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 This paper presents a theoretical perspective for understanding and teaching university students’ proof 

construction. It includes features of proof texts with which students may be unfamiliar. It considers 

psychological aspects of proving such as behavioral schemas, automaticity, working memory, 

consciousness, cognitive feelings, and local memory. We discuss proving actions, such as the 

construction of proof frameworks that could be automated, thereby reducing the burden on working 

memory and enabling university students to devote more resources to the truly hard parts of proofs.  
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Introduction  

We report an expanded theoretical perspective to better notice, understand, and alleviate difficulties 

of university students’ proof construction including: features of proof texts, types of proofs, 

situation-action links, behavioral schemas, automaticity, non-emotional cognitive feelings, and local 

memory. Most difficulties were observed and documented during a 10-year teaching experiment—a 

proof construction course. Our explanations call on the psychological as well as the education 

literatures. Local memory (Section 4.10) arose from observing our own proving experiences. 

Features of proof texts 

The proving process involves many more actions (both physical and mental) than appear in the final 

proof text (e.g., Mamona-Downs & Downs, 2009; Selden & Selden, 2016). Indeed, researchers have 

distinguished argumentation from proof, noting that an informal line of reasoning may “justify” a 

theorem to the prover’s satisfaction, but this often differs from the corresponding final proof text 

written to the standards of the mathematical community (e.g., Pedemonte, 2007).  

The genre of proofs 

Students sometimes find the manner in which proofs are written perplexing, as it is often at variance 

with other genres of writing. We have identified some significant features that generally occur in 

proof texts: (1) Proofs are not reports of the proving process. (2) Proofs contain little redundancy. 

(3) Symbols are (generally) introduced in one-to-one correspondence with mathematical objects. (4) 

Proofs contain only minimal explanations of inferences, that is, warrants are often left implicit. (5) 

Proofs contain only very short overviews or advance organizers. (6) Entire definitions, available 

outside the proof, are not quoted in proofs. (7) Proofs are "logically concrete" in the sense that 

quantifiers, especially universal quantifiers, are avoided where possible. (Selden & Selden, 2013a). 

Structures of proofs 

A proof can be divided into a formal-rhetorical part and a problem-centered part. The formal-

rhetorical part is the part that depends only on unpacking the logical structure of the statement of 



the theorem, associated definitions, and earlier results. In general, this part does not depend on a 

deep understanding of the concepts or genuine problem solving in the sense of Schoenfeld (1985, p. 

74). We call the remaining part of a proof the problem-centered part. It does depend on problem 

solving, intuition, heuristics, and understanding the concepts involved (Selden & Selden, 2011). 

Proof frameworks 

A feature that can help write the formal-rhetorical part of a proof is what we call a proof framework, 

of which there are several kinds, and in most cases, both a first- and a second-level framework. For 

example, given a theorem of the form “For all real numbers x, if P(x) then Q(x)”, a first-level proof 

framework would be “Let x be a real number. Suppose P(x). … Therefore, Q(x),” with the 

remainder of the proof ultimately replacing the ellipsis. A second-level framework can often be 

obtained by “unpacking” the meaning of Q(x) and putting the second-level framework between the 

lines already written for the first-level framework. Thus, the proof would “grow” from both ends 

toward the middle, instead of being written from the top down.  

Operable interpretations 

Another feature that can help write the formal-rhetorical part of a proof is converting definitions and 

previously proved results into operable interpretations. These interpretations are similar to Bills and 

Tall’s (1998) idea of operable definitions. For example, given a function f: X →Y and A ⊆ Y, one 

defines f -1(A) = {x ∊ X | f(x) ∊ A}. An operable interpretation would say, “If you have b ∊ f -1(A), 

then you can write f(b) ∊ A and vice versa.” One might think translation into an operable form 

would be unnecessary or easy especially because the symbols in {x ∊ X | f(x) ∊A} can be translated 

into words in a one-to-one way. But for some students this requires practice.  

Dimensions of potential proof construction difficulty 

The need for previous results—proof types: 0, 1, 2, 3 

We have classified theorems of increasing difficulty to refine our inquiry-based “proof course” 

notes (Selden & Selden, 2013b). Type 0 often follows immediately from definitions. Type 1 may 

need a result in the notes. Type 2 needs a lemma, not in the notes, but relatively easily to discern, 

formulate, and prove. For Type 3, at least one of discern, formulate and prove should be difficult. A 

sample Type 3 theorem is: A commutative semigroup S with no proper ideals is a group, when 

provided only the definitions of semigroup and ideal. One needs to observe that, for a∊S, aS is an 

ideal, so aS=S. This implies equations of the form ax=b are solvable for any b∊S. Using some clever 

instantiations of this equation, one can obtain an identity and inverses, and conclude S is a group.  

The need for unguided exploration 

In constructing some proofs, one may reach a point where there is no “natural” way forward. In 

what we call unguided exploration, one may need to find, or define, an object and prove something 

about it, with no idea of its usefulness, that is, one may need to “explore” the situation. For 

example, in proving the above semigroup theorem, this can happen three times. First, one notes aS 

is an ideal and thus aS=S. Then one sees equations of the form ax=b are solvable for any b∊S. Such 

exploration may require self-efficacy (Bandura, 1994), which can be encouraged by arranging early 

student successes.  



The need to unpack the logical structure of a theorem statement 

An informal statement is one that departs from the usual use of predicate and propositional calculus 

or fails to specify variables. For example, Differentiable functions are continuous, is informal 

because a universal quantifier and a variable are omitted, and because it departs from the usual “if-

then” form of the conditional. Such statements are commonplace in everyday mathematics. They are 

not ambiguous or ill-formed because widely understood, but rarely articulated, conventions permit 

their precise interpretation by mathematicians and less reliably by students. An informally stated 

theorem can be memorable and easily brought to mind, but it may be difficult to unpack and prove 

(Selden & Selden, 1995).  

Psychological aspects of the proving process 

We view proof construction as a sequence of actions that can be physical (e.g., writing a line of the 

proof or drawing a sketch) or mental (e.g., changing one’s focus from the hypothesis to the 

conclusion or trying to recall a theorem). The sequence of actions that eventually leads to a proof is 

usually considerably longer than the final proof text and is often not constructed from the top down.  

Situations and actions 

When considering proving, we use the term, action, broadly as a response to a situation in a partly 

completed proof. We include not only physical actions, but also mental actions. The latter can 

include trying to recall something or bringing up a feeling, such as a feeling of caution or of self-

efficacy (Selden & Selden, 2014). In addition, we include “meta-actions” meant to alter one’s own 

thinking, such as changing focus to another part of a developing proof construction. 

Situation-action links, automaticity, and behavioral schemas 

If, during several proof constructions in the past, similar situations have corresponded to similar 

reasoning leading to similar actions, then, just as in classical associative learning (Machamer, 2009), 

a link may be learned between them, so that another similar situation evokes the corresponding 

action in future proof constructions without the need for the earlier intermediate reasoning. Using 

such situation-action links strengthens them, and after sufficient experience/practice, they can 

become overlearned and automated. We call automated situation-action links behavioral schemas. 

Features of automaticity 

In general, it is known that a person executing an automated action tends to: (1) be unaware of any 

needed mental process; (2) be unaware of intentionally initiating the action; (3) execute the action 

while putting little load on working memory; and (4) find it difficult to stop or alter the action 

(Bargh, 1994). However, not necessarily all four of these tendencies occur in every situation. 

Forming behavioral schemas converts S2 cognition, which is slow, conscious, effortful, 

evolutionarily recent, and calls on considerable working memory, into S1 cognition, which is fast, 

unconscious, automatic, effortless, evolutionarily ancient, and places little burden on working memory 

(Stanovich & West, 2000). This conversion into S1 cognition conserves working memory resources. 



Behavioral schemas as a kind of knowledge 

We view behavioral schemas as belonging to a person’s knowledge base. They can be considered as 

partly conceptual knowledge (recognizing and interpreting the situation) and partly procedural 

knowledge (doing the action), and as related to Mason and Spence’s (1999) idea of “knowing-to-act 

in the moment”. We suggest that, in using a situation-action link, or a behavioral schema, almost 

always both the situation and the action (or its result) will be at least partly conscious. 

Here is an example of a behavioral schema that can conserve resources. One might be starting to 

prove a statement having a conclusion of the form p or q. This would be the situation. If one had 

encountered this situation a number of times before, one might readily write into the proof “Assume 

not p” and prove q or vice versa. While this action can be warranted by logic (if not p then q, is 

logically to, p or q), there would no longer be a need to bring the warrant to mind. 

The genesis and enactment of behavioral schemas 

The action produced by the enactment of a behavioral schema might be simple. It might also be 

compound, such as a procedure consisting of several smaller actions, each produced by the 

enactment of its own behavioral schema that was “triggered” by the action of the preceding schema 

in the procedure. We have developed a six-point theoretical sketch of the genesis and enactment of 

behavioral schemas (Selden, McKee, & Selden, 2010, pp. 205-206). Very briefly, here are the six 

points: 1) Within very broad contextual considerations, behavioral schemas are immediately 

available. 2) Simple behavioral schemas operate outside of consciousness. One is not aware of 

doing anything immediately prior to the resulting action – one just does it. 3) Behavioral schemas 

tend to produce immediate action, which may lead to subsequent action. One becomes conscious of 

the action resulting from a behavioral schema as it occurs or immediately after it occurs. 4) 

Behavioral schemas were once actions arising from situations through warrants that no longer need 

to be brought to mind. Behavioral schemas cannot be “chained together” and act outside of 

consciousness, as if they were one schema. 5) An action due to a behavioral schema depends on 

conscious input, at least in large part. In general, a stimulus need not become conscious to influence 

a person’s actions, but such influence is normally not precise enough for doing mathematics. 6) 

Behavioral schemas are acquired (learned) through (possibly tacit) practice. That is, to acquire a 

beneficial schema a person should actually carry out the appropriate action correctly a number of 

times – not just understand its appropriateness. Changing a detrimental behavioral schema requires 

similar, perhaps longer, practice. 

Implicit learning of behavioral schemas 

It appears that the process of learning a behavioral schema can be implicit, although the situation 

and the action are in part conscious. That is, a person can acquire a behavioral schema without being 

aware that it is happening. Indeed, such unintentional, or implicit, learning happens frequently and 

has been studied by psychologists and neuroscientists (e.g., Cleeremans, 1993). In the case of proof 

construction, we suggest that with the experience of proving a considerable number of theorems in 

which similar situations occur, an individual might implicitly acquire a number of relevant 

beneficial behavioral schemas. As a result, he or she might simply not have to think quite so deeply 

as before about certain portions of the proving process, and might, as a consequence of having more 

working memory available, take fewer “wrong turns”. 



Detrimental behavioral schema 

Many teachers can recall having a student write √(a2 + b2) = a + b, giving a counterexample, and 

then having the student make the same error somewhat later, perhaps in a different context. Rather 

than being a misconception (i.e., believing something that is false), this may well be the result of an 

implicitly learned detrimental behavioral schema. If so, the student would not have been thinking 

very deeply about this calculation when writing it. Furthermore, having previously understood the 

counterexample would also have little effect in the moment. It seems that to weaken/remove this 

particular detrimental schema, the triggering situation of the form √(a2 + b2) should occur a number 

of times when the student can be prevented from automatically writing “=  a + b” in response.  

Feelings and proof construction 

The word “feeling” is used in a variety of ways in the literature so we first indicate how we use it. 

Often feelings and emotions are used more or less interchangeably, perhaps because both appear to 

be conscious reports of unconscious mental states, and each can, but need not, engender the other. 

We will follow Damasio (2003) in separating feelings from emotions because emotions are 

expressed by observable physical characteristics, such as temperature, facial expression, blood 

pressure, pulse rate, perspiration, and so forth, while feelings are not. 

Feelings, such as a feeling of knowing, can play a considerable role in proof construction (Selden, 

McKee, & Selden, 2010). For example, one might experience a feeling of knowing that one has 

seen a theorem useful for constructing a proof, but not be able to bring it to mind at the moment. 

Such feelings of knowing can guide cognitive actions because they can influence whether one 

continues a search or aborts it (Clore, 1992, p. 151). We call such feelings non-emotional cognitive 

feelings. 

For the nature of feelings, we will follow Mangan (2001), who has drawn somewhat on William 

James (1890). Feelings seem to be summative in nature and to pervade one’s whole field of 

consciousness at any particular moment. Non-emotional cognitive feelings, different from a feeling 

of knowing, are: a feeling of familiarity and a feeling of rightness. Rightness is “the core feeling of 

positive evaluation, of coherence, of meaningfulness, of knowledge”. (Mangan, 2001). About such 

feelings, Mangan (2001) has written that “people are often unable to identify the precise 

phenomenological basis for their judgments, even though they can make these judgments with 

consistency and, often, with conviction.” Finally, we conjecture that feelings may eventually be 

found to play a larger role in proof construction than indicated above, because they provide a direct 

link between the conscious mind and the structures and possible actions of the unconscious mind. 

 The roles of affect and self-efficacy 

In order to prove harder theorems--ones with a substantial problem-centered part--students need to 

persist in their efforts, and such persistence is facilitated by a sense of self-efficacy. According to 

Bandura (1995), self-efficacy is “a person’s belief in his or her ability to succeed in a particular 

situation”. Of developing a sense of self-efficacy, Bandura (1994) stated that “The most effective 

way of developing a strong sense of self-efficacy is through mastery experiences,” that performing a 

task successfully strengthens one’s sense of self-efficacy. Also, according to Bandura, “Seeing 

people similar to oneself succeed by sustained effort raises observers’ beliefs that they too possess 

the capabilities to master comparable activities to succeed.” 



Bandura’s ideas “ring true” with our past experiences as mathematicians teaching courses by the 

Moore Method (Mahavier, 1999). Such courses are taught from a brief set of notes consisting of 

definitions, requests for examples, and statements of major results, together with lesser results 

needed to prove them, but no proofs. The students provide the proofs and present them in class. 

The development and uses of local memory 

Some may think that proof construction consists mainly of conscious thought (i.e., as 

communication with oneself or others using speech, vision, etc., or their inner versions, as 

suggested by Sfard, 2010). However, we take a somewhat different view. In constructing a proof of 

some complexity, often much more relevant information can be activated than can be held in one’s 

short-term working memory (ST-WM). When such information is lost from consciousness, it may 

not return to its original state, but rather to a state of partial activation. Nonetheless, conscious 

thought can sometimes influence the activation of related information in long-term memory (LTM), 

that is, help bring something to mind. Ericsson and Kintsch (1995) stated that “reliance on acquired 

memory skills will enable individuals [experts] to use LTM as an efficient extension of ST-WM in 

particular domains and activities after sufficient practice and training.” We speculate that 

mathematicians can do this when conducting their own research. We have observed of ourselves, 

when attempting an intricate complex proof, that a considerable amount of information is generated, 

but cannot all be kept in mind; however, it is easily recalled. We refer to such partially activated 

information as local memory -- it is available as long as we are seriously engaged with the proof. It 

seems analogous to Ericsson and Kintsch’s (1995) idea of long term working memory (LT-WM). 

Teaching and future research considerations 

We believe this perspective on proving, using situation-action links and behavioral schemas, 

together with information from psychology, is mostly new to the field. Thus, it is likely to lead to 

additional insights and teaching interventions, which brings up the question of priorities. Which 

proving actions of the kinds discussed above are most useful for mid-level university mathematics 

students to automate when they are learning how to construct proofs? Since such students are often 

asked to prove relatively easy theorems—ones that follow directly from definitions and recently 

proved theorems—it would seem that noting the kinds of structures that occur most often might be a 

place to start. Indeed, since every proof can be constructed using a proof framework, we consider 

constructing proof frameworks as a reasonable place to start. Furthermore, we have observed that 

some students do not write a second-level proof framework, perhaps because they have difficulty 

unpacking the meaning of the conclusion. This may be because a relevant definition needs to be 

converted into an operable interpretation in order to construct the second-level proof framework. 

Thus, helping students interpret formal mathematical definitions so that these become operable 

might be another place to start, even though students should eventually learn to make such operable 

interpretations themselves. 

Finally, this theoretical perspective is likely to allow one to see parts of the teaching of proof 

construction in unusual ways and lead to new questions. For example, unguided exploration can be 

helpful for some proofs, but a student could easily feel the time required for exploration might 

reduce (timed) test grades. A feeling of self-efficacy might overcome that, but how are feelings 

“taught”? Early successes with proofs can help, but arranging for these might require detailed 



planning of the course before it starts. Such planning could perhaps be aided by following a 

textbook, but most advanced mathematics textbooks prove the most important and useful theorems 

themselves, thereby taking away from students the opportunity to experience the proving of even 

parts of such theorems. 

References 

Bandura, A. (1994). Self-efficacy. In V. S. Ramachaudran (Ed.), Encyclopedia of human behavior, 

(Vol. 4, pp. 71−81). New York: Academic Press. 

Bandura, A. (1995). Self-efficacy in changing societies. Cambridge: Cambridge University Press. 

Bargh, J. A. (1994). The four horsemen of automaticity: Awareness, intention, efficiency and 

control in social cognition. In R. Wyer & T. Srull (Eds.), Handbook of social cognition (2nd ed., 

Vol. 1, pp. 1−40). Mahwah, NJ: Lawrence Erlbaum Associates. 

Bills, L., & Tall, D. (1998). Operable definitions in advanced mathematics: The case of the least 

upper bound. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd Conference of the 

International Group for the Psychology of Mathematics Education, (Vol. 2, pp. 104–111). 

Stellenbosch, South Africa: University of Stellenbosch. 

Cleeremans, A. (1993). Mechanisms of implicit learning: Connectionist models of sequence 

processing. Cambridge, MA: MIT Press. 

Clore, G. L. (1992). Cognitive phenomenology: Feelings and the construction of judgment. In L. L. 

Martin & A. Tesser (Eds.), The construction of social judgments (pp. 133–162). Hillsdale, NJ: 

Lawrence Erlbaum Associates. 

Damasio, W. (2003). Looking for Spinoza: Joy, sorrow, and the feeling brain. Orlando, FL: 

Harcourt. 

Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 

211–245. 

James, W. (1890). The principles of psychology. New York: Holt. 

Machamer, P. (2009). Learning, neuroscience, and the return to behaviorism. In J. Bickle (Ed.), The 

Oxford handbook of philosophy and neurosciences (pp. 166–176). Oxford: Oxford University 

Press. 

Mahavier, W. S. (1999). What is the Moore Method? PRIMUS, 9(4), 339–354. 

Mangan, B. (2001). Sensation’s ghost: The non-sensory ‘fringe’ of consciousness. Psyche, 7(18). 

Retrieved September 29, 2009, from http://psyche.cs.monash.edu.au/v7/psyche-7-18-

mangan.html. 

Mamona-Downs, J., & Downs, M. (2009). Proof status from a perspective of articulation. In F.-L. 

Lin, F.-J. Hsieh, G. Hanna, & M. De Villers (Eds.), Proceedings of the ICMI 19 Study 

Conference: Proof and proving in mathematics education, (Vol. 2, pp. 94–99). Taipei, Taiwan: 

The Department of Mathematics, National Taiwan Normal University.  

Mason, J., & Spence, M. (1999). Beyond mere knowledge of mathematics: The importance of 

knowing-to-act in the moment. Educational Studies in Mathematics, 28(1-3), 135–161. 



Pedemonte, B. (2007). How can the relationship between argumentation and proof be analyzed? 

Educational Studies in Mathematics, 66(1), 23–41. 

Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press. 

Selden, A., McKee, K., & Selden, J. (2010). Affect, behavioural schemas and the proving process. 

International Journal of Mathematical Education in Science and Technology, 41(2), 199–215. 

Selden, A., & Selden, J. (2013a). The genre of proof. In M. N. Fried & T. Dreyfus (Eds.), 

Mathematics and mathematics education: Searching for common ground, Advances in 

Mathematics Education series (pp. 248–251). New York: Springer. 

Selden, A., & Selden, J. (2013b). Proof and problem solving at university level. The Mathematics 

Enthusiast, Special Issue: International Perspectives on Problem Solving Research in 

Mathematics Education (Manuel Santos-Trigo & Luis Moreno-Armella, Guest Editors), 

10(1&2), 303–334. 

Selden, A., & Selden, J. (2014). The roles of behavioral schemas, persistence, and self-efficacy in 

proof construction. In B. Ubuz, C. Hasar, & M. A. Mariotti (Eds.). Proceedings of the Eighth 

Congress of the European Society for Research in Mathematics Education [CERME8] (pp. 246–

255). Ankara, Turkey: Middle East Technical University. 

Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational 

Studies in Mathematics, 29(2), 123–151.  

Selden, J., & Selden, A. (2011). The role of procedural knowledge in mathematical reasoning. In B. 

Ubuz (Ed.), Proceedings of the 35th Conference of the International Group for the Psychology of 

Mathematics Education, (Vol. 4, pp. 124–152). Ankara, Turkey: Middle East Technical 

University. 

Selden, J., & Selden, A. (2016). A perspective for university students’ proof construction. In T. 

Fukawa-Connelly, N. Infante, K. Keene, & M. Zandieh (Eds.), Proceedings of the 18th Annual 

Conference on Research in Mathematics Education (pp. 45–59). Available online. 

Sfard, A. (2010). Thinking as communicating: Human development, the growth of discourses, and 

mathematizing. Cambridge, UK: Cambridge University Press. 

Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the 

rationality debate? Behavioral and Brain Sciences, 23(5), 645–665. 




