
HAL Id: hal-01865651
https://hal.science/hal-01865651

Submitted on 31 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proof-based teaching as a basis for understanding why
David Reid, Estela Vallejo Vargas

To cite this version:
David Reid, Estela Vallejo Vargas. Proof-based teaching as a basis for understanding why. CERME
10, Feb 2017, Dublin, Ireland. �hal-01865651�

https://hal.science/hal-01865651
https://hal.archives-ouvertes.fr


Proof-based teaching as a basis for understanding why  

David Reid and Estela Vallejo Vargas 

University of Bremen, Germany; dreid@uni-bremen.de, vallejo@uni-bremen.de 

The importance of proofs as a way to gain understanding has been observed many times. In this 

paper we show the result of two different experiences with division of natural numbers. The first 

comes from children in grade 3 who have learned about division and divisibility through what we 

call proof-based teaching (PBT), and the second comes from students who just finished their school 

studies and intend to become preservice primary teachers. Our main aim is to point out how 

different school experiences might lead to different (divergent) ways of gaining insight into the 

relationship between the divisor and the remainder. We particularly focus on describing some 

elements we identified in the third graders’ instruction that might have allowed them to articulate 

their own understandings.  
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Proofs as a way to gain understanding 

The goal of proof-based teaching is that students gain understanding through proving. Hence, it is 

based on past work on the role of proof as a means to understand or explain.  

In mathematics education, explanation and understanding go together. The goal is understanding, 

so any explanation offered is aimed at having someone understand why a mathematical claim is 

true. This implies that a proof, to be useful in the classroom, should embody explanation. It 

should show not only that a result is true, but also why it is true. It should be concerned not only 

with its conclusion, but also with its main ideas, its overall structure, and its relationship to other 

mathematical fields and concepts (De Villiers, 2004; Hanna, 1990, 2000) (Hanna, 2016, p. 2).  

Hanna (2016) discusses a number of different views of what makes a proof explanatory, but for our 

purposes, one aspect of these views is important. Explanatory proofs make reference to what we call 

a key notion, but which is also called a “characterizing property” or “salient feature”. “An 

explanatory proof makes reference to a characterizing property of an entity or structure mentioned” 

(Steiner, 1978, p. 143). “A proof can be explanatory only if ‘some feature of the result is salient’ 

and the proof builds upon that salient feature (Lange, 2014, p. 489, cited in Hanna, 2016, p. 4).  

Elsewhere (Vallejo & Ordoñez, 2015; Reid, 2011) we have suggested that proof-based teaching  

(PBT), in which students learn mathematics through explanatory proving that builds on a shared 

body of knowledge, offers an opportunity for the development of relational understanding.  

In the following we first elaborate on the elements of proof-based teaching based on our experience 

of a 3-year design research with third graders. We then show examples of the understandings of 

division of the third graders after a short unit of proof-based teaching instruction. Finally, we 

contrast these understandings with those of students who have completed secondary school and are 

about to begin university studies and draw some conclusions for teacher education.  
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Proof-based teaching  

Reid (2011) proposed proof-based teaching as “a way to develop understanding of mathematical 

concepts” (p. 28), and Vallejo has elaborated this idea in a 3-year design research intervention with 

third graders, the main goal of which was constructing division and divisibility knowledge.  

The first intervention took place in 2013 in a Peruvian public school. This intervention was framed 

in the context of a master thesis (Ordoñez 2014) for which Vallejo was the supervisor. The second 

intervention took place in 2014 with a different group of third graders in the same public school. It 

addressed weaknesses identified in the first intervention through observing the difficulties students 

encountered in the lessons. We will report on the third intervention in the next section.  

In the three interventions Vallejo taught all the sessions as a guest teacher in the classroom of 

another teacher. Written classwork assignments and quizzes were collected which helped the 

researchers to assess the students’ progress in their knowledge construction. All the sessions were 

videotaped, and significant parts of the first and third interventions were transcribed. In all three 

cases, the students had no prior knowledge of these topics at the time the interventions began as the 

goal was to see knowledge being constructed. 

Elements of proof based teaching 

Through this research several elements of proof-based teaching have been identified as important: a 

‘toolbox’ of shared knowledge, an expectation for explanation, and deductive explaining.   

The toolbox  

In order to prove students must share a common set of accepted principles. A ‘toolbox’ of such 

principles is an essential feature of PBT and this also reflects the practice of professional 

mathematicians. We adopt the term “toolbox” from Netz (1999) who uses the term to describe the 

set of theorems and assumptions that are used in classical Greek proofs without explicitly referring 

to them. Thurston, (1995) describes the same phenomenon in contemporary mathematical practice:  

Within any field, there are certain theorems and certain techniques that are generally known and 

generally accepted. When you write a paper, you refer to these without proof. … Many of the 

things that are generally known are things for which there may be no known written source. As 

long as people in the field are comfortable that the idea works, it doesn’t need to have a formal 

written source. (p. 33)  

In the interventions, Vallejo assessed prior knowledge through an individual diagnostic test, but 

more importantly, she established through a class discussion three “key notions” related to division 

and divisibility. These provided “a framework of established knowledge from which to prove” 

(Vallejo & Ordoñez, 2015, p. 231). The three key notions are: 

Fair distribution: Distributions must give the same number of objects to each person.  

Maximum distribution:  The maximum number of objects possible must be distributed. 

Whole distribution: Each person must receive a whole number of objects.    

These key notions were the basis for the proof-based teaching of division and divisibility employing 

a mixture of written (individual and groups) tasks and class discussion.  



An expectation for explanation 

From the very beginning, Vallejo’s students were accustomed to being asked ‘why?’ for every 

conclusion they made or in general for every answer they gave based on the “key notions”. “In the 

course of the sessions students also gave incorrect answers. Occasions of this type were exploited to 

promote discussion and justification by students since they were the ones who corrected the 

answers” (Ordoñez 2014, p. 334). She established in this way “an expectation that answers should 

be justified within this framework” (Vallejo & Ordoñez 2015, p. 231). It became part of the didactic 

contract (Brousseau, 1997) established in the classroom. In the context of proof-based teaching this 

is what we call an expectation for explanation.  

Deductive explanations 

As part of the common ‘toolbox’ the whole class also shared an understanding of conjecture and 

justification, explained and modelled by the teacher, which was in tune with the meaning of proof 

given in A. Stylianides (2007). As part of the didactic contract the students knew that they could 

make as many conjectures as they wanted. The teacher wrote the students’ conjectures at the 

blackboard to be analyzed by the whole class. But they were constantly reminded that in order for 

their conjectures to be upgraded to ‘mathematical truths’, they should provide strong support in the 

form of deductive arguments that were evaluated by the teacher.  

Third graders’ understandings of division 

We report here some results from the third cycle of the research design we discussed above. This 

intervention took place in a public school in Peru, in 2015, with a group of 21 third graders (7-8 

years old). The intervention consisted of 23 sessions, each of them made of around 90 minutes. It 

was session 3 when these third graders discovered the relation between remainders and divisors and 

explained the relation using the key notions through a whole class discussion.    

At the end of the intervention (session 23), the third graders were given a final test, including two 

items related to remainders: 

Is it true that in a division by 𝟒 we can have a remainder of 𝟔? ⬜ Yes ⬜ No  Justify your answer. 

In a whole, fair and maximum distribution among 5 people, how many objects may be left over 

at most? Why can no more objects be left over? Justify your answer. 

These two items were number 8 and 9 on a test with 11 items. We report here on the children’s 

responses to these two items, which are summarized in Table 1. 

 First Item Second Item  

Correct answer with explanation  9 (43%) 12 (57%) 

Correct answer with unclear explanation  2 (10%) 2 (10%) 

Correct answer with no explanation  1 (5%) 1 (5%) 

Incorrect answer  1 (5%) 3 (14%) 

No response or question misunderstood.  8 (38%) 3 (14%) 

Table 1: Summary of results from the third graders’ test 



Of the 21 children, 12 (57%) answered the first question correctly and 15 (71%) answered the 

second question correctly. Most of those who answered the second question correctly were also able 

to give an explanation. Their answers are based on a relational understanding of division, bringing 

together knowledge of the key notions they learned and experience with explanatory proving in this 

context.    

For example, Bruno answered the first question “No. Because if we divide by 4 the remainder is at 

most 3, and 6 is more than 3”. This shows that he understands why the answer is no, and can 

explain by making reference to specific knowledge about division by 4, and implicitly to a general 

rule concerning the maximum remainder possible. Some children who answered the first item 

correctly (2 of the 12) provided a similar explanation, although their knowledge of the possible 

remainders when dividing by 4 was faulty. For example, Eduardo wrote “No, because in a division 

by 4 the only remainders are 1, 2, 3”. Eduardo omits one possible remainder, but his explanation is 

still appropriate, as he points out that 6 is not among the possible remainders in a division by 4.  

On the second item, Max answered “Question 1: 4 can be left; Question 2: because I can keep 

distributing (objects)”. His answer shows his understanding of why the remainder cannot be more 

than 4 when distributing objects among 5 people. Although he does not refer to the condition by 

name (maximum distribution), he uses a condition that makes reference to it (“because I can keep 

distributing objects”) as the question makes reference to cases in which the maximum number of 

objects has not yet been distributed. Max’s answer is an example of the kinds of arguments they 

were able to produce. 

Similarly, Renato’s answer “There can be at most 1, 2, 3 and 4 left over. More objects can’t be left 

over because it wouldn’t be (a) maximum (distribution)”, shows he understands why the maximum 

value for the remainder in a division by 5 is 4. He is actually the only student who makes explicit 

reference to this condition by its name in his written work. Even though Renato’s answer is 

incomplete (he doesn’t consider the remainder zero) his explanation is correct. The use of this 

common toolbox was consistent in this intervention. 

From the very beginning Vallejo invited the students to share their ideas orally, and they seemed to 

feel comfortable to communicate in this way. However, some students had troubles with their 

writing skills while communicating their ideas individually, though they could still share well-

thought ideas orally. Hence, after the final test Vallejo decided to interview some of the students 

who had performed well in whole class discussions, but not so well on the written tasks. These 

semi-structured interviews revealed that some students who had not given explanations had not 

understood the questions being asked. For example, Piero had answered the first test item by giving 

an example of a division by 4 that does not result in a remainder of 6. He did not understand that the 

question refers to dividing by 4 in general. When Vallejo asked the same question in the interview, 

he answered “No, because if there would be 6 left over, it would be 6 divided by 4, and I must 

continue distributing (objects)”. Like Piero, most of the students who gave an answer classified as 

“Question misunderstood” showed in the interview that they had not understood the question in the 

first item. However, when the question was clarified and they were given time to reflect, most were 

able to provide reasons.  



We feel that the explanations given by the third graders demonstrate a relational understanding of 

divisibility, which arose through the proof-based teaching they experienced. We have not (for 

practical and ethical reasons) attempted to make a comparison with a matched group of third graders 

taught about divisibility in another way. Instead, in the next section we compare their 

understandings with those of students at the end of secondary schooling, who have had many other 

opportunities to develop their understandings of division.   

University students’ understandings of division 

We analyze here the answers given on a diagnostic test given at the beginning of university studies 

to 148 students enrolled in primary level teacher education. These students were enrolled at a 

private university and had received a government scholarship to support their teacher education. 

Hence, they can be assumed to be among the best students enrolling in primary level teacher 

education. Around 65% of these students came from the capital city, Lima, where the university is 

located, and the other 35% came from the other parts of Peru.  The test was given prior to any 

instruction at the university, which means that it assessed only the understanding the students 

retained from their school experience. 

The students were asked the following question: “In a division of natural numbers with the divisor 

equal to 3, what are all the possible values the remainder can take? Why?” To ensure that the 

terminology used in the question was understood, the question was accompanied by the diagram 

shown (which is a translation of the real one) in Figure 1.    

Remember that in every division:   
 

Dividend  Divisor 

(Remainder) Quotient 

Figure 1: Reminder included with the question 

The task presented to these students is not exactly the same as presented to the third graders. This 

reflects the background knowledge of these two different groups. In the case of the prospective 

teachers, they were not familiar with the language fair, whole and maximum distributions and the 

third graders were not introduced to the terms dividend, divisor, or quotient. Despite that, one can 

see that both tasks ask for the same knowledge about the divisor and remainder relationship.  

Table 2 summarizes the results from the pre-service teachers.  

 Correct answer Partially correct Incorrect answer No response 

With explanation 9 (6%) 

25 (17%) 

1 (1%) 

11 (7%) 

  

Reference to a general rule 

Without explanation 21 (14%) 13 (9%) 38 (26%) 30 (20%) 

Table 2: Summary of results from the pre-service teachers’ diagnostic test 

A correct answer was given by 55 (37%) of the pre-service teachers. But of these only 9 gave 

explanations that show they understood the reason why the remainder must be 0, 1 or 2. For 



example, Elizabeth wrote “It can only take values less than 3, in this case they would be (0, 1, 2) 

x<3, because a number multiplied by 3 cannot be less than this. (x: Remainder)]”. 

Among those giving a correct answer the most common way to answer the question “Why?” was by 

reference to a rule such as “the maximum remainder is one less than the divisor’s value” or “the 

remainder is always less than the divisor”. These answers may reflect understanding, but the rule 

may have been memorized without understanding. The remaining 21 responses include no 

explanation, an unclear response, or empirical evidence as “explanation”. Figure 2 shows a response 

of this last kind. Note that the divisions are of small numbers, but were done using a standard 

algorithm. In the first two cases, the dividends 1 and 2 were treated as if they were 10 and 20 for the 

purpose of determining the remainder, although the first decimal place of the quotient is worked out 

as if 1 and 2 are being divided. The pre-service teacher writes “Por lo tanto:” [Therefore] suggesting 

she feels that her six examples are sufficient to explain her answer. She also wrote “¿Por qué?” 

[Why?] with an arrow pointed to her examples, which is consistent if she believes these examples 

answer the question. It seems she was not able to provide a mathematical explanation.  

 

    Figure 2: A pre-service teacher’s response, showing a correct answer without an explanation 

Another 25 (17%) pre-service teachers gave partially correct answers (listing two of the three 

remainders, or listing 0 and 3 as distinct possibilities resulting in four remainders), 38 (26%) gave 

incorrect answers and 30 (20%) gave no answer. Overall, the responses of the pre-service teachers 

show an instrumental understanding (in the sense of Skemp, 1987) of division and limited number 

sense. Only 46 could give an explanation or cite a general rule and most used procedural approaches 

to determine the possible remainders in spite of the small numbers involved. 

Conclusions 

We do not claim that this comparison replaces an experimental design with a control group, but this 

was not a goal of our design based research in any case. Nevertheless, it does offer some food for 

thought. One might expect that adults at the conclusion of more than a decade of schooling would 

have had many opportunities to develop concepts related to division, a basic operation in arithmetic 

and one that is basic to understanding of rational numbers and algebra. Why compare them with 

children who have had only twenty-three lessons on the topic? What we wish to compare are the 



two different school experiences with division of natural numbers these two groups have had. Most 

of the preservice teachers can be assumed to have had a typical school experience in mathematics. 

That the third graders have a better understanding of division we feel reflects the non-traditional 

learning context they experienced, that allowed them to make sense of division. We strongly believe 

that proof-based teaching was important in their achievement of this understanding, but further 

research is needed to confirm this.  

However, this comparison also raises an important question for teacher education. If, at the 

conclusion of secondary school, future primary school teachers do not understand basic concepts 

related to division, will they be able to guide children in the development of these concepts? If they 

are to develop these concepts as part of their teacher education, how can this best be done? Clearly 

the approaches taken in their schooling were unsuccessful. Our current research focusses on such 

pre-service teachers, and explore whether a proof-based teaching intervention at the university level 

can allow adults with instrumental understandings to develop relational understandings.   
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