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In Germany, there is increasing interest in language competences in mathematics lessons. Based on 

national curriculum standards, argumentation should also be strengthened in primary school 

mathematics classes (KMK, 2005). The reported interdisciplinary (linguistics and mathematics 

education) study on reasoning presents a model to rate arithmetic reasoning competences at 

primary level, in which mathematical reasoning and its linguistic realization are separately coded. 

In a pilot study, 243 third, fourth, and sixth grade students solved a number of arithmetic reasoning 

tasks. The results support a one-dimensional scale for the model of reasoning; its components 

identify differentiated requirements, which are formulated concretely in the coding guidelines and 

may point to didactical potential for language support in mathematical reasoning itself, as well as 

in mathematics lessons at primary level. 
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Reasoning in early mathematics learning 

Early mathematical argumentation can be divided into four steps: detecting mathematical 

regularities, describing them, asking questions about them and giving reasons for their validity 

(Bezold & Ladel, 2014; Meyer, 2010; Bezold, 2009; Wittmann & Müller, 1990). The content base 

for argumentation is achieved by description of the detected structures or by reference to common 

knowledge (Krummheuer, 2000); reasoning is then needed to verify the described regularities as 

true (Toulmin, 2003/1958; Schwarzkopf, 1999).  

The didactical value of reasoning in mathematics learning lies in gaining deeper insights into 

mathematical structures, so developing one’s mathematical knowledge. In this sense, reasoning 

leads to questions about mathematical statements to ensure their correctness and to develop new 

mathematical connections (Steinbring, 2005). Two intertwined processes can be distinguished: 

one’s own understanding and the process of sharing this understanding with others. In most cases, 

these processes don’t occur separately, but are the response to cognitive-social needs (Harel & 

Sowder, 2007; Hersh, 1993). It follows that, in its epistemic function, mathematical reasoning may 

be monologic in leading to deeper individual understanding; in its communicative function, where 

mathematical structures are explained and justified, it is dialogic and dependent on other people 

(Neumann, Beier & Ruwisch, 2014; Ruwisch & Neumann, 2014). 

In primary classrooms, mathematical reasoning usually occurs in the form of oral communication 

between pupils and in interactions with the teacher. These communicative processes have been 

widely studied. From an epistemological perspective, the emergence of shared knowledge and its 

structures has been described (e.g. Steinbring, 2005) while a more interactionist perspective traces 

the type and structure of argumentation in classroom interactions (e.g. Krummheuer, 2015).  



Mathematical reasoning in this sense must be distinguished from reasoning in language classes, 

especially at primary level. While both are seen as concepts that develop out of situated everyday 

(“vernacular”) speech (Elbow, 2012), reasoning in language learning focuses much more on self-

evident facts and personal meanings than on provable structures in special content areas. It follows 

that argumentation in language learning leads to more addressee-oriented cognitivization (Krelle, 

2007), as reasoning of this kind is much more about persuasion than proving. Nevertheless, typical 

linguistic forms of reasoning are learned in these everyday situations, and students must learn how 

to use these in different content areas (e.g. Wellington & Osborne, 2001; Lemke, 1990). So, in 

combining mathematical and linguistic views of early reasoning, we can hope to gain a broader and 

deeper understanding of early reasoning.  

While most age-related studies of primary students focus on oral communication, experts in 

language learning emphasise writing as an important instrument for deepening individual 

understanding (Becker-Mrotzek & Schindler, 2007; Pugalee, 2005; Galbraith, 1999; see also 

Wellington & Osborne, 2001; Morgan, 1998; Miller, 1991). Although primary school children are 

not yet expert in writing, fourth-graders are capable of constructing expository texts with a relevant 

number of causes in elaborating a topic (Hayes, 2012; Krelle, 2007). It may therefore be fruitful to 

look at their written argumentations, and especially at how they offer reasons for mathematical 

regularities (Ruwisch & Neumann, 2014; Fetzer, 2007). 

Modelling written mathematical reasoning 

To investigate children’s written reasoning, we developed a theoretical model that combines 

mathematical and linguistic aspects of reasoning (Ruwisch & Neumann, 2014; Neumann, Beier & 

Ruwisch, 2014). 

Arithmetic reasoning tasks 

Following the four steps of argumentation in primary mathematics (see above), we decided to give 

the children an already structured situation (see Figure 1), which explicitly requires detection, 

transfer and description before offering reasons for the validity of their suggestion.  

Figure 1: Complex addition task (CA) as a sample item  

(left: original version; right: English translation)  

For the purposes of this study, four different arithmetic tasks were designed. Although differing in 

complexity of regularities, all of these tasks focused on detection and reasoning and were easy to 

compute. Format ZF involved three number sequences to be continued: +9, +7, and +2n. Format EA 

asked the children to continue a given additive structure by increasing all three summands by one so 

that the sum increases by three. In solving formats CA and CM, the children had to identify two 



structures at the same time. To answer the complex addition task in Figure 1, the children had to 

find two tasks with the same sum. At the same time, they had to take into account that the 

summands must be changed by 10 in opposite directions. The multiplication tasks (CM) showed a 

constant difference in the product caused by the difference between the multipliers while the 

multiplicands remained constant. 

Sample 

The data include 477 justifications written by 243 students. In total, 41 third-graders (♀21; ♂20), 96 

fourth-graders (♀43; ♂53) and 106 sixth-graders (♀52; ♂54) worked out two of the four arithmetic 

reasoning tasks. 

Data analysis: Theoretical model of rating scales 

The separate evaluation of mathematical and linguistic aspects of reasoning is fundamental to our 

model, which we assume allows differentiated exploration of the sub-skills of reasoning. We also 

wish to check whether experts in either domain (mathematics teachers and German language 

teachers) differ in their evaluations. As our tasks demanded both computing and continuation of a 

given structure (see Figure 1), competencies involving detection of a mathematical structure are 

distinguished from ability to offer reasons for its validity. Students’ writings are rated by one 

detection scale and two reasoning scales (see Table 1).  

Mathematical detections: Children were required to compute the arithmetic tasks on the sheet to 

identify the underlying structure and transfer it to two further packages of tasks. This process might 

be realised fully or only partly; sometimes, only irrelevant aspects were used to create new tasks. If 

the structure is transferred fully, the results of the given tasks are also correct, and three levels of 

this rating scale therefore seemed sufficient. This scale will not be discussed in the following 

application of the model, as it provides little information about reasoning skills.  
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Table 1: Rating-scales to evaluate written mathematical reasoning 

Mathematical aspects of reasoning: Mathematical reasoning must be based on a description of 

mathematical elements. If only some regularities are described without giving reasons, this is coded 

as level 1. If rudimentary reasoning is given in addition to a description, the work is coded as level 

2. To be rated as level 3 to 5, all relevant aspects must feature in the argumentation. If this is done 



by use of examples, the work is rated as level 3; if already partly generalized, it is rated as level 4; 

and if it is totally general or constitutes a formal proof, it is rated as level 5.  

Linguistic aspects of reasoning: Realisation of a mathematical argument by written language is also 

rated in terms of five levels, defined in terms of use of connectors and identifiable coherence of the 

text. If explicit linguistic indicators are used without any structured reasoning, the text is classified 

as level 1. If the text shows a reason-effect structure, it is coded as at least level 2. If explicit 

linguistic reference to the tasks is also included, the text is classified as level 3. A level 4 text shows 

consistent and complete argumentation. To achieve level 5, there must also be use of mathematical 

terminology for identifiable decontextualization. 

Process of coding 

Each written argumentation was assessed by at least four raters; while preservice mathematics 

teachers concentrated on the mathematical scales, German language teachers rated the linguistic 

aspects. There was 62% absolute agreement in the judgments across all tasks and scales. Deviations 

of more than one stage occurred in 8% of cases—mainly for linguistic ratings, which were reported 

as more difficult. Coding quality could be seen to increase during the course of the project. 

Although there were acceptable internal consistencies across all tasks (Cronbach’s α = .80), these 

values increase if only ZF (α = .82) and EA (α = .84) (which were used later in the project) are 

considered.  

By excluding the multiplication task for the following overall scaling, an acceptable average internal 

consistency of individual scales was achieved for the remaining tasks (α = .86 for mathematical 

detections, α = .81 for mathematical aspects of reasoning and α = .71 for the linguistic aspects of 

reasoning). 

First results 

Given the number of raters and in the interests of acceptable inter-rater-consistency (α > .70), the 

following results are based on the means of ratings. 

Overall scale 

The IRT scale for the three tasks and all texts shows a common scale across all components (see 

Table 2). As items also conform to the model (WMNSQ .85-1.09), early mathematical reasoning in 

arithmetic as measured by the three tasks and ratings on our scales can probably be described as a 

one-dimensional construct. Looking at the three scales, it becomes clear that, as expected, it is easier 

to detect and transfer mathematical structures than to give reasons for their validity (negative 

deviation from zero). Comparing the two reasoning scales, it seems easier to realise mathematical 

aspects of reasoning than to find an appropriate linguistic structure. At the same time, the most 

stable dimension is mathematical detections, with a maximum difference of .783 as compared to 

1.446 for the linguistic aspects of reasoning and 1.516 for the mathematical aspects of reasoning. 

Comparing the three tasks, it seems that complex addition is the most difficult to transfer; simple 

addition and number sequences show almost no difference. The justifications show that it was 

easiest to realise both mathematical and linguistic aspects of reasoning in the number sequence 

tasks, followed by complex addition and then simple addition. Granted these differences, all tasks 

can be characterised as suitable for capturing mathematical reasoning in arithmetic. 



 

Mathematical  

detections 

Mathematical  

aspects of reasoning 

Linguistic 

aspects of reasoning 

Item Estimate WMNSQ Estimate WMNSQ Estimate WMNSQ 

(ZF) number   

        sequences  
-1.556 1.02 -0.459 1.06 0.124 0.85 

(EA) simple  

        addition  
-1.628 1.09 1.057 1.09 1.570 0.93 

(CA) complex 

        addition  
-0.845 0.98 0.506 0.92 1.230 0.97 

Table 2: Item parameters (estimated) for IRT scaling 

 

Student performance 

Performance of the total sample is distributed normally to slightly right-shifted. On the raw scores 

level, 21.2% are one standard deviation above the mean; 9.6% are one standard deviation below; 

6.2% are two standard deviations above; and 4.2% are two standard deviations below.  

To facilitate comparison of the three groups of 

students, all scores were transposed to a scale 

with mean 100 and standard deviation 20. Figure 

2 shows almost the same mean performance 

across third-graders (M = 102, SD = 29), fourth-

graders (M = 98, SD = 19) and sixth-graders (M 

= 101, SD = 17).  

Unexpectedly, reasoning competences seem not 

to increase over time. Interpreting the differences 

in standard deviations across the three groups, it 

seems that third-graders differ more within their 

group than fourth-graders, and both differ more 

than sixth-graders, suggesting homogenization 

during schooling. However, the relatively limited 

data and lack of comparative data means that any 

general conclusions remain speculative.  

Discussion of the model by application to examples 

Five examples are presented here for deeper discussion of the model’s adequacy (see Table 2). As it 

might prove difficult to discuss the argumentations only in the translated version, the original 

sentences are included on the left. 

Mathematical aspects of reasoning: The child in example 1 has recognized that “something” is the 

same and “something” has changed. However, as he/she does not refer to any connection between 

the tasks or mention that the results are the same, this answer was coded as level 1. Examples 2 and 

4 were coded as level 2; in example 2, it is clear that the child focused on only one of the two 

Figure 2: Student performance by grade 

 



relevant aspects. It is arguable whether child 4’s argumentation is complete; as it is confined to one 

example in the task, it might be evaluated as level 3. In our opinion, the change of the summands in 

opposite directions is only implicit in “that’s always 10 less”. Answer 5 shows both connections 

clearly. Furthermore, the child is able to conclude (using an example) that the results must be the 

same, and so it is clearly to be coded as level 3. As child 3 is doing almost the same but also 

exhibits some generalization in using “always”, we coded this as level 4. 

1) es sind immer die gleichen Aufgaben nur 

umgedreht weil wenn man es rechnet merkt 

man das. 

The tasks are all the same but vice versa 

because if you calculate, you’ll realize it. 

2) Es sind immer 10 mehr und 10 weniger. It’s always 10 more and 10 less. 

3) Dass es die gleichen Ergebnisse sind, kommt 

davon, weil bei der einen Aufgabe immer 10 

weniger sind als bei der anderen. Aber bei 

der Aufgabe wo 10 weniger sind, ist die 

Zahl die noch dazu gerechnet wird 

wiederum 10 größer als die über ihr. 

The results are the same because in one task 

it’s always 10 less than in the other one. But 

in the task that has 10 less, the number to be 

added is 10 bigger than the one above. 

4) Das es immer 10 weniger sind. Zum beispiel 

18+10=28 aber wenn man 10 weg nimmt 

und in der mitte 10 dazu nimmt z.b. 

8+20=28 und dann kommt das gleiche 

ergebnis wie bei der 1. Aufgabe 

That’s always 10 less. For example, 18+10 = 

28. But if you take away 10 and put 10 in the 

middle—for example, 8+20 = 28—then 

you’ll get the same result as in the first task. 

5) mir fällt auf das immer die Ersten 2 

Ergebnisse gleich sind. Die Ersten zwei 

Ergebnisse sind gleich weil die bei zum 

beispiel a) 18+10=28 und dann haben die 

bei 8+20 einfach 18, 10 weniger 8, und bei 

10 zehn mehr, 10-10 ist 0, also bleibt das so 

I notice that the first two results are always 

the same. The first two results are the same, 

because, for example a) 18+10 = 28, and 

then at 8+20 it’s simply 18, 10 less 8, and at 

10 ten more, 10-10 is zero, so it remains the 

same. 

Table 3: Examples of written argumentation for the arithmetic sample item  

      (left: original version; right: English translation) 

Linguistic aspects of reasoning: Example 1 is coded as level 2 because as well as the comparative 

connector “because”, a link between the sentences is also given. As example 2 includes only the 

indicator “always”, without any link, it is coded as level 1. Examples 3 and 4 are coded as level 4 

because there is a clear reasoning structure as well as a link to the tasks. As the argumentation in 

example 5 is ambiguous, and the language used is imprecise, it is coded as level 3.   



Conclusion 

The model was again presented for discussion here to improve its didactical value in evaluating the 

written reasoning of fourth-graders. Although our descriptions in the coding book have continued to 

improve over time, there are still deviations of more than one level between raters. While we wish 

of course to develop the model for its psychometric interest, the levels should also help teachers to 

evaluate written reasoning.  

Although these tasks provide a good deal of information about children’s written reasoning, we 

have to be aware that because they focus on products collected in a test situation, the argumentation 

was necessarily ad hoc. As requests of this type are not part of students’ normal mathematics 

lessons, and they do not have time to restructure their texts, neither the requisite procedural 

knowledge for writing nor situated mathematical argumentation can be grasped in this way. It 

follows that competence in mathematical reasoning—even in written form—may be higher than is 

indicated by the results to date. 
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