . . sin

(
Nπh

2

)
sin
(
mπh

2

) sin
(

2mπh
2

)
sin
(

(m+1)πh
2

)
. . . sin

(
(m+N)πh

2

)

= 2 cos

(
mπh

2

) m∏
k=1

sin

(
kπh

2

)
m+N∏
k=N+1

sin

(
kπh

2

) = 2 cos2

(
mπh

2

) m∏
k=1

sin

(
kπh

2

)
m∏
k=1

cos

(
kπh

2

) ,

where for the last estimate we have used the fact that sin
(
kπh

2

)
= cos

(
(N+1−k)πh

2

)
.

From the last two relations together with (2.29) we obtain that

|Sm| 6 cos2α

(
mπh

2

)
∣∣∣∣∣∣∣∣∣∣∣

N∏
k=1

sin

(
kπh

2

)
N∏
k=1

cos

(
kπh

2

)
∣∣∣∣∣∣∣∣∣∣∣

α

= cos2α

(
mπh

2

)
,

and the proof is complete.

Now, let us study the product Rm for high values of |x|.

First of all, let us rewrite R1
m as

R1
m(z) =

z + λm
λm

∏
1≤n≤N
n 6=m

(
z2

λ2
n

− 1

)
.

Proposition 2.3. There exist a constant R ∈ N∗ such that for N large enough and for |x| >
(

2
h

)α
,

we have

|Rm(x)| 6 (|x|hα)
R
h . (2.30)
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Proof of Proposition 2.3 Since |x| >
(

2
h

)α
, let us denote by r =

(
xhα

2α

)2
> 1. Then,

|R1
m(x)| =

∏
1≤n≤N
n6=m

∣∣∣∣ x2

λ2
n

− 1

∣∣∣∣ =
∏

1≤n≤N
n6=m

∣∣∣∣∣ r

sin2α
(
nπh

2

) − 1

∣∣∣∣∣ =
∏

1≤n≤N
n 6=N+1−m

∣∣∣∣∣ r

cos2α
(
nπh

2

) − 1

∣∣∣∣∣
=

cos2α
(

(N+1−m)πh
2

)
r − cos2α

(
(N+1−m)πh

2

) ∏
1≤n≤N

(
r

cos2α
(
nπh

2

) − 1

)

6
cos2α

(
(N+1−m)πh

2

)
r − cos2α

(
(N+1−m)πh

2

) exp

(∫ N

1

ln

(
r

cos2α
(
tπh
2

) − 1

)
dt

)
.

In what follows we compute the last integral by using a change of variable u = tan tπh
2 :∫ N

1

ln

(
r

cos2α
(
tπh
2

) − 1

)
dt =

2

πh

∫ ∞
Ch

ln
(
r(1 + u2)α − 1

)
1 + u2

du.

Note that the following inequality holds

ln
(
r(1 + u2)α − 1

)
6 C ln(r + 1)(1 + u2)

1
4α (r > 1, u > 0),

so that we obtain∫ ∞
Ch

ln
(
r(1 + u2)α − 1

)
1 + u2

du 6 C ln(r + 1)

∫ ∞
Ch

1

(1 + u2)1−1/(4α)
du

6 C ln(r + 1).

Using (2.26) together with (2.28) and the previous estimate, we deduce that for ant |x| >
(

2
h

)α
,

we have

|Rm(x)| 6 exp

(
C

h
ln

(
xhα

2α
+ 1

))
6 exp

(
C

h
ln

(
2xhα

2α

))
.

Hence the proof of the estimate of Rm given in (2.30) is finished, taking R = dCe.

Remark 2.2. Let A > 0. By using Proposition 2.2, (2.27) and Proposition 2.3, we infer the

existence of two constants R ∈ N∗ and C > 0 such that for N large enough we have

|Rm(x)| 6 ϕ(x),

where

ϕ(x) =


DA exp

(
DA|x2 − λ2

m|
1
2α

)
|x| ≤ A

h2α

(|x|hα)
R
h |x| ≥

(
2
h

)α
C exp

(
C
(
h|x2 − λ2

m|
1
α +

|x2−λ2
m| ln(m)

m2α−1

))
x ∈ R.
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2.3 Construction of the multiplier

To get our multiplier, taking into account the different bad behaviour of the product RM that

requires to be compensated on the real line (see Remark 2.2), we need to consider a construction

in two parts. Let us remind that 2/h = 2(N + 1) ∈ N. Hence, we use a new construction, mixing

a part similar to the construction of [26] and another part, which is similar to the construction

made in [29].

For every b > 0 we set

Hb :=
1[−b,b]

2b
.

We remark that ∫
R
Hb =

∫ b

−b
Hb = 1.

We denote by

a :=
h

2R
,

so that
R/h∑
n=1

a =
1

2
.

Remind that R was introduced in Proposition 2.3. We consider the product

ua := Ha ∗ . . . ∗Ha,

where ∗ represents the convolution product. The product is made of R/h terms.

We introduce

M1
m(z) :=

∫ 1/2

−1/2

ua(t)e−i
T
2 (z−λm)tdt. (2.31)

One has the following properties on M1
m (see [26, Lemma 2.6]):

Lemma 2.3. M1
m is of exponential type T/4. Moreover, one has

M1
m(λm) = 1 (2.32)

and for every x ∈ R,

|M1
m(x)| 6 1. (2.33)

Moreover,

|M1
m(x)| 6

(
4R

|x− λm|Th

)R
h

. (2.34)

Now, we consider the second part of the multiplier. Let ν > 0 be some large parameter to be

chosen later. Let also γ ∈ (1, α) some parameter to be chosen later close enough to 1. We consider

σν := lim
n→∞

Ha0 ∗Ha1 ∗ · · · ∗Han ,

21



where the sequence (ak)k∈N is given by{
ak = 1

ν if k 6 bνc ,
ak = νγ−1

kγ if k > bνc+ 1.

We consider the corresponding function σν constructed as before from the sequence (ak)k∈N. We

call a(ν) its support, that is to say

a(ν) :=

∞∑
k=0

ak =
bνc+ 1

ν
+

∞∑
k=bνc+1

νγ−1

kγ
.

Taking into account the definition of a(ν), we may observe that there exists some constant

S(γ) > 0 (not depending on ν) such that

a(ν) 6 S(γ). (2.35)

Now, we introduce

Hβ(z) :=

∫ a(ν)

−a(ν)

σν(t)e−iβtzdt,

We have the following properties ([29, Lemma 3.4]).

Lemma 2.4. The following estimates hold:

Hβ(0) = 1, (2.36)

|Hβ(z)| 6 eS(γ)β|Im(z)|, (2.37)

|Hβ(x)| 6 Cνeγνe−
γ
2 ((βνγ−1)|x|)1/γ , x ∈ R. (2.38)

Firstly, we choose β = S(γ)T
4 , so that by (2.35) and (2.37), Hβ is of exponential type T/4. We

also consider any K > 0 (to be chosen later) and we choose ν such that

α

2

(
βνγ−1

) 1
γ = K.

Remark that ν is only depending on β, T and K, but not on h. Hence, from (2.38) we can write

the final useful estimate

|Hβ(x)| 6 Ce−K|x|
1
γ
, x ∈ R, (2.39)

where C depend on T , γ and K but not on h. Our second part of the multiplier will then be

M2
m(z) = Hβ(x− λn).

2.4 Construction and estimation of the biorthogonal family

We can now introduce the family

ψm(z) = Rm(z)M1
m(z)M2

m(z). (2.40)

Let us study this product in different regimes, using the previous estimates. We assume without

loss of generality that λm > 0.

22



1. If |x| 6
(

2
h

)α
, then there exists some A > 0 such that for any such x and any λm, we have

|x2 − λ2
m| 6

(
A

h

)2α

.

(one may for example take A = 4).

Let us consider different subranges of x.

• Assume that |x − λm| > λδm for some δ ∈ (0, 1) to be chosen. We can use now (2.27),

(2.9), (2.33) and (2.39) to obtain

|ψm(x)| 6 C(1 + |x|)DAe
DA|x2−λ2

m|
1
2α−K|x−λm|

1
γ
.

We want to choose δ such that there exists some K ′ > 0 (depending on δ, K, α and γ)

such that for any x such that |x− λm| > λδm, we have

DA|x2 − λ2
m|

1
2α −K|x− λm|

1
γ 6 −K ′|x2 − λ2

m|
1
2α . (2.41)

this is equivalent to

(DA +K ′)|x2 − λ2
m|

1
2α 6 K|x− λm|

1
γ−

1
2α ,

i.e.

(DA +K ′)|x+ λm|
1
2α 6 K|x− λm|

1
γ−

1
2α . (2.42)

Assume in addition for the moment that |x−λm| > λm. Then, one readily verifies that

there exists some constant C > 0 (independent on m, x or h) such that for any x such

that |x− λm| > λm, we have

|x+ λm|
1
2α

|x− λm|
1
γ−

1
2α

6 C,

for some constant C > 0. Hence, we deduce that (2.42) is automatically verified for

some K ′ > 0 as soon as γ < α (which is true) and K is sufficiently large, which is

assumed from now on. Assume now that |x − λm| 6 λm, which implies notably that

|x + λm| 6 3λm. In this case, taking into account that |x − λm| > λδm, we see that

(2.42) is verified for some K ′ > 0 as soon as δ
(

1
γ −

1
2α

)
> 1

2α and K is chosen large

enough. Taking into account that we also want δ < 1, we deduce that we require

1 > δ >
γ

2α− γ
, (2.43)

which is possible since γ < α.

To summarize, under condition (2.43), we have the existence of some K ′ > 0 (depending

on γ, δ and α) such that (2.41) holds as soon as |x− λm| > λδm and K is chosen large

enough, which is assumed from now on.

• Assume now that |x − λm| 6 λδm for δ verifying (2.43). In this case, we use (2.27),

(2.10), (2.33) and (2.39) to obtain

|ψm(x)| 6 C(1 + |x|)e
C

(
h|x2−λ2

m|
1
α+
|x2−λ2m| ln(m)

m2α−1

)
−K|x−λm|

1
γ

.

Hence, we notably have
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|ψm(x)| 6 Ce
C

(
h|x2−λ2

m|
1
α+
|x2−λ2m| ln(λm)

λ
2− 1

α
m

)
−K|x−λm|

1
γ

.

We remark that since we chose δ < 1, we have |x+ λm| 6 Cλm, so that

h|x2 − λ2
m|

1
α 6 Chλ

1
α
m|x− λm|

1
α .

Hence, taking into account that λm 6 C
hα , we have

h|x2 − λ2
m|

1
α 6 C|x− λm|

1
α .

We deduce the existence of some K ′ > 0 such that

h|x2 − λ2
m|

1
α −K|x− λm|

1
γ 6 −K ′|x− λm|

1
α (2.44)

as soon as K is chosen large enough, which is assumed from now on.

Concerning the other term, since we chose δ < 1, we have |x+ λm| 6 Cλm, hence

|x2 − λ2
m| ln(λm)

λ
2− 1

α
m

−K|x− λm|
1
γ 6 C

|x− λm| ln(λm)

λ
1− 1

α
m

−K|x− λm|
1
γ

6 |x− λm|
1
γ

(
C
|x− λm|1−

1
γ ln(λm)

λ
1− 1

α
m

−K

)

6 |x− λm|
1
γ

Cλδ(1− 1
γ )

m ln(λm)

λ
1− 1

α
m

−K

 .

We deduce the existence of some K ′′ > 0 such that

|x2 − λ2
m| ln(λm)

λ
2− 1

α
m

−K|x− λm|
1
γ 6 −K ′|x− λm|

1
γ (2.45)

as soon as K is chosen large enough (which is assumed from now on) and δ is chosen

such that

δ

(
1− 1

γ

)
<

(
1− 1

α

)
,

i.e.

δ <
γ(α− 1)

α(γ − 1)
. (2.46)

Satisfying both (2.43) and (2.46) is only possible if we have

γ

2α− γ
<
γ(α− 1)

α(γ − 1)
,

which is equivalent to

α(γ − 1) < (2α− γ)(α− 1).

This last inequality is true since γ ∈ (1, α).
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2. If |x| >
(

2
h

)α
, then we use (2.30), (2.34) and (2.39), with K > 0 and γ > 0 as in the previous

point. Taking into account that γ < α and |x2 − λ2
m| > C for some C > 0 (independent of

m but depending on Γ), we obtain

|ψm(x)| 6 Ce−2K|x2−λ2
m|

1
2γ

(|x|hα)
R
h

(
4R

|x− λm|Th

)R
h

6 CDAe
−2DA|x2−λ2

m|
1
2α

(
4R|x|hα

|x− λm|Th

)R
h

.

Using that |m| 6 f(N), we easily deduce as in [26, Proof of Prop. 2.3] that there exists

some C1 > 0 such that
|x|

|x− λm|
6 C1.

Hence, using now that α > 1, we deduce that for some K ′ > 0,

|ψm(x)| 6 Ce−C|x
2−λ2

m|
1
2α

(
4RC1h

α−1

T

)R
h

6 Ce−K
′|x2−λ2

m|
1
2α . (2.47)

In any cases, combining (2.41), (2.44), (2.45) and (2.47), we have, for any x ∈ R, the following

estimate:

|ψm(x)| 6 C max

{
e−C|x

2−λ2
m|

1
2α , e−C|x−λm|

1
γ
, e−C|x−λm|

1
α

}
. (2.48)

Hence, ψm ∈ L2(R) and is of exponential type at most T/2 thanks to (2.37), (2.31) and the fact

that Pm is obviously of exponential type 0. We can use the Paley-Wiener Theorem (see e.g. [40,

Theorem 19.3, Page 370] and we introduce the Fourier transform θm ∈ L2(0, T ) to ψm, which

verifies, thanks to the definition of Rm given in (2.26), (2.36) and (2.32), that θm(λn) = δnm and

is compactly supported in [−T/2, T/2].

3 Proofs of Theorem 1.1 and Corollary 1

3.1 Proof of Theorem 1.1

Proof of Theorem 1.1.

Let (Θm)1≤|m|≤N be the biorthogonal sequence to the family (eiλnt)1≤|n|≤N in L2
(
−T2 ,

T
2

)
con-

structed and evaluated in Section 2.4 as the Fourier transform of ψm introduced in (2.40), verifying

by definition ∫ T
2

−T2
Θm(t)eiλnt dt = δmn (|m|, |n| = 1, . . . , N).

According to Lemma 2.1 an more precisely identity (2.7), we consider the control function vh ∈(
L2(0, T )

)N
given by

vh(t) =
∑

1≤|n|≤f(N)

anB
n
h

||Bnh ||2
e−iλn

T
2 Θn

(
t− T

2

)
. (3.1)
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where Bnh is given by

Bnh = h(χ(a,b)(jh) sin(jπnh))1≤j≤N . (3.2)

Let us prove that here exists a constant C > 0 (independent of n or N) such that for h small

enough (depending on a and b), we have

||Bnh ||2 > Ch. (3.3)

First of all, we remark that

h

N∑
j=1

(
χ(a,b)(jh) sin(jπnh))

)2
= h

b bh c∑
j=d ah e

sin(jπnh)2

=
h

4

(
2 + b2b

h
c − d2a

h
e+

sin
(
2hd ahenπ − hnπ

)
− sin

(
2hb bhcnπ + hnπ

)
sin(nπh)

)
.

Let us consider two different cases:

• Assume that n is such that lim infh→0 nh > 0. In this case, since n 6 f(N), using Hypothesis

(1.5), we have that there exists C > 0 such that for any h > 0, sin(nπh) > C. We deduce

that
h

4

∣∣∣∣∣ sin
(
2hd ahenπ − hnπ

)
− sin

(
2hb bhcnπ + hnπ

)
sin(nπh)

∣∣∣∣∣
6 C

h

4

∣∣∣∣sin(2hda
h
enπ − hnπ

)
− sin

(
2hb b

h
cnπ + hnπ

)∣∣∣∣
6 2C

h

4
,

which goes to 0 as h→ 0. Hence, we deduce that in this case

h

N∑
j=1

(
χ(a,b)(jh) sin(jπnh)

)2 → b− a
2

as h→ 0.

• Assume now that n is such that lim infh→0 nh = 0. In this case, we have

lim inf
h→0

h

N∑
j=1

(
χ(a,b)(jh) sin(jπnh))

)2
=
b− a

2
+

sin (2aπ)− sin (2bπ)

4π
.

Moreover, it is very easy to prove that

b− a
2

+
sin (2aπ)− sin (2bπ)

4π
> 0

as soon as a 6= b. Indeed, if b−a
2 = sin(2bπ)−sin (2aπ)

4π , then we have 2πb − sin(2bπ) = 2πa −
sin(2aπ), which is impossible since x 7→ x − sin(x) is strictly increasing on [0, 2π] (remind

that 0 < a < b < 1).

Hence, we have the existence of C > 0 such that whatever h ∈ (0, 1) and n ∈ [|0, f(N)|] are, we

have

h

N∑
j=1

(
χ(a,b)(jh) sin(jπnh))

)2
> C.
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This implies that (3.3) is verified.

Finally, we can prove the uniformly boundedness of the controls sequence (vh)h>0. Indeed, using

the definition of vh given in (3.1) together with (3.3), (2.48) and the fact that the Fourier transform

is an isometry in L2(R), we deduce that there exists C1 > 0 such that

‖vh‖2L2 ≤ C1

∑
1≤|n|≤f(N)

∑
1≤|m|≤f(N)

h2|an||am
∣∣χ(a,b)(jh) sin(jπnh) sin(jπmh)

∣∣
h2

∫
R
|ψn(x)ψm(x)|dx

6 C1

∑
1≤|n|≤f(N)

∑
1≤|m|≤f(N)

|an||am|max

{∫
R
e−C|x

2−λ2
n|

1
2α−C|x2−λ2

m|
1
2α dx ,

∫
R
e−C|x−λn|

1
γ −C|x−λm|

1
γ
, dx,

∫
R
e−C|x−λn|

1
α−C|x−λm|

1
α

}
, (3.4)

where C is the constant from (2.48).

Consider some |m| > |n| (otherwise, the same reasoning applies by exchanging n and m). Then,

we make the change of variables x2 = y2 + λ2
m. Since λ2

m − λ2
n > 0, we obtain that∫

R
e−C|x

2−λ2
n|

1
2α−C|x2−λ2

m|
1
2α =

∫
R

|y|√
y2 + λ2

m

e−C|y
2+λ2

m−λ
2
n|

1
2α−C|y|

1
α dy

6 C

∫
R
e−C|λ

2
m−λ

2
n|

1
2α−C|y|

1
α dy 6 Ce−C|λ

2
m−λ

2
n|

1
2α .

(3.5)

It is very easy to prove that there exists some C > 0 (that may depend on α) such we have

e−C|λ
2
m−λ

2
n|

1
2α 6

C(
1 + |λ2

m − λ2
n|

2
α

) .
From (2.13) and (2.21), we deduce that there exists some C > 0 such that

|λ2
n − λ2

m|
2
α > C|n−m|2,

from which we obtain

e−C|λ
2
m−λ

2
n|

1
2α 6

C

1 + C|n−m|2
. (3.6)

By the same type of arguments, we can also easily obtain the estimates∫
R
e−C|x−λn|

1
γ −C|x−λm|

1
γ
6 Ce−C|λm−λn|

1
γ
,

∫
R
e−C|x−λn|

1
α−C|x−λm|

1
α 6 Ce−C|λm−λn|

1
α ,

(3.7)

and

e−C|λm−λn|
1
γ
6

C

1 + C|n−m|2
, e−C|λm−λn|

1
α 6

C

1 + C|n−m|2
. (3.8)

Combining (3.4), (3.5), (3.6), (3.7), (3.8) and Young’s inequality, we deduce that
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∫ T

0

|vh(t)|2 dt 6 C
∑

1≤|n|≤f(N)

∑
1≤|m|≤f(N)

|an||am|
1 + C|n−m|2

6 C
∑

1≤|n|≤f(N)

∑
1≤|m|≤f(N)

(
|an|2 + |am|2

)
(1 + C|n−m|2)

2

6 C
∑

1≤|n|≤f(N)

|an|2
 ∑

1≤|m|≤f(N)

1

(1 + C|n−m|2)
2


6 C

∑
1≤|n|≤f(N)

|an|2,

and the proof of Theorem 1.1 is finished.

3.2 Proof of Corollary 1

The aim of this subsection is to prove the convergence of the controls sequence (vh)h>0 to a control

of the continuous problem (1.1).

We study the existence of a control function v ∈ L2((0, T ) × (0, 1)) such that the solution of

equation (1.1) verifies

u(T ) = u′(T ) = 0.

We transform the controllability of the continuous problem into a moment problem, using an

additional variational lemma.

Lemma 3.1. Problem (1.1) is controllable if and only if, for any initial datum (u0, u1) ∈ H
decomposed as in (1.2), there exists v ∈ L2((0, T )× (0, 1)) such that

〈w1, u0〉D((−∆D)α/2)′,D((−∆D)α/2) −
∫ 1

0

u1(x)w0(x) dx =

∫ b

a

∫ T

0

v(t, x)w(t, x) dt dx, (3.9)

for all (w0, w1) ∈ H′ = L2(0, 1)×D((−∆D)α/2)′, where w is the the solution of the adjoint problem
w′′(t, x) + (−∆D)αwxx(t, x) = 0 t ∈ (0, T ), x ∈ (0, 1),

w(t, 0) = 0 t ∈ (0, T ),

w(t, 1) = 0 t ∈ (0, T ),

w(0, x) = w0(x), w′(0, x) = w1(x) x ∈ (0, 1).

(3.10)

Proof of Lemma 3.1. Assume that we have (u0, u1) ∈ D((−∆D)α/2+1/2) × H1(0, 1) and

(w0, w1) ∈ D((−∆D)α/2+1/2)×H1(0, 1). Multiplying (1.1) with w and integrating by parts from

0 to T we have

(u′w − uw′)
∣∣∣T
0

+

∫ T

0

u(w′′ + (−∆D)αw) dt =

∫ T

0

v(t, x)χ(a,b)(x)w(x, t) dt.
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Finally, if we integrate in space interval [0, 1] and taking into account the hypotheses and the fact

that (1.1) is controllable if and only if u(T ) = u′(T ) = 0, we obtain (3.9).

The result for (w0, w1) ∈ H′ easily follows by a standard density argument.

Hence, we get the following moment problem.

Theorem 3.1. The initial datum (u0, u1) ∈ H is controllable if and only if there exists v ∈
L2(0, T ) such that ∫ b

a

∫ T

0

v(t, x)e−iνnt dt dx = an (n ∈ Z∗), (3.11)

where νn = sgn(n)|n|α verifies that (iνn)n∈Z∗ are the eigenvalues of the elliptic operator associated

to the continuous problem (3.10).

Proof of Theorem 3.1. Not that it is sufficient to show (3.9) is verified only for (w0, w1) =

Φn, n ∈ Z∗, where the eigenfunction of the fractional Laplacian operator is given by

Φn =

(
1

nαi
sin(nπx),− sin(nπx)

)T
.

Hence, by considering (w0, w1) = Φn, n ∈ Z∗, in Lemma 3.1 we get∫ 1

0

u0(x)w1(x)− u1(x)w0(x) dx =
ian
nα

,

∫ b

a

∫ T

0

v(t, x)w(t, x) dt dx =

∫ b

a

∫ T

0

i

nα
v(t, x)e−iνnt dt dx,

where for the last identity we have used the fact that w(t, x) = ie−iνnt

nα . The proof is now finished

combining the last two identities in Lemma 3.1.

Proof of Corollary 1. First of all, we remark that initial datum from (1.6) can be written as

(u0
j , u

1
j )1≤j≤N =

∑
1≤|n|≤f(N)

an(h)Φnh,

where an(h) =

{
1
2

(
λn

(nπ)α + 1
)
an + 1

2

(
λn

(nπ)α − 1
)
a−n |n| ≤ f(N),

0 |n| > f(N).

The sequence of uniformly bounded controls (vh)h>0 given by Theorem 1.1 satisfies the discrete

moment problem (2.7), which gives

h
∑

1≤j≤N

(sin(jπnh))χa,b(jh)

∫ T

0

e−iλntvh(t, jh) dt = an(h) (1 ≤ |n| ≤ N).

Let us consider a weak limit (up to a subsequence) v of the discretized controls (vh)h>0.
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Note that for any n ∈ Z∗, we have

h
∑

1≤j≤N

(sin(jπnh))χa,b(jh)

∫ T

0

e−iλntvh(t, jh) dt −→
h→0

∫ b

a

∫ T

0

sin(nπx)e−iλntv(t, x)dt dx,

an(h) −→
h→0

an.

Finally, if we combine the above estimates with the continuous moment problem (3.11), it follows

that any weak limit v of a subsequence of controls (vh)h>0 verifies∫ b

a

∫ T

0

sin(nπx)e−iλntv(t, x)dt dx = an (n ∈ Z∗),

hence, v is a control for continuous problem (1.1).

A Appendix: Proof of Theorem 1.2

Assume by contradiction that for any (u0
j , u

1
j )1≤j≤N =

∑
1≤|n|≤N anΦnh there exists a uniformly

bounded sequence of controls (vh)h>0 for the discrete control problem (1.3) verifying that for

any h > 0, the solution (u1, . . . uN ) of (1.3) verifies (u1(T ), . . . , uN (T )) = (0, . . . , 0). By duality,

this is totally equivalent to proving the following observability inequality: there exists C > 0

(independent on h > 0) such that for any

Z0 =
∑

1≤|n|≤N

a0
nΦnh,

then the solution of system (2.2) given by

Z(t) =
∑

1≤|n|≤N

a0
ne
iλntΦnh

verifies

E(h) =
h

2

∑
1≤|n|≤N

|a0
n|2 6 C

∫ T

0

∑
1≤|n|≤N

||Bnha0
ne
iλnt||2dt, (A.1)

where the definition of the discrete energy E is given in (2.3) and the definition of the discrete

observation Bnh is given in (3.2). Let us consider the following initial condition:

Z0 = ΦNh − ΦN−1
h .

Then, inequality (A.1) becomes

h 6 C

∫ T

0

||BNh a0
Ne

iλN t −BN−1
h a0

N−1e
iλN−1t||2dt

6 C

∫ T

0

h2

b bh c∑
j=d ah e

(
eiλN t sin(jπNh)− eiλN−1t sin(jπ(N − 1)h)

)2
dt

6 Ch

∫ T

0

h b bh c∑
j=d ah e

(
| sin(jπNh)|2 + | sin(jπ(N − 1)h)|2

−2 cos ((λN − λN−1)t)) sin(jπNh) sin(jπ(N − 1)h))) dt.

(A.2)
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Straightforward computations give that:

h

b bh c∑
j=d ah e

| sin(jπNh)|2 → b− a
2

+
sin (2aπ)− sin (2bπ)

4π
as h→ 0,

h

b bh c∑
j=d ah e

| sin(jπ(N − 1)h)|2 → b− a
2

+
sin (2aπ)− sin (2bπ)

4π
as h→ 0,

h

b bh c∑
j=d ah e

sin(jπN − 1)h) sin(jπNh)→ b− a
2

+
sin (2aπ)− sin (2bπ)

4π
as h→ 0.

Moreover, it is very easy to prove that λN − λN−1 → 0 as h → 0 (see Remark 1.1), so that by

the dominated convergence Theorem,
∫ T

0
cos ((λN − λN−1)t)) dt → T as h → 0. Hence, dividing

by h and making h → 0 in (A.2) leads to a contradiction since the left-hand side is equal to 1

whereas the right-hand side tends to 0 as h→ 0.
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