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Families of solutions to the KPI equation and the structure of their rational representations of order N

Introduction

We consider the Kadomtsev-Petviashvili equation (KP) which can be written in the form (4u t -6uu x + u xxx ) x -3u yy = 0,

subscripts x, y and t denoting partial derivatives. Kadomtsev and Petviashvili [START_REF] Kadomtsev | On the stability of solitary waves in weakly dispersing media[END_REF] first proposed that equation in 1970. That equation is considered as a model, for example, for surface and internal water waves [START_REF] Ablowitz | On the evolution of packets of water waves[END_REF], and in nonlinear optics [START_REF] Pelinovsky | Self-focusing of plane dark solitons in nonlinear defocusing media[END_REF]. In 1974 Dryuma showed how the KP equation could be written in Lax form [START_REF] Dryuma | On analytical solutions of the two-dimensional Kortewegde Vries equation[END_REF]. Zakharov extended the inverse scattering transform (IST) to this KPI equation, and obtained several exact solutions.

The first rational solutions were found by Manakov, Zakharov, Bordag and Matveev published in november 1977 [START_REF] Manakov | Twodimensional solitons of the Kadomtsev-Petviashvili equation and their interaction[END_REF] and at the same time by Krichever published in january 1978 [START_REF] Krichever | Rational solutions of the Kadomtcev-Petviashvili equation and integrable systems of n particules on a line[END_REF].

From the end of the seventies, a lot of methods have been carried out to solve that equation. Krichever constructed for the first time in 1976 published in [START_REF] Krichever | Novikov Holomorphic bundles over riemann surfaces and the kadomtsev-petviashvili equation[END_REF] the solutions to KPI given in terms of Riemann theta functions in the frame of algebraic geometry. Practically at the same time, a more general study in this frame was realized by Dubrovin [START_REF]Dubrovin Theta functions and non-linear equations[END_REF].

Various researches were conducted and more general rational solutions of the KPI equation were obtained. Among many works, one can quote of the studies of Krichever in 1978 [START_REF] Krichever | Elliptic solutions of the KP equation and integrable systems of particles[END_REF], Satsuma and Ablowitz in 1979 [START_REF] Satsuma | Two-dimensional lumps in nonlinear dispersive systems[END_REF], Matveev in 1979 [START_REF] Matveev | Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation depending on functional parameters[END_REF], Freeman and Nimmo in 1983 [START_REF] Freeman | Nimmo Rational solutions of the KdV equation in wronskian form[END_REF][START_REF] Freeman | The use of Bäcklund transformations in obtaining N-soliton solutions in wronskian form[END_REF], Matveev in 1987 [START_REF] Matveev | Salle New families of the explicit solutions of the Kadomtcev-Petviaschvily equation and their application to Johnson equation[END_REF], Pelinovsky and Stepanyants in 1993 [START_REF] Pelinovsky | New multisolitons of the Kadomtsev-Petviashvili equation[END_REF], Pelinovsky in 1994 [START_REF] Pelinovsky | Rational solutions of the Kadomtsev-Petviashvili hierarchy and the dynamics of their poles. I. New form of a general rational solution[END_REF], Ablowitz, Villarroel, Chakravarty, Trubatch [START_REF] Ablowitz | Solutions to the time dependent schrödinger and the Kadomtsev-Petviashvili equations[END_REF][START_REF] Villarroel | On the discrete spectrum of the nonstationary Schrdinger equation and multipole lumps of the Kadomtsev-Petviashvili I equation[END_REF][START_REF] Ablowitz | A novel class of solution of the non-stationary Schrödinger and the KP equations[END_REF] in 1997-2000, Biondini and Kodama [START_REF] Biondini | On a family of solutions of the KadomtsevPetviashvili equation which also satisfy the Toda lattice hierarchy[END_REF][START_REF] Kodama | Young diagrams and N solitons solutions to the KP equation[END_REF][START_REF] Biondini | Line Soliton Interactions of the Kadomtsev-Petviashvili Equation[END_REF] in 2003-2007.

In the following, we recall the results of the author about the representations of solutions to the KPI equation. We have expressed the solutions in terms of Fredholm determinants of order 2N depending on 2N -1 parameters. We have also given another representation in terms of wronskians of order 2N with 2N -1 parameters. These representations allow to obtain an infinite hierarchy of solutions to the KPI equation, depending on 2N -1 real parameters . We have used these results to build rational solutions to the KPI equation, making a parameter to 0 tend to 0. Rational solutions of order N depending on 2N -2 parameters without the presence of a limit have been constucted. These families depending on 2N -2 parameters for the N -th order can be written as a ratio of two polynomials of x, y and t of degree 2N (N + 1). We prove that the maximum of the modulus of those solutions at order N is equal to 2(2N + 1) 2 . That provides an effective method to build an infinite hierarchy of rational solutions of order N depending on 2N -2 real parameters. We present here the representations of their modulus in the plane of the coordinates (x, y) according to the 2N -2 real parameters a i and b 1 and time t for N between 2 and 6.

Rational solutions to KPI equation of order

N depending on 2N -2 parameters 2.1 Families of rational solutions of order N depending on 2N -2 parameters

We need to define some notations. First one defines real numbers λ j such that -1 < λ ν < 1, ν = 1, . . . , 2N depending on a parameter ǫ which will be intended to tend towards 0; they can be written as

λ j = 1 -2ǫ 2 j 2 , λ N +j = -λ j , 1 ≤ j ≤ N, (2) 
The terms κ ν , δ ν , γ ν , τ ν and x r,ν are functions of λ ν , 1 ≤ ν ≤ 2N ; they are defined by the formulas :

κ j = 2 1 -λ 2 j , δ j = κ j λ j , γ j = 1-λj 1+λj ,; x r,j = (r -1) ln γj -i γj +i , r = 1, 3, τ j = -12iλ 2 j 1 -λ 2 j -4i(1 -λ 2 j ) 1 -λ 2 j , κ N +j = κ j , δ N +j = -δ j , γ N +j = γ -1 j , x r,N +j = -x r,j , , τ N +j = τ j j = 1, . . . , N. (3) 
e ν 1 ≤ ν ≤ 2N are defined in the following way :

e j = 2i 1/2 M -1 k=1 a k (je) 2 k+1 -i 1/2 M -1 k=1 b K (je) 2 k+1 , e N +j = 2i 1/2 M -1 k=1 a k (je) 2 k+1 + i 1/2 M -1 k=1 b k (je) 2 k+1 , 1 ≤ j ≤ N, a k , b k ∈ R, 1 ≤ k ≤ N -1. (4) 
ǫ ν , 1 ≤ ν ≤ 2N are real numbers defined by :

ǫ j = 1, ǫ N +j = 0 1 ≤ j ≤ N. (5) 
Let I be the unit matrix and D r = (d jk ) 1≤j,k≤2N the matrix defined by :

d νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(iκ ν x -2δ ν y + τ ν t + x r,ν + e ν ). (6) 
Then we recall the following result 

where n(x, y, t) = det(I + D 3 (x, y, t)),

d(x, y, t) = det(I + D 1 (x, y, t)), (8) 
and D r = (d jk ) 1≤j,k≤2N the matrix

d νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(iκ ν x -2δ ν y + τ ν t + x r,ν + e ν ). ( 10 
)
is a solution to the KPI equation ( 1), dependent on 2N -

1 parameters a k , b k , 1 ≤ k ≤ N -1 and ǫ.
We recall a second result on the solutions to KPI equation obtained recently by the author in terms of wronskians. We need to define the following notations : [START_REF] Matveev | Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation depending on functional parameters[END_REF] with the arguments

φ r,ν = sin Θ r,ν , 1 ≤ ν ≤ N, φ r,ν = cos Θ r,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3,
Θ r,ν = κν x 2 + iδ ν y -i xr,ν 2 -i τν 2 t + γ ν w -i eν 2 , 1 ≤ ν ≤ 2N. ( 12 
)
We denote W r (w) the wronskian of the functions φ r,1 , . . . , φ r,2N defined by

W r (w) = det[(∂ µ-1 w φ r,ν ) ν, µ∈[1,...,2N ] ]. ( 13 
)
We consider the matrix D r = (d νµ ) ν, µ∈[1,...,2N ] defined in [START_REF] Satsuma | Two-dimensional lumps in nonlinear dispersive systems[END_REF]. Then we have the following statement2 

Theorem 2.2 The function v defined by

v(x, y, t) = -2 |W 3 (φ 3,1 , . . . , φ 3,2N )(0)| 2 (W 1 (φ 1,1 , . . . , φ 1,2N )(0)) 2 is a solution to the KPI equation depending on 2N -1 real parameters a k , b k 1 ≤ k ≤ N -1 and ǫ, with φ r ν defined by φ r,ν (w) = sin( κν x 2 + iδ ν y -i xr,ν 2 -i τν 2 t + γ ν w -i eν 2 ), 1 ≤ ν ≤ N, φ r,ν (w) = cos( κν x 2 + iδ ν y -i xr,ν 2 -i τν 2 t + γ ν w -i eν 2 ), N + 1 ≤ ν ≤ 2N, r = 1, 3,
κ ν , δ ν , x r,ν , γ ν , e ν being defined in(3), ( 2) and (4).

From those two preceding results, we construct rational solutions to the KPI equation as a quotient of two determinants. We use the following notations :

X ν = κ ν x 2 + iδ ν y -i x 3,ν 2 -i τ ν 2 t -i e ν 2 , Y ν = κ ν x 2 + iδ ν y -i x 1,ν 2 -i τ ν 2 t -i e ν 2 ,
for 1 ≤ ν ≤ 2N , with κ ν , δ ν , x r,ν defined in [START_REF] Pelinovsky | Self-focusing of plane dark solitons in nonlinear defocusing media[END_REF] and parameters e ν defined by (4). We define the following functions :

ϕ 4j+1,k = γ 4j-1 k sin X k , ϕ 4j+2,k = γ 4j k cos X k , ϕ 4j+3,k = -γ 4j+1 k sin X k , ϕ 4j+4,k = -γ 4j+2 k cos X k , (14) 
for 1 ≤ k ≤ N , and

ϕ 4j+1,N +k = γ 2N -4j-2 k cos X N +k , ϕ 4j+2,N +k = -γ 2N -4j-3 k sin X N +k , ϕ 4j+3,N +k = -γ 2N -4j-4 k cos X N +k , ϕ 4j+4,N +k = γ 2N -4j-5 k sin X N +k , (15) 
for 1 ≤ k ≤ N . We define the functions ψ j,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, the term X k is only replaced by Y k .

ψ 4j+1,k = γ 4j-1 k sin Y k , ψ 4j+2,k = γ 4j k cos Y k , ψ 4j+3,k = -γ 4j+1 k sin Y k , ψ 4j+4,k = -γ 4j+2 k cos Y k , (16) 
for 1 ≤ k ≤ N , and

ψ 4j+1,N +k = γ 2N -4j-2 k cos Y N +k , ψ 4j+2,N +k = -γ 2N -4j-3 k sin Y N +k , ψ 4j+3,N +k = -γ 2N -4j-4 k cos Y N +k , ψ 4j+4,N +k = γ 2N -4j-5 k sin Y N +k , (17) 
for 1 ≤ k ≤ N .

The following ratio q(x, t)

:= W 3 (0) W 1 (0)
can be written as

q(x, t) = ∆ 3 ∆ 1 = det(ϕ j,k ) j, k∈[1,2N ] det(ψ j,k ) j, k∈[1,2N ] . (18) 
Then we get the following result3 :

Theorem 2.3 The function v defined by v(x, y, t) = -2 | det((n jk) j,k∈[1,2N ] )| 2 det((d jk) j,k∈[1,2N ] ) 2 (19) 
is a rational solution to the KPI equation [START_REF] Kadomtsev | On the stability of solitary waves in weakly dispersing media[END_REF].

(4u t -6uu x + u xxx ) x -3u yy = 0,
where

n j1 = ϕ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N n jk = ∂ 2k-2 ϕj,1 ∂ǫ 2k-2 (x, y, t, 0), n jN +1 = ϕ j,N +1 (x, y, t, 0), 1 ≤ j ≤ 2N n jN +k = ∂ 2k-2 ϕj,N+1 ∂ǫ 2k-2
(x, y, t, 0),

d j1 = ψ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N d jk = ∂ 2k-2 ψj,1 ∂ǫ 2k-2 (x, y, t, 0), d jN +1 = ψ j,N +1 (x, y, t, 0), 1 ≤ j ≤ 2N d jN +k = ∂ 2k-2 ψj,N+1 ∂ǫ 2k-2 (x, y, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N (20)
The functions ϕ and ψ are defined in ( 14),( 15), ( 16), [START_REF] Ablowitz | Solutions to the time dependent schrödinger and the Kadomtsev-Petviashvili equations[END_REF].

. The structure of the solutions to the KPI equation is given by the following result4 :

Theorem 2.4 The function v defined by v(x, y, t) = -2 det((n jk) j,k∈[1,2N ] ) 2 (det((d jk) j,k∈[1,2N ] )) 2 (21) 
is a rational solution to the KPI equation ( 1) quotient of two polynomials n(x, y, t) and d(x, y, t) depending on 2N -2 real parameters a j and b j , 1 ≤ j ≤ N -1. n and d are polynomials of degrees 2N (N + 1) in x, y and t.

The terms n jk and d jk are defined by [START_REF] Biondini | On a family of solutions of the KadomtsevPetviashvili equation which also satisfy the Toda lattice hierarchy[END_REF] and the functions ϕ and ψ are defined in ( 14), ( 15), ( 16), [START_REF] Ablowitz | Solutions to the time dependent schrödinger and the Kadomtsev-Petviashvili equations[END_REF].

3 The highest amplitude of the modulus of the N-order solution to the KPI equation equal to 2(2N + 1) 2

Another wronskian representation of solutions to KPI equation

We have recalled in the previous section a recent result obtained by the author (2.2).

We choose here to give another representation of the solutions to the KPI equation depending only on terms γ ν , 1 ≤ ν ≤ 2N . For this, we express the terms κ ν , δ ν , τ ν and x r,ν in function of γ ν , for 1 ≤ ν ≤ 2N and we obtain :

κ j = 4γj (1+γ 2 j ) , δ j = 4γj (1-γ 2 j ) (1+γ 2 j ) 2 , x r,j = (r -1) ln γj -i γj +i , τ j = -8iγj (3-2γ 2 j +3γ 4 j ) (1+γ 2 j ) 3 , 1 ≤ j ≤ N, κ j = 4γj (1+γ 2 j ) , δ j = - 4γj (1-γ 2 j ) (1+γ 2 j ) 2 , x r,j = (r -1) ln γj +i γj -i , τ j = -8iγj (3-2γ 2 j +3γ 4 j ) (1+γ 2 j ) 3 , N + 1 ≤ j ≤ 2N.
We have the following representation :

Theorem 3.1 The function v defined by v(x, y, t) = -2 det[(∂ µ-1 w φ3,ν (0)) ν, µ∈[1,...,2N ] ] 2 (det[(∂ µ-1 w φ1,ν (0)) ν, µ∈[1,...,2N ] ]) 2 (22) 
is solution to the KPI equation ( 1).

The functions φr,ν are defined by φr,j (w) = sin

2γj (1+γ 2 j ) x + i 4γj (1-γ 2 j ) (1+γ 2 j ) 2 t -4 γj (3-2γ 2 j +3γ 4 j ) (1+γ 2 j ) 3 y -i (r-1) 2 ln γj -i γj +i + γ j w -i ej 2 , φr,N+j (w) = cos 2γj (1+γ 2 j ) x -i 4γj (1-γ 2 j ) (1+γ 2 j ) 2 t -4 γj (3-2γ 2 j +3γ 4 j ) (1+γ 2 j ) 3 + i (r-1) 2 ln γj -i γj +i + 1 γj w -i eN+j 2 , 1 ≤ j, ≤ N, with e j = 2i( 1/2 M -1 k=1 a k (je) 2 k-1 -i 1/2 M -1 k=1 b K (je) 2 k-1 ), e N +j = 2i( 1/2 M -1 k=1 a k (je) 2 k-1 + i 1/2 M -1 k=1 b k (je) 2 k-1 ), 1 ≤ j ≤ N, a k , b k ∈ R, 1 ≤ k ≤ N. (23) 
Remark 3.1 In the formula [START_REF] Biondini | Line Soliton Interactions of the Kadomtsev-Petviashvili Equation[END_REF], the determinants det[(∂ µ-1 w f ν (0)) ν, µ∈[1,...,2N ] ] are the wronskians of the functions f 1 , . . . , f 2N evaluated in w = 0. In particular ∂ 0 w f ν means f ν .

The highest amplitude of the modulus of the solution to the KPI equation

There is any freedom to choose γ j in such a way that the conditions on λ j are checked. In order to get the more simple expressions in the determinants, we choose particular solutions in the previous families.

Here we choose γ j = jǫ for 1 ≤ j ≤ N as simple as possible in order to have the conditions on λ j checked.

Theorem 3.2

The function v 0 defined by

v 0 (x, y, t) = -2 | det((n jk ) j,k∈[1,2N ] )| 2 det((d jk ) j,k∈[1,2N ] ) 2 (aj =bj =0, 1≤j≤N -1) (24) 
is the solution of order N solution to the KPI equation ( 1) whose highest amplitude in modulus is equal to 2(2N + 1) 2 .

Remark 3.2 In (24), the matrices (n jk ) j,k∈ [1,2N ] and (d jk ) j,k∈ [1,2N ] are defined in [START_REF] Biondini | On a family of solutions of the KadomtsevPetviashvili equation which also satisfy the Toda lattice hierarchy[END_REF].

4 Study of the patterns of the modulus of the rational solutions to the KPI equation in function of parameters and time

We have explicitly constructed rational solutions to the KPI equation of order N depending on 2N -2 parameters for 1 ≤ N ≤ 6.

In the following, we only give patterns of the modulus of the solutions in the plane (x, y) of coordinates in function of the parameters a i , and b i , for 1 ≤ i ≤ N -1 for 2 ≤ N ≤ 6, and time t. 

Case N = 3

Figure 5. Solution of order 3 to KPI, on the left for t = 0; in the center for t = 0, 01; on the right for t = 0, 1; all the parameters are equal to 0.

Figure 6. Solution of order 3 to KPI, on the left for t = 0, 2; in the center for t = 10 2 ; on the right for t = 10 3 ; all the parameters are equal to 0. 

Conclusion

From the previous representations of the solutions to the KPI equation given by the author in terms of Fredholm determinants of order 2N depending on 2N -1 real parameters and in terms of wronskians of order 2N depending on 2N -1 real parameters, we succeed in obtaining rational solutions to the KPI equation depending on 2N -2 real parameters. These solutions can be expressed in terms of a ratio of two polynomials of degree 2N (N + 1) in x, y and t. The maximum of the modulus of those solutions is equal to 2(2N + 1) 2 . That gives a new approach to find explicit solutions for higher orders and try to describe the structure of those rational solutions.

In the (x, y) plane of coordinates, different structures appear.

In the case N = 1, one obtains a peak which the height decreases very quickly as t increases.

For N = 2, the formation of three peaks is obtained when the parameters a 1 or b 1 are not equal to 0.

In the case N = 3, for a 1 = 0 or b 1 = 0 and the other parameters equal to zero, we obtain a triangle with 6 peaks; for a 2 = 0 or b 2 = 0, and other parameters equal to zero, we obtain a concentric rings of 5 peaks with a peak in the center.

For N = 4, for a 1 = 0 or b 1 = 0 and the other parameters equal to zero, we obtain a triangle with 10 peaks; for a 2 = 0 or b 2 = 0, and other parameters equal to zero, we obtain two concentric rings of 5 peaks on each of them; in the last case, when a 3 = 0 or b 3 = 0, and the other parameters equal to zero, we obtain one ring with 7 peaks.

In the case N = 5, for a given t, when one parameter grows and the other ones are equal to 0 we obtain triangular or rings or concentric rings. There are four types of patterns. For a 1 = 0 or b 1 = 0, and other parameters equal to zero, we obtain a triangle with 15 peaks. For a 2 = 0 or b 2 = 0, and other parameters equal to zero, we obtain three concentric rings of 5 peaks on each of them. For a 3 = 0 or b 3 = 0, and other parameters equal to zero, we obtain two concentric rings of 7 peaks on each of them with a central peak; in the last case, when a 4 = 0 or b 4 = 0, and other parameters equal to zero, we obtain one ring with 9 peaks with the lump L 3 in the center.

In the last case studied N = 6, for a given t, when one parameter grows and the other ones are equal to 0 we obtain triangular, rings or concentric rings. There are five types of patterns. For a 1 = 0 or b 1 = 0, and other parameters equal to zero, we obtain a triangle with 21 peaks. For a 2 = 0 or b 2 = 0, and other parameters equal to zero, we obtain three concentric rings of 5, 10, 5 peaks respectively. For a 3 = 0 or b 3 = 0, and other parameters equal to zero, we obtain three concentric rings of 7 peaks on each of them. In the case where a 4 = 0 or b 4 = 0, and other parameters equal to zero, we obtain two rings with 9 peaks with the lump L 4 in the center. In the last case where a 5 = 0 or b 5 = 0, and other parameters equal to zero, we obtain one ring with 11 peaks with the lump L 4 in the center.

It will be relevant to go on this study for higher orders to try to understand the structure of those rational solutions.

4. 1 Case N = 1 Figure 1 .

 111 Figure 1. Solution of order 1 to KPI, on the left for t = 0; in the center for t = 10 4 ; on the right for t = 10 8 .

Figure 2 .

 2 Figure 2. Solution of order 2 to KPI for t = 0, on the left a 1 = 0, b 1 = 0, ; in the center a 1 = 10, b 1 = 0, ; on the right a 1 = 10, b 1 = 10.

Figure 3 .

 3 Figure 3. Solution of order 2 to KPI for t = 0, on the left a 1 = 2 , b 1 = 0; in the center a 1 = 10 4 , b 1 = 0; on the right for t = 10, a 1 = , b 1 = 0.

Figure 4 .

 4 Figure 4. Solution of order 2 to KPI, on the left for t = 5, a 1 = 0, b 1 = 0; in the center for t = 10, a 1 = 0, b 1 = 0; on the right for t = 100, a 1 = 0, b 1 = 0.

Figure 7 .

 7 Figure 7. Solution of order 3 to KPI, on the left for a 1 = 10 3 ; in the center for b 1 = 10 3 ; on the right for a 2 = 10 6 ; here t = 0.

Figure 8 .

 8 Figure 8. Solution of order 3 to KPI, on the left for t = 0, b 2 = 10 6 ; in the center for t = 0, 01, a 1 = 10 3 all the other parameters are equal to 0; on the right for t = 0, 1, b 1 = 10 3 all the parameters are equal to 0.

4. 4 Case N = 4 Figure 9 .

 449 Figure 9. Solution of order 4 to KPI, on the left for t = 0; in the center for t = 0, 01; on the right for t = 0, 1; all the parameters to equal to 0.

Figure 10 .

 10 Figure10. Solution of order 4 to KPI, on the left for t = 0, 2; in the center for t = 10; on the right for t = 50; all the parameters to equal to 0.

Figure 11 .

 11 Figure 11. Solution of order 4 to KPI for t = 0, on the left for a 1 = 10 3 ; in

Figure 12 .

 12 Figure 12. Solution of order 4 to KPI for t = 0, on the left for b 2 = 10 6 ; in the center for a 3 = 10 9 ; on the right for b 3 = 10 9 ; all the other parameters to equal to 0.

4. 5 Case N = 5 Figure 13 .

 5513 Figure[START_REF] Freeman | The use of Bäcklund transformations in obtaining N-soliton solutions in wronskian form[END_REF]. Solution of order 5 to KPI, on the left for t = 0; in the center for t = 0, 01; on the right for t = 0, 1; all parameters equal to 0.

Figure 14 .

 14 Figure 14. Solution of order 5 to KPI, on the left for t = 0, 2; in the center for t = 20; on the right for t = 50; all parameters equal to 0.

Figure 15 .

 15 Figure 15. Solution of order 5 to KPI for t = 0, on the left for a 1 = 10 4 ; in the center for b 1 = 10 4 ; on the right for a 2 = 10 6 ; all other parameters equal to 0.

Figure 16 .

 16 Figure 16. Solution of order 5 to KPI for t = 0, on the left for b 2 = 10 6 ; in the center for a 3 = 10 8 ; on the right for b 3 = 10 8 ; all other parameters equal to 0.

Figure 17 .

 17 Figure 17. Solution of order 5 to KPI for t = 0, on the left for a 4 = 10 8 ; in the center for b 4 = 10 8 ; on the right for b 4 = 10 8 , sight on top; all other parameters equal to 0.

4. 6 Case N = 6 Figure 18 .

 6618 Figure 18. Solution of order 6 to KPI, on the left for t = 0; in the center for t = 0, 01; on the right for t = 0, 1; all parameters equal to 0.

Figure 19 .

 19 Figure[START_REF] Ablowitz | A novel class of solution of the non-stationary Schrödinger and the KP equations[END_REF]. Solution of order 6 to KPI, on the left for t = 0, 2; in the center for t = 3; on the right for t = 10; all parameters equal to 0.

Figure 20 .

 20 Figure 20. Solution of order 6 to KPI, on the left for a 1 = 10 3 ; in the center for b 1 = 10 3 ; on the right for b 1 = 10 6 ; all parameters equal to 0 and t = 0.

Figure 21 .

 21 Figure 21. Solution of order 6 to KPI, on the left for a 2 = 10 6 , sight on top; in the center for b 2 = 10 6 ; on the right for b 2 = 10 6 , sight on top; all parameters equal to 0 and t = 0.

Figure 22 .

 22 Figure 22. Solution of order 6 to KPI, on the left for a 3 = 10 8 ; in the center for a 3 = 10 7 ; on the right for a 3 = 10 9 ; all parameters equal to 0 and t = 0.

Figure 23 .

 23 Figure 23. Solution of order 6 to KPI, on the left for b 4 = 10 9 ; in the center for a 5 = 10 9 ; on the right for b 5 = 10 9 ; all parameters equal to 0 and t = 0.

The proof of this result has been given by the author[START_REF] Gaillard | Rational solutions to the KPI equation and multi rogue waves[END_REF][START_REF] Gaillard | Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves[END_REF] 

The proof of this result has been given[START_REF] Gaillard | Rational solutions to the KPI equation and multi rogue waves[END_REF][START_REF] Gaillard | Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves[END_REF].

This result has been proved by the author and submitted to a review.

This result has been also proved by the author and submitted to a review.