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Major obstacles for students learning formal reasoning are the lack of transparency of the logical 

structure of formal deductions, their theoretical status, and their verbal representation. For fostering 

students’ learning of formal reasoning, making explicit the logical structures and unpacking their 

verbal representations is therefore necessary. In the design research project presented, a teaching-

learning arrangement of angle theorems was designed in which given if-then-statements were to be 

connected with formal deductions based on the design principle of structural scaffolding. A case study 

of a pair of 9th graders investigated students’ pathways towards becoming aware of and using the 

logical structures and exemplifies the functioning of structural scaffolding.  

Keywords: Formal proof, logical structure, verbal representation, structural scaffolding.  

Introduction 

Formal reasoning, the logical deduction of new theorems from other theorems, has been shown to be 

a huge challenge for many students at both secondary and tertiary level. Empirical research studies 

have identified different reasons for these difficulties (Harel & Sowder, 1998). The design research 

project presented here focuses on one major obstacle, namely understanding the logical structure of 

deductions and deductive theory development, which is rarely explicit in mathematics classrooms 

(Durand-Guerrier, Boero, Douek, Epp, & Tanguay, 2011). For this obstacle to be overcome, 

researchers have suggested that it is important to make the logical structures of deductions and their 

verbal representations explicit (Durand-Guerrier et al., 2011).  

This design research study follows this general suggestion. It draws upon the design principle of 

structural scaffolding (following general ideas of scaffolding, cf. Lajoie, 2005). It pursues two main 

research questions: (1) How can a teaching and learning arrangement be developed to make logical 

structures of deductive reasoning explicit? (2) Which typical pathways towards formal reasoning can 

be initiated by such a teaching-learning arrangement, and which obstacles appear along the 

pathways? The first two sections present the theoretical background and the methodological 

framework. The design outcome (a teaching-learning arrangement based on structural scaffolding) 

and a case study of two students in 9th grade on their pathway is presented afterwards.  

Theoretical background: Approaching logical structures by structural scaffolding  

Formal reasoning is crucial in mathematics, not only for convincing one self and others of the truth 

of theorems or for explaining connections, but mainly for building (at least locally) deductive theories 

(de Villiers, 1990). Even if, for example, students immediately are convinced of the truth of angle 

theorems, deducing them from each other encourages students to organize them in a logical and 

deductive sequence and give insights in mathematical evidence instead of empirical (cf. Fig. 1).  

 

 



 

 

 

 

 

 

Figure 1: Locally deductive theory of angle theorems  

Missing learning opportunities for formal deductions. In school mathematics, in contrast, most 

reasoning activities do not refer to formal deductive reasoning but to semantical reasoning where the 

epistemic value is prioritized over the validity of a statement (Duval, 1991). Formal deductions are 

presented mostly in a ready-made form (Harel & Sowder, 1998). This does not allow students access 

to awareness of how to compose an argumentation using logical structure. Although composing the 

deductions is only the last step of proving (Boero, 1999), it is still necessary to offer learning 

opportunities for this last step, e.g. by linearly ordering all elements and formulating their logical 

relations in written forms (Russek, 1998). 

Logical structure of formal deduction and everyday argumentations. Everyday argumentations have 

often been described by the argumentative structure of data, warrant, and claim (Toulmin, 1958). 

While in everyday argumentation the warrant may be omitted and only made explicit when an 

opponent raises doubts (Rapanta, Garcia-Mila, & Gilabert, 2013), it is crucial in formal reasoning 

and has a theoretical rather than semantic status (Duval, 1991). That means that the existence of 

mathematical theorems and their statements, which are not characteristics of reality, are of relevance. 

Thus, the range of possible warrants must be made explicit in mathematics (Douek, 1999). Also, the 

status of preconditions in if-then-statements differ: in most everyday argumentations, if-then-

statements are only formulated when the conditions are satisfied (Nunes, Schliemann, & Carraher, 

1993, p. 130ff). In mathematics, in contrast, if-then-statements are hypothetical, so the validity of the 

preconditions always have to be checked before applying an if-then-statement as an argument.  

Making explicit logical structures for students. Due to these differences, many researchers have 

suggested explicating the logical structures of formal reasoning in the learning process (Durand-

Guerrier et al., 2011). Cho and Jonassen (2002) used Toulmin’s (1958) argumentation scheme for 

this purpose for college students in non-mathematical contexts, and we will extend this approach for 

9th graders in a geometrical context by including the check of preconditions. 

Structural scaffolding as a design principle. Explicating alone is not enough. For students to become 

acquainted with the logical structure, and to produce it in their own deductions, this study draws on 

the design principle of scaffolding. Scaffolding is characterized as enabling learners to realize 

supported activities before they can conduct them independently (Wood, Bruner, & Ross, 1976). 

Initially only applied to one-to-one interaction for language learning, the idea of scaffolding has 

increasingly been elaborated into a design principle for materials and computer tools, whole-class 

contexts, for open geometrical proofs (Miyazaki, Fujita, & Jones, 2017), and other learning contents 

(e.g. Lajoie, 2005).  

Methodology of the design research study 

Design research as methodological framework. Because the study has the dual aim of designing a 

teaching-learning arrangement (here: on the logical structure of formal reasoning with the design 

principle of scaffolding) and developing an empirically grounded local theory of students’ learning 



 

 

pathways, we chose the methodological framework of design research with a focus on learning 

processes (Gravemeijer & Cobb, 2006). The concrete model of Topic-Specific Didactical Design 

Research (cf. Prediger & Zwetzschler, 2013) relies on the iterative and intertwined interplay of four 

working areas: (a) specifying and structuring learning contents; (b) developing the design of the 

teaching-learning arrangement, (c) conducting and analyzing design experiments; and (d) (further) 

developing local theories on teaching and learning processes.  

Design experiments for data collection. Design experiments are the methodological core of design 

research studies (Gravemeijer & Cobb, 2006). For this project, 3 design experiment cycles were 

conducted with 20 ninth and tenth graders (age 14-16 years) in total. The case study reported here 

stems from Cycle 3 in which design experiments in laboratory settings were conducted and 

videotaped with 5 pairs of students, comprising two sessions of 60 minutes each (in total about 600 

minutes video material). The students were familiar with the geometrical topic of angle theorems. 

The empirical part of this paper focuses on the case study of two female students, Katja and Emilia, 

from grade 9 and the first author as design experiment leader (in the following called tutor).  

Methods for qualitative data analysis. The transcript of the video was analyzed with respect to 

students’ development of explicating elements of the logical structure (using the analytic scheme of 

data, warrant, claim, cf. Krummheuer, 1995) and to how students articulate relations between these 

elements (linguistic analysis, not presented here). This makes it possible to investigate the functioning 

of the scaffolding tool and typical pathways and obstacles.  

Design Outcome: Teaching-learning arrangement with structural scaffolding 

Mathematical topic. Within the iterative design experiment cycles, a teaching-learning arrangement 

was developed for the mathematical topic of angle sets. This topic was chosen because the if-then-

statements and the set of possible warrants are well 

limited in this field and locally organized (cf. Fig. 1).  

Structural scaffolding. For structural scaffolding, we use 

materialized argumentation structure forms on paper as 

depicted in Fig. 2. In addition to Toulmin’s (1958) argu-

mentation structure, the materialized structure also makes 

explicit why the preconditions of the if-then-statements 

(named arguments) are satisfied. Every theorem that is 

already proven is offered as warrant for the next step of 

formal reasoning. Working with this materialized 

structural scaffold in each step allows the students to 

make explicit their often implicit ideas. In the following, 

the boxes (from above to below) are named data box, 

condition check box, argument box, and conclusion box. 

Learning trajectory for introducing the structural 

scaffold. The intended learning trajectory starts by activating students’ previous knowledge on angle 

sets in cases of determining angles for concrete constellations (“Find  if °…”). When first 

asked to prove the general vertically opposite angle theorem, students’ initial argumentative resources 

often include the critical feature, but are limited mostly by their semantic nature (“because 

Figure 2: Materialized argumentation 

structure forms as structural scaffolds 

and have the same 

supplementary angle  

If two lines intersect, then the mea-
sures of the two resulting supple-
mentary angles add up to 180°. 

Task: Show that the two angles are equal if 
they are vertical like in the drawing 

Next step: Deducing algebraically that  =  



 

 

supplementary angle”). Starting from these initial reasoning resources, the tutor introduces the 

structural scaffold by explaining the new practice of formal reasoning as making explicit all aspects 

implicitly contained in the students’ brief argumentation. The condition check box for checking if the 

precondition of the if-then-statement is satisfied had to be introduced after the first design experiment 

cycle in order to clarify the theoretical and hypothetical status of if-then-statements in mathematics. 

The structural scaffold serves different roles along the learning trajectory, (I) as a visualizer for the 

extended structure; (II) as a working tool for the students to check the completeness of their explicit 

reasoning; and (III) as a framework for writing down the proof. In our design experiment, after 120 

minutes, the students write proofs with deductive chains of reasoning, even though they do not yet 

find deductive chains for more complex proofs on their own.  

Empirical insights into Katja’s and Emilia’s pathways to formal reasoning  

Katja and Emilia start their learning pathway in the way described above. Figure 2 shows the product 

of the phase of jointly introducing the structural scaffold ending with Sequence 1.  

Sequence 1: Reasoning determined by empiricism instead of validity of statements  

When asked to prove that α and β are equal, Emilia and Katja offer a typical 

initial, semantic three-word answer “vertically opposite angles” (unprinted 

Turn 339), assuming that classifying the type of relation between the two 

angles is enough. Becoming aware that they are supposed to prove the 

vertically opposite angle theorem by using arguments like the argument of 

supplementary angles (cf. Fig 2) and the calculating argument (“If there are 

angle measures, then it is possible to calculate with them like numbers.”), 

they start by naming the angles γ and δ (Figure 3). Then they discuss the 

necessary conditions and conclusions. 

362 Emilia:  […] And now we could say actually that α plus 𝛾 results in 180 degrees. 

363 Tutor: Mmm. 

364 Emilia: Also like here [points to conclusion box of the last task with α + 120° = 180°] 

365 Tutor: Yes. 

366 Katja: Yes. 

367 Emilia: And that, uh. 

368 Katja: γ plus β 

369 Emilia: Yes, so actually this can be – Yes, precisely – But we have no concrete numbers 

[points to the conclusion box previous task] – and then we can go on – so, I don’t 

know, whether we can do this in such small steps, because we have no numbers at 

all, but then we could say, α plus γ equals 120, umm, 180 degrees. And β plus δ 

equals 120, umm, 180 degree 

370 Tutor: Mmm. 

371 Katja: And…  

372 Emilia: And accordingly  

373 Katja: γ plus β – plus δ and then  

374 Emilia: yes, okay, but actually, actually we need only one, don’t we? Then it is just 

unnecessary, this angle. [points to the angle δ] – So I would say… 

Figure 3: Marking 

angles as first step 



 

 

375 Katja: … we have to – this with [6 sec break] yes, α plus γ 180 degree, then 180 degrees 

minus β 

376 Emilia: No, so I would easily write  

377 Katja:  [“unintelligible”] 

378 Emilia: α plus γ 180 degree and β plus γ 180 degree. 

379 Tutor: Yes. 

380 Emilia: And then, if, a system of equations could be created. 

When asked to explain in more detail, the students offer details of steps of their calculation (“α plus 

γ equals 120, umm, 180 degrees”, Turn 369), but do not explicate the warrants for these relations 

(here the argument of supplementary angles). In this way, they find out that they do not need the angle 

Interestingly, they formulate steps of action or calculation instead of general relations, and 

consequently, these steps are combined temporarily (“and then” in Turn 373) instead of logically.  

Sequence 2: Filling the argumentation structure form without verbalizing the connections 

When filling in the materialized argumentation structure form (Fig. 2), the students discuss whether 

they need δ and organize their process:  

403 Emilia: Well then – eh, I would say – I know, I think, that here [points to the argument 

box], we first write that the supplementary-argument is our argument. Then we 

think which has to be there [hints to the condition-check box] 

404 Katja: [writes “supplementary angle” in the argument box, 21 sec break] Yes, that here  

405 Emilia: Ah, I wanted to write that 

406 Katja: … that we γ here 

407 Emilia: Yes, that α and β have the same supplementary angle. 

408 Katja: [3 sec break] Where? 

409 Emilia: Here [hints a finger at the condition check box] 

410 Katja: [writes in the condition check box: α and β have the same supplementary angle γ] 

[…] [Discussion with the tutor, if the second angle δ is necessary] 

417 Emilia: Yes, okay. – Umm, then I would now write here, umm, - α plus γ equals 120 degrees 

and β plus γ equal 120, umm, 180 degrees. Why do I always say 120? Yes, 

418 Katja: [writes both equations in the conclusion box, cf. Fig .2] 

The students succeed in filling in the argumentation structure form mostly without help from the tutor. 

In particular, they correctly identify all elements of the logical structure, first choosing the argument 

and then checking whether its precondition is satisfied (Turn 403). After filling in the form, they 

condense the proven theorem as a new argument to be used for further proofs (in non-printed Turns 

452-471): “Argument of vertically opposite angles: If two lines cross each other, then the opposite 

angles are equal. (They are called vertically opposite angles.)”. This illustrates how the scaffold 

supports them to produce a complete argumentation and to understand the logical structure. However, 

it is remarkable that they still do not use any logical connectors to relate the different elements to each 

other. The language is rather deictic (“here”, “there” in Turns 403, 404, 409, 417), but the logical 

relation between the elements is not verbalized by the students. To give an expert model of how the 

connections could be expressed, the tutor finally intervenes as follows: 



 

 

474 Tutor:  […] Also this condition of point of intersection was considered, so that we have 

two times two supplementary angles. Here as condition, and because we have 

supplementary angles, we could use the supplementary-argument that says that a 

pair of supplementary angles add up to 180 degrees. Therefore, it can be used for 

our supplementary angles and umm, here two times two were regarded, this means 

we have two times this equation with, umm, our angles. […]  

Sequence 3: Mastering formal reasoning 

After determining a specific alternate interior angle, 

the next task for Emilia and Katja is to prove the gen-

eral alternate interior angle theorem (Fig. 4). For 

constructing their formal argumentation structure, 

the students are given the equality argument (If δ = μ 

and μ = π, then δ = π. (transitivity)) and the corres-

ponding angle argument (which can only be derived 

from the parallel axiom and is hence left unproved 

for the students, cf. Fig. 1). Again, the students 

successfully construct a complete argumentation 

structure supported by the structural scaffold of the 

form. Based on an enriched sketch, they deduce the 

theorem in three steps (cf. Fig. 5): In Step 1, the use 

the vertically opposite angle for deriving that  =  

In Step 2, they use the corresponding angle argument 

for deriving  = . For deriving that  = , they use 

the equality argument and produce the last chain of 

reasoning in Step 3. 

The written text produced by Katja for this last step 

shows what she has learned (cf. Fig 6). Katja’s text 

provides at least situational evidence that she has grasped the logical structure of formal reasoning 

and can express some of the logical connections. In contrast to the beginning of the students’ learning 

pathway, she makes explicit the warrant (“the equality argument says that”) and the conditions of its 

application (“Now, we know that  and β have the same measure and α and β.”). For expressing the 

logical connections, she adopts elements of a language offered by the tutor in Turn 747 (“the 

supplementary-argument that says”). She also expresses the deduction from the argument to the 

conclusion: “from this we can conclude”. However, the order of aspects is still the order of discovery, 

not yet the strict order of formal reasoning as the conditions are again guaranteed after using the 

argument.  

Figure 4: Alternate interior angle theorem 

 
Give reasons for the following theorem: If the 
lines g and h are parallel and line a crosses 
them, then the angles a and g have the same 
measure.  
 

Figure 5: Katja’s and Emilia’s three 

steps of formal proof for the 

alternate angle theorem 



 

 

 

Figure 6: Katja’s verbalization of the third step of reasoning 

Looking back to Sequence 1 – Sequence 3 

In total, these three sequences from the students’ learning process provide insights into the students’ 

pathway from their everyday argumentative resources towards formal reasoning, their induction into 

mathematical proof as a cultural practice. The structural scaffold strongly supports comprehending 

of the logical structure, the designated Function (I). The students also capture the norm that the 

practice of formal reasoning is characterized by making explicit every element in the logical structure 

(every box must be filled, Function II). However, the scaffold alone does not sufficiently support the 

process of talking about the logical structures, as visible in Sequence 2. Hence, the structural scaffold 

had to be complemented by language scaffolds (in this case oral expert modelling offered by the 

tutor). The written product from Sequence 3, finally, shows that the students can adopt the language 

scaffolds for communicating about the formal deductions.  

Discussion and outlook 

The case study of Katja and Emilia gives a first indication for the potential efficacy of the structural 

scaffolding. Other pairs of the 10 students in Design Experiment Cycle 3 also succeeded in mastering 

formal reasoning, supported by the scaffold. Filling the boxes serves as prompts for identifying every 

single aspect of the logical structure (data, warrant, and conclusion) and the satisfaction of 

preconditions of argumentations. The specific strength of the materialized structure form is that it not 

only makes the logical structure visible, but also permits students to complete the form in non-linear 

order. Based on this structural scaffold, the students’ written texts are mostly produced in linear, 

deductive order. As with any provided format, it can be done non-generatively, passively, locally 

filling each box but not attending to what role the boxes play in formatting the reasoning. However, 

not only Katja and Emilia but also other students we observed benefited from the scaffolding as they 

learnt to distinguish between preconditions, if-then-statements and conclusions. The scaffold suppor-

ted the students to express the relations between the elements of the logical structure verbally and to 

reflect amongst other things about the generality of the statements or which characteristics of the 

sketches are important. These features are crucial to increase awareness of formal reasoning.  

Of course, the study still has methodological limitations which have to be overcome in later cycles or 

future research. Limitations concern the sample size (2 students presented, 10 in total) which is not 

yet representative. So far, the teaching-learning arrangement is focused on one specific topic, the 

angle theorems, which need to be extended to other topics in future research in order to gain evidence 

of the overall claim of efficacy. The most important limitation in view for the next cycle of the 

presented project concerns the language: we intend to identify the phrases and syntactic structures 

which appear to be necessary for students to realize the need to articulate the logical connections 

“Now we know, that γ and β have the same measure 
and α and β. The equality-argument says, that if the 
first angle has the same measure as a second and 
this has the same measure as a third, that the first 
and the third have the same measure. Here the first 
is γ, the second β and the third α. From this we can 
conclude that γ has the same measure as α.” 



 

 

between the elements in the argumentation. This will provide support for the students on the linguistic 

level as well as on the logical-structural level. 
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