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Abstract

We construct solutions to the Kadomtsev-Petviashvili equation (KPI)
in terms of Fredholm determinants. We deduce solutions written as a
quotient of wronskians of order 2N . These solutions called solutions of
order N depend on 2N − 1 parameters.
They can also be written as a quotient of two polynomials of degree
2N(N +1) in x, y and t depending on 2N −2 parameters. The maximum
of the modulus of these solutions at order N is equal to 2(2N + 1)2.
We explicitly construct the expressions until the order 6 and we study the
patterns of their modulus in the plane (x, y) and their evolution according
to time and parameters.

PACS numbers :
33Q55, 37K10, 47.10A-, 47.35.Fg, 47.54.Bd

1 Introduction

We consider the Kadomtsev-Petviashvili equation (KP) which can be written
in the form

(4ut − 6uux + uxxx)x − 3uyy = 0, (1)

subscripts x, y and t denoting partial derivatives.
Kadomtsev and Petviashvili [1] first proposed that equation in 1970. That equa-
tion is considered as a model, for example, for surface and internal water waves
[2], and in nonlinear optics [3]. In 1974 Dryuma showed how the KP equation
could be written in Lax form [4]. Zakharov extended the inverse scattering
transform (IST) to this KPI equation, and obtained several exact solutions.
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The first rational solutions were found by Manakov, Zakharov, Bordag and
Matveev published in november 1977 [5] and at the same time by Krichever
published in january 1978 [6].
From the end of the seventies, a lot of methods have been carried out to solve
that equation. Krichever constructed for the first time in 1976 published in [7]
the solutions to KPI given in terms of Riemann theta functions in the frame of
algebraic geometry. Practically at the same time, a more general study in this
frame was realized by Dubrovin [8].
Various researches were conducted and more general rational solutions of the
KPI equation were obtained. Among many works, one can quote of the stud-
ies of Krichever in 1978 [9], Satsuma and Ablowitz in 1979 [10], Matveev in
1979 [11], Freeman and Nimmo in 1983 [12, 13], Matveev in 1987 [14], Peli-
novsky and Stepanyants in 1993 [15], Pelinovsky in 1994 [16], Ablowitz, Vil-
larroel, Chakravarty, Trubatch [17, 18, 19] in 1997-2000, Biondini and Kodama
[20, 21, 22] in 2003-2007.

In the following, we recall the results of the author about the representa-
tions of solutions to the KPI equation. We have expressed the solutions in terms
of Fredholm determinants of order 2N depending on 2N − 1 parameters. We
have also given another representation in terms of wronskians of order 2N with
2N − 1 parameters. These representations allow to obtain an infinite hierarchy
of solutions to the KPI equation, depending on 2N − 1 real parameters .
We have used these results to build rational solutions to the KPI equation, mak-
ing a parameter to 0 tend to 0.
Rational solutions of order N depending on 2N − 2 parameters without the
presence of a limit have been constucted. These families depending on 2N − 2
parameters for the N -th order can be written as a ratio of two polynomials of
x, y and t of degree 2N(N + 1).
We prove that the maximum of the modulus of those solutions at order N is
equal to 2(2N + 1)2. That provides an effective method to build an infinite
hierarchy of rational solutions of order N depending on 2N −2 real parameters.
We present here the representations of their modulus in the plane of the coor-
dinates (x, y) according to the 2N − 2 real parameters ai and b1 and time t for
N between 2 and 6.

2 Rational solutions to KPI equation of order

N depending on 2N − 2 parameters

2.1 Families of rational solutions of order N depending on

2N − 2 parameters

We need to define some notations. First one defines real numbers λj such that
−1 < λν < 1, ν = 1, . . . , 2N depending on a parameter ǫ which will be intended
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to tend towards 0; they can be written as

λj = 1− 2ǫ2j2, λN+j = −λj , 1 ≤ j ≤ N, (2)

The terms κν , δν , γν , τν and xr,ν are functions of λν , 1 ≤ ν ≤ 2N ; they are
defined by the formulas :

κj = 2
√

1− λ2j , δj = κjλj , γj =
√

1−λj

1+λj
,;

xr,j = (r − 1) ln
γj−i
γj+i

, r = 1, 3, τj = −12iλ2j

√

1− λ2j − 4i(1− λ2j )
√

1− λ2j ,

κN+j = κj , δN+j = −δj , γN+j = γ−1
j ,

xr,N+j = −xr,j , , τN+j = τj j = 1, . . . , N.

(3)

eν 1 ≤ ν ≤ 2N are defined in the following way :

ej = 2i
(

∑1/2M−1
k=1 ak(je)

2 k+1
− i
∑1/2M−1
k=1 bK(je)

2 k+1
)

,

eN+j = 2i
(

∑1/2M−1
k=1 ak(je)

2 k+1
+ i
∑1/2M−1
k=1 bk(je)

2 k+1
)

, 1 ≤ j ≤ N,

ak, bk ∈ R, 1 ≤ k ≤ N − 1.

(4)

ǫν , 1 ≤ ν ≤ 2N are real numbers defined by :

ǫj = 1, ǫN+j = 0 1 ≤ j ≤ N. (5)

Let I be the unit matrix and Dr = (djk)1≤j,k≤2N the matrix defined by :

dνµ = (−1)ǫν
∏

η 6=µ

(

γη + γν

γη − γµ

)

exp(iκνx− 2δνy + τνt+ xr,ν + eν). (6)

Then we recall the following result1 :

Theorem 2.1 The function v defined by

v(x, y, t) = −2
|n(x, y, t)|

2

d(x, y, t)2
(7)

where

n(x, y, t) = det(I +D3(x, y, t)), (8)

d(x, y, t) = det(I +D1(x, y, t)), (9)

and Dr = (djk)1≤j,k≤2N the matrix

dνµ = (−1)ǫν
∏

η 6=µ

(

γη + γν

γη − γµ

)

exp(iκνx− 2δνy + τνt+ xr,ν + eν). (10)

is a solution to the KPI equation (1), dependent on 2N − 1 parameters ak, bk,
1 ≤ k ≤ N − 1 and ǫ.

1The proof of this result has been given by the author [50, 53]
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We recall a second result on the solutions to KPI equation obtained recently
by the author in terms of wronskians. We need to define the following notations
:

φr,ν = sinΘr,ν , 1 ≤ ν ≤ N, φr,ν = cosΘr,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3, (11)

with the arguments

Θr,ν = κνx
2 + iδνy − i

xr,ν

2 − i τν2 t+ γνw − i eν2 , 1 ≤ ν ≤ 2N. (12)

We denote Wr(w) the wronskian of the functions φr,1, . . . , φr,2N defined by

Wr(w) = det[(∂µ−1
w φr,ν)ν, µ∈[1,...,2N ]]. (13)

We consider the matrix Dr = (dνµ)ν, µ∈[1,...,2N ] defined in (10). Then we have
the following statement2

Theorem 2.2 The function v defined by

v(x, y, t) = −2
|W3(φ3,1, . . . , φ3,2N )(0)|

2

(W1(φ1,1, . . . , φ1,2N )(0))
2

is a solution to the KPI equation depending on 2N − 1 real parameters ak, bk
1 ≤ k ≤ N − 1 and ǫ, with φrν defined by

φr,ν(w) = sin(κνx
2 + iδνy − i

xr,ν

2 − i τν2 t+ γνw − i eν2 ), 1 ≤ ν ≤ N,

φr,ν(w) = cos(κνx
2 + iδνy − i

xr,ν

2 − i τν2 t+ γνw − i eν2 ), N + 1 ≤ ν ≤ 2N, r = 1, 3,

κν , δν , xr,ν , γν , eν being defined in(3), (2) and (4).

From those two preceding results, we construct rational solutions to the KPI
equation as a quotient of two determinants.
We use the following notations :

Xν =
κνx

2
+ iδνy − i

x3,ν

2
− i

τν

2
t− i

eν

2
,

Yν =
κνx

2
+ iδνy − i

x1,ν

2
− i

τν

2
t− i

eν

2
,

for 1 ≤ ν ≤ 2N , with κν , δν , xr,ν defined in (3) and parameters eν defined by
(4).
We define the following functions :

ϕ4j+1,k = γ
4j−1
k sinXk, ϕ4j+2,k = γ

4j
k cosXk,

ϕ4j+3,k = −γ4j+1
k sinXk, ϕ4j+4,k = −γ4j+2

k cosXk,
(14)

2The proof of this result has been given [50, 53].
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for 1 ≤ k ≤ N , and

ϕ4j+1,N+k = γ
2N−4j−2
k cosXN+k, ϕ4j+2,N+k = −γ2N−4j−3

k sinXN+k,

ϕ4j+3,N+k = −γ2N−4j−4
k cosXN+k, ϕ4j+4,N+k = γ

2N−4j−5
k sinXN+k,

(15)

for 1 ≤ k ≤ N .
We define the functions ψj,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, the
term Xk is only replaced by Yk.

ψ4j+1,k = γ
4j−1
k sinYk, ψ4j+2,k = γ

4j
k cosYk,

ψ4j+3,k = −γ4j+1
k sinYk, ψ4j+4,k = −γ4j+2

k cosYk,
(16)

for 1 ≤ k ≤ N , and

ψ4j+1,N+k = γ
2N−4j−2
k cosYN+k, ψ4j+2,N+k = −γ2N−4j−3

k sinYN+k,

ψ4j+3,N+k = −γ2N−4j−4
k cosYN+k, ψ4j+4,N+k = γ

2N−4j−5
k sinYN+k,

(17)

for 1 ≤ k ≤ N .
The following ratio

q(x, t) :=
W3(0)

W1(0)

can be written as

q(x, t) =
∆3

∆1
=

det(ϕj,k)j, k∈[1,2N ]

det(ψj,k)j, k∈[1,2N ]
. (18)

Then we get the following result 3:

Theorem 2.3 The function v defined by

v(x, y, t) = −2
|det((njk)j,k∈[1,2N]

)|2

det((djk)j,k∈[1,2N]
)2

(19)

is a rational solution to the KPI equation (1).

(4ut − 6uux + uxxx)x − 3uyy = 0,

where

nj1 = ϕj,1(x, y, t, 0), 1 ≤ j ≤ 2N njk =
∂2k−2ϕj,1

∂ǫ2k−2 (x, y, t, 0),

njN+1 = ϕj,N+1(x, y, t, 0), 1 ≤ j ≤ 2N njN+k =
∂2k−2ϕj,N+1

∂ǫ2k−2 (x, y, t, 0),

dj1 = ψj,1(x, y, t, 0), 1 ≤ j ≤ 2N djk =
∂2k−2ψj,1

∂ǫ2k−2 (x, y, t, 0),

djN+1 = ψj,N+1(x, y, t, 0), 1 ≤ j ≤ 2N djN+k =
∂2k−2ψj,N+1

∂ǫ2k−2 (x, y, t, 0),
2 ≤ k ≤ N, 1 ≤ j ≤ 2N

(20)

The functions ϕ and ψ are defined in (14),(15), (16), (17).

3This result has been proved by the author and submitted to a review.
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. The structure of the solutions to the KPI equation is given by the following
result 4:

Theorem 2.4 The function v defined by

v(x, y, t) = −2

∣

∣

∣
det((njk)j,k∈[1,2N]

)
∣

∣

∣

2

(det((djk)j,k∈[1,2N]
))2

(21)

is a rational solution to the KPI equation (1) quotient of two polynomials n(x, y, t)
and d(x, y, t) depending on 2N − 2 real parameters aj and bj, 1 ≤ j ≤ N − 1.
n and d are polynomials of degrees 2N(N + 1) in x, y and t.
The terms njk and djk are defined by (20) and the functions ϕ and ψ are defined
in (14), (15), (16), (17).

3 The highest amplitude of the modulus of the

N-order solution to the KPI equation equal to

2(2N + 1)2

3.1 Another wronskian representation of solutions to KPI

equation

We have recalled in the previous section a recent result obtained by the author
(2.2).
We choose here to give another representation of the solutions to the KPI equa-
tion depending only on terms γν , 1 ≤ ν ≤ 2N . For this, we express the terms
κν , δν , τν and xr,ν in function of γν , for 1 ≤ ν ≤ 2N and we obtain :

κj =
4γj

(1+γ2
j
)
, δj =

4γj(1−γ
2
j )

(1+γ2
j
)2
, xr,j = (r − 1) ln

γj−i
γj+i

, τj =
−8iγj(3−2γ2

j+3γ4
j )

(1+γ2
j
)3

,

1 ≤ j ≤ N,

κj =
4γj

(1+γ2
j
)
, δj = −

4γj(1−γ
2
j )

(1+γ2
j
)2
, xr,j = (r − 1) ln

γj+i
γj−i

, τj =
−8iγj(3−2γ2

j+3γ4
j )

(1+γ2
j
)3

,

N + 1 ≤ j ≤ 2N.

We have the following representation :

Theorem 3.1 The function v defined by

v(x, y, t) = −2

∣

∣

∣
det[(∂µ−1

w φ̃3,ν(0))ν, µ∈[1,...,2N ]]
∣

∣

∣

2

(det[(∂µ−1
w φ̃1,ν(0))ν, µ∈[1,...,2N ]])2

(22)

is solution to the KPI equation (1).

4This result has been also proved by the author and submitted to a review.
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The functions φ̃r,ν are defined by

φ̃r,j(w) = sin
(

2γj
(1+γ2

j
)
x+ i

4γj(1−γ
2
j )

(1+γ2
j
)2
t− 4

γj(3−2γ2
j+3γ4

j )

(1+γ2
j
)3

y − i
(r−1)

2 ln
γj−i
γj+i

+ γjw − i
ej
2

)

,

φ̃r,N+j(w) = cos
(

2γj
(1+γ2

j
)
x− i

4γj(1−γ
2
j )

(1+γ2
j
)2
t− 4

γj(3−2γ2
j+3γ4

j )

(1+γ2
j
)3

+ i
(r−1)

2 ln
γj−i
γj+i

+ 1
γj
w − i

eN+j

2

)

,

1 ≤ j,≤ N,

with

ej = 2i(
∑1/2M−1
k=1 ak(je)

2 k−1
− i
∑1/2M−1
k=1 bK(je)

2 k−1
),

eN+j = 2i(
∑1/2M−1
k=1 ak(je)

2 k−1
+ i
∑1/2M−1
k=1 bk(je)

2 k−1
), 1 ≤ j ≤ N,

ak, bk ∈ R, 1 ≤ k ≤ N.

(23)

Remark 3.1 In the formula (22), the determinants det[(∂µ−1
w fν(0))ν, µ∈[1,...,2N ]]

are the wronskians of the functions f1, . . . , f2N evaluated in w = 0. In particular
∂0wfν means fν .

3.2 The highest amplitude of the modulus of the solution

to the KPI equation

There is any freedom to choose γj in such a way that the conditions on λj are
checked. In order to get the more simple expressions in the determinants, we
choose particular solutions in the previous families.
Here we choose γj = jǫ for 1 ≤ j ≤ N as simple as possible in order to have the
conditions on λj checked.

Theorem 3.2 The function v0 defined by

v0(x, y, t) = −2

(

|det((njk)j,k∈[1,2N ])|
2

(

det((djk)j,k∈[1,2N ])
)2

)

(aj=bj=0, 1≤j≤N−1)

(24)

is the solution of order N solution to the KPI equation (1) whose highest am-
plitude in modulus is equal to 2(2N + 1)2.

Remark 3.2 In (24), the matrices (njk)j,k∈[1,2N ] and (djk)j,k∈[1,2N ] are defined
in (20).

4 Study of the patterns of the modulus of the

rational solutions to the KPI equation in func-

tion of parameters and time

We have explicitly constructed rational solutions to the KPI equation of order
N depending on 2N − 2 parameters for 1 ≤ N ≤ 6.
In the following, we only give patterns of the modulus of the solutions in
the plane (x, y) of coordinates in function of the parameters ai, and bi, for
1 ≤ i ≤ N − 1 for 2 ≤ N ≤ 6, and time t.
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4.1 Case N = 1

Figure 1. Solution of order 1 to KPI, on the left for t = 0; in the center for
t = 104; on the right for t = 108.

4.2 Case N = 2

Figure 2. Solution of order 2 to KPI for t = 0, on the left a1 = 0, b1 = 0, ; in
the center a1 = 10, b1 = 0, ; on the right a1 = 10, b1 = 10.
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Figure 3. Solution of order 2 to KPI for t = 0, on the left a1 = 102, b1 = 0; in
the center a1 = 104, b1 = 0; on the right for t = 10, a1 = 108, b1 = 0.

Figure 4. Solution of order 2 to KPI, on the left for t = 5, a1 = 0, b1 = 0; in
the center for t = 10, a1 = 0, b1 = 0; on the right for t = 100, a1 = 0, b1 = 0.

4.3 Case N = 3

Figure 5. Solution of order 3 to KPI, on the left for t = 0; in the center for
t = 0, 01; on the right for t = 0, 1; all the parameters are equal to 0.
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Figure 6. Solution of order 3 to KPI, on the left for t = 0, 2; in the center for
t = 102; on the right for t = 103; all the parameters are equal to 0.

Figure 7. Solution of order 3 to KPI, on the left for a1 = 103; in the center
for b1 = 103; on the right for a2 = 106; here t = 0.

Figure 8. Solution of order 3 to KPI, on the left for t = 0, b2 = 106; in the
center for t = 0, 01, a1 = 103 all the other parameters are equal to 0; on the

right for t = 0, 1, b1 = 103 all the parameters are equal to 0.
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4.4 Case N = 4

Figure 9. Solution of order 4 to KPI, on the left for t = 0; in the center for
t = 0, 01; on the right for t = 0, 1; all the parameters to equal to 0.

Figure 10. Solution of order 4 to KPI, on the left for t = 0, 2; in the center
for t = 10; on the right for t = 50; all the parameters to equal to 0.

Figure 11. Solution of order 4 to KPI for t = 0, on the left for a1 = 103; in
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the center for b1 = 103; on the right for a2 = 106; all the other parameters to
equal to 0.

Figure 12. Solution of order 4 to KPI for t = 0, on the left for b2 = 106; in
the center for a3 = 109; on the right for b3 = 109; all the other parameters to

equal to 0.

4.5 Case N = 5

Figure 13. Solution of order 5 to KPI, on the left for t = 0; in the center for
t = 0, 01; on the right for t = 0, 1; all parameters equal to 0.
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Figure 14. Solution of order 5 to KPI, on the left for t = 0, 2; in the center
for t = 20; on the right for t = 50; all parameters equal to 0.

Figure 15. Solution of order 5 to KPI for t = 0, on the left for a1 = 104; in
the center for b1 = 104; on the right for a2 = 106; all other parameters equal to

0.

Figure 16. Solution of order 5 to KPI for t = 0, on the left for b2 = 106; in the
center for a3 = 108; on the right for b3 = 108; all other parameters equal to 0.
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Figure 17. Solution of order 5 to KPI for t = 0, on the left for a4 = 108; in
the center for b4 = 108; on the right for b4 = 108, sight on top; all other

parameters equal to 0.

4.6 Case N = 6

Figure 18. Solution of order 6 to KPI, on the left for t = 0; in the center for
t = 0, 01; on the right for t = 0, 1; all parameters equal to 0.
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Figure 19. Solution of order 6 to KPI, on the left for t = 0, 2; in the center
for t = 3; on the right for t = 10; all parameters equal to 0.

Figure 20. Solution of order 6 to KPI, on the left for a1 = 103; in the center
for b1 = 103; on the right for b1 = 106; all parameters equal to 0 and t = 0.

Figure 21. Solution of order 6 to KPI, on the left for a2 = 106, sight on top;
in the center for b2 = 106; on the right for b2 = 106, sight on top; all

parameters equal to 0 and t = 0.
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Figure 22. Solution of order 6 to KPI, on the left for a3 = 108; in the center
for a3 = 107; on the right for a3 = 109; all parameters equal to 0 and t = 0.

Figure 23. Solution of order 6 to KPI, on the left for b4 = 109; in the center
for a5 = 109; on the right for b5 = 109; all parameters equal to 0 and t = 0.

5 Conclusion

From the previous representations of the solutions to the KPI equation given by
the author in terms of Fredholm determinants of order 2N depending on 2N−1
real parameters and in terms of wronskians of order 2N depending on 2N − 1
real parameters, we succeed in obtaining rational solutions to the KPI equa-
tion depending on 2N − 2 real parameters. These solutions can be expressed
in terms of a ratio of two polynomials of degree 2N(N + 1) in x, y and t. The
maximum of the modulus of those solutions is equal to 2(2N + 1)2. That gives
a new approach to find explicit solutions for higher orders and try to describe
the structure of those rational solutions.
In the (x, y) plane of coordinates, different structures appear.
In the case N = 1, one obtains a peak which the height decreases very quickly
as t increases.
For N = 2, the formation of three peaks is obtained when the parameters a1 or
b1 are not equal to 0.
In the case N = 3, for a1 6= 0 or b1 6= 0 and the other parameters equal to zero,
we obtain a triangle with 6 peaks; for a2 6= 0 or b2 6= 0, and other parameters
equal to zero, we obtain a concentric rings of 5 peaks with a peak in the center.
For N = 4, for a1 6= 0 or b1 6= 0 and the other parameters equal to zero, we
obtain a triangle with 10 peaks; for a2 6= 0 or b2 6= 0, and other parameters
equal to zero, we obtain two concentric rings of 5 peaks on each of them; in the
last case, when a3 6= 0 or b3 6= 0, and the other parameters equal to zero, we
obtain one ring with 7 peaks.
In the case N = 5, for a given t, when one parameter grows and the other ones
are equal to 0 we obtain triangular or rings or concentric rings. There are four
types of patterns. For a1 6= 0 or b1 6= 0, and other parameters equal to zero, we
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obtain a triangle with 15 peaks. For a2 6= 0 or b2 6= 0, and other parameters
equal to zero, we obtain three concentric rings of 5 peaks on each of them. For
a3 6= 0 or b3 6= 0, and other parameters equal to zero, we obtain two concentric
rings of 7 peaks on each of them with a central peak; in the last case, when
a4 6= 0 or b4 6= 0, and other parameters equal to zero, we obtain one ring with
9 peaks with the lump L3 in the center.
In the last case studied N = 6, for a given t, when one parameter grows and the
other ones are equal to 0 we obtain triangular, rings or concentric rings. There
are five types of patterns. For a1 6= 0 or b1 6= 0, and other parameters equal
to zero, we obtain a triangle with 21 peaks. For a2 6= 0 or b2 6= 0, and other
parameters equal to zero, we obtain three concentric rings of 5, 10, 5 peaks re-
spectively. For a3 6= 0 or b3 6= 0, and other parameters equal to zero, we obtain
three concentric rings of 7 peaks on each of them. In the case where a4 6= 0 or
b4 6= 0, and other parameters equal to zero, we obtain two rings with 9 peaks
with the lump L4 in the center. In the last case where a5 6= 0 or b5 6= 0, and
other parameters equal to zero, we obtain one ring with 11 peaks with the lump
L4 in the center.

It will be relevant to go on this study for higher orders to try to understand the
structure of those rational solutions.
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