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Looking for the roots of an argument: Textbook, teacher, and student 

influence on arguments in a traditional Czech classroom 

Jana Žalská1  

1Charles University, Faculty of Education, Prague, Czech Republic; zalska@hotmail.com 

As part of a larger investigation aimed at getting a deeper insight into how particular teacher beliefs 

influence the role of the teacher, the students, and textbook materials in arguments that take place in 

one classroom, this study shows specific teacher beliefs that determine the role of each of the two 

other factors: the students' contributions and the textbook influence. This paper presents findings 

observed in a case study of a teacher who holds more traditional beliefs about teaching and learning 

of mathematics, in a 7th grade classroom. Namely, I present cases of conflict in preferences for 

particular warrant forms between: a) the teacher and the textbook authors b) the teacher's own 

beliefs, and c) the teacher and the students. I then interpret these in terms of the teacher's particular 

beliefs and show how they affect the theoretical model.  
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Introduction 

Whether providing a mathematical proof of a theorem, explaining a formula, or a solution to a word 

problem, arguments are an inseparable part of mathematics teaching and learning. A lot has been said 

about argumentation practices and norms that guide those practices in various contexts. Literature has 

focused on the role of argumentation in textbooks, uncovering differences among textbooks in terms 

of arguments presented (Stacey & Vincent, 2009; Thompson, Sharon, & Johnson, 2012; Zalska, 

2012), opportunities for arguments (Stylianides, 2009), and in providing teachers with support in 

argument-based tasks (Stylianides, 2008). The differences become even more complex when 

researchers describe mathematics teachers' beliefs concerning argumentation in their classrooms 

(e.g., Staples & Bartlo, 2012), the acceptability of certain types of arguments (Biza, Nardi, & 

Zachariades, 2009), and students' perceptions and preferences of arguments (e.g.,  Levenson, 2013; 

Levenson et al., 2006).  

But what specific arguments actually take place when the teacher's beliefs meet the textbook authors' 

and the students' in a classroom? What is the role of the textbook and what role do students' 

contributions play in the class conducted by a teacher with a specific set of beliefs?  

Theoretical framework 

According to Remillard's (2005) review, the textbook curriculum's role is important but the levels of 

participation in the intended curriculum vary greatly. The general model holds that a teacher selects 

tasks from the text, designs their implementation, supplements it with other tasks, and, finally, 

improvises based on the student contributions (Remillard, 2005). Sherin and Drake (2006) further 

find that teachers approach these activities in different ways and link these to teachers' experiences 

as mathematical learners. Schoenfeld (2010) argues that the actions an individual takes can be 

explained by their enacted beliefs, goals, and resources (including knowledge).   

The individual students' mathematical knowledge and their perceptions of the expectations put on 

arguments they produce, as well as their own preferences and beliefs, can differ from their teacher's 



expectations (Planas & Gorgorió, 2004; Levenson et al., 2006). The students' contributions, requests 

or choices of arguments are the result of their own knowledge, beliefs, and goals; they have their 

weight in the negotiation of socio-mathematical norms regarding mathematical arguments and 

explanations. 

Based on the above literature, I adapt Remillard's (2005) model to propose a framework for studying 

the potential influence of the three main participants on the arguments, or the "enacted" arguments. 

Namely, the model theorizes that: 1) the curriculum may: provide examples of, requests and 

opportunities for arguments (tasks) to be enacted; it may also provide guidance for the teacher, based 

on the textbook authors set of beliefs, resources and goals; 2) the teacher may, based on their own set 

of beliefs, resources and goals: evaluate (select), design and provide the examples, requests and 

opportunities for particular arguments and may need to make immediate decisions about arguments 

prompted by students, and 3) the students' actual requests for arguments, for clarifications of 

arguments, as well as their own arguments or claims, which in turn are given by their own beliefs, 

goals and resources.  

In my research, I focus on the similarities and differences between the interactions of the three 

participants in this model, in classrooms with teachers with different general beliefs about 

mathematics and its teaching and learning. Further, I investigate what specific teacher beliefs underlie 

the particular interactions when it comes to specific types of arguments or warrants. In this paper, I 

present some findings in the case of a teacher who holds a set of beliefs that tend to be associated 

with traditional views.  

Participants and data 

Karen is an experienced mathematics teacher who was identified, within a broader investigation (see 

Zalska & Tumova, 2012), as a teacher with strong utilitarian beliefs about mathematics education. 

Two extensive interviews as well as short post-lesson interviews were conducted with Karen to infer 

her professional beliefs as well as her own intentions and interpretations of events in the lesson. She 

had been working with her class for almost two years prior to the data collection, to ensure that social 

norms in the classroom have been established. The number of students ranged from 15 to 18, with 

about an equal distribution of male and female students. The class use a main-stream textbook series, 

one of the most popular ones in the country. Karen was among the teachers who approved the choice 

of the textbook in her school, and her students each have a copy of it.  

The data consists of interview and lesson audio-recordings, fully transcribed, and photographs from 

series of five lessons that Karen taught on the topic of percent. The analyzed textbook text included 

the unit on percent and the corresponding text in the teacher's book where authors provide teachers 

with commentaries for particular parts of the text and the tasks. 

Data analysis  

In order to be able to establish differences between mathematical arguments, I will adopt the 

following terms from the widely used Toulmin's model in the following way: a (mathematical) 

argument denotes a sequence of statements (including visual statements) that is provided with the 

intention to show that a mathematical claim (specific or general) is true (or not). In this study, 

arguments include explaining of an answer to a problem, as well as the working out of the answer to 

a problem. A warrant is one such statement that directly supports the claim. In the context of a 



classroom, it is a statement that does not require further explanation, i.e. is accepted as true. I will 

consider two arguments to be different if they contain different forms of warrants (e.g. 

representations) or a different sequence of warrants.  

The textbook data was analyzed in accordance with the theoretical framework: the arguments that 

were provided were analyzed in terms of warrant forms and sequences. The tasks were analyzed as 

requests and opportunities for arguments (towards a claim that contains a problem's solution). There 

were no specific requests for arguments.  

The transcript of the lessons and the text was first analyzed for episodes of argumentation to establish 

specific context for argumentation and social norms in the classroom. Next, the identified episodes 

of argumentation were broken down to individual arguments and warrants and warrant forms were 

identified in order to investigate where differences between arguments were present. The kind of 

student and teacher participation on the argument was also taken into account, in order to separate 

the cases of arguments provided by the teacher (i.e. when Karen elicited an argument step by step and 

students only provided the final part of a requested warrant) from those suggested by students 

themselves.  

The arguments observed were then compared to the examples of arguments in the textbook, 

comparing warrants and warrant forms. Further, the relevant part of teacher's manual was analyzed 

for commentaries and any additional rationale given a particular argument in order to get insight into 

the text author's beliefs. Karen's own comments about particular arguments and warrant forms, in 

class and during interviews, were also analyzed to gain insight into the beliefs behind her decisions.   

In this paper, I present the instances when an argument chosen by Karen did not correspond with a) 

the textbook, b) her own belief about mathematics, and c) her students' contributions. I selected them 

to illustrate the choices made by Karen, to pinpoint her specific beliefs, linking them with the students' 

and textbook influence.  

Efficiency and insight: Karen and the textbook 

The arguments that Karen exemplifies in her classes when she teaches her students to solve problems 

involving percent differ from those in the textbook in two aspects. The textbook introduces the 

rectangular representation (see Figure 1) as part of problem-solving, a form of warrant(s); the authors 

sketch out the known and unknown quantities.  

 

Figure 1: A rectangular representation of a 15% percent discount 

Similarly, the textbook introduces one method for solving word problems with percent. The authors 

base the arguments on the concept of direct proportion, in particular, on the fact that the percent part 

changes in the same ratio as the percent. This idea is then used as a warrant in the method of the ratio-

based rule of three (see Figure 2), which is explained and practiced in an earlier chapter in the book, 

the unit on ratios.  



 

Figure 2: The rule-of-three method 

In contrast, Karen does not use the rectangular representation at any moment in her classes. The 

arguments that she does show students are given names ("one percent", "with a decimal", and "ratio") 

and referred to as "methods". The majority of warrants for methods are based on the multiplicative 

relationship of percent part and the base, and on the definition of one percent, as corresponding to 

one hundredth, either as a fraction or decimal.  

In the authors view, in the teacher's book, the geometrical representation helps students to get a better 

insight into the problem. Similarly, the authors assign the use of the ratio warrant the prominent role 

of helping students to get an insight into the problem.  

This belief about a need to understand the problem through the use of a particular method or warrant 

seems to collide with Karen's beliefs about what is important for her students. Rather, she values 

efficiency and straightforwardness in problem-solving. Hence, she introduces neither the rectangular 

representation nor the rule-of-three arguments when solving word problems in her teaching. In fact, 

she discourages her students from using it (albeit acknowledging its existence and its effectiveness):  

Teacher:  Someone mentioned a third method, in case you study from your textbook, [I don't 

recommend it, only if someone gets] really lost and needs a crutch […] but in the 

time you write it all out (referring to the method), you might as well have finished 

other three problems [using the other methods].  

Choosing not to justify – Karen's beliefs in conflict 

The below example of a dialogue gives us a sense of how Karen's beliefs about the need to provide 

mathematical arguments for methods and general mathematical statements manifest themselves when 

the class discuss the percent – decimal relationship.  

Teacher:  So, if we have 18% (writing on the board), how do we get a decimal?  

Students: Eighteen divided by 100. 

Teacher: We divide by 100. Why? Because 18% is 18 hundredths (writing 18% = 18/100 = 

0.18 on the board), to divide by a 100 means 18 hundredths.  



Karen expressed her belief in having the responsibility to provide students with justification of 

mathematical statements. This responsibility is felt even in the one moment in the observed lessons 

when Karen acknowledges that she doesn't know how to provide a mathematical argument for the 

procedure, and states that students just "have to remember". The problem Karen posed to class is: 

"From a class of 22 students, six participated in a math competition. What percent of the class was 

that?" Karen goes on to exemplify two methods for solving the argument.  

Teacher:  The first one is the 1% method. Again, I think that this method is more convenient 

and easier… ok, what's the base in this problem? 

Students:  [suggest ideas] 

Teacher:  Yes, base or 100% is 22 pupils. There are 22 pupils [She writes a record of the 

solution on the board, writes "1% =".]. Now, we'll calculate, Ada?   

Ada:   1% will be 0.22. [Karen writes this on the board.] 

Teacher:  Now you just have to remember that the percent, […] I don't know how to help you 

remember … you need to remember. You can calculate the percent this way […] 

we divide the percent part we want to express in percent by one percent.   

The argument that she is reluctant to share with her students is in fact the ratio argument used in the 

rule-of-three method: firstly, that the percent part : percent ratio is a constant, and for all non-zero 

real numbers a, b, c, and d, if a : b = c : d then a = c · b / d. Clearly, this presents a conflict of beliefs 

for her, and she chooses not to present the argument, because this, in her mind, is too complicated 

and not possible to grasp with their current knowledge, especially for some students.    

In the textbook, authors let the reader observe the first warrant through a series of examples, and then 

simply refer to the rule-of-three as practice established in the previous unit (on proportion). However, 

in the teacher's book they also admit that the equivalence of the two equations is, as yet in the 

curriculum, inaccessible to students and has not been established with students at this particular stage.  

The stronger and the weaker: students' and Karen's preferences 

The following passages will show examples when different arguments are provided by students. The 

exchanges take place at the beginning of the second lesson, students were converting a series of 

fractions into percent. They had just converted 4/5 by expanding to tenths and then hundredths. Now 

Sam tries to convert 3/8 in the same way:  

Sam: I'll multiply the fraction by twelve and a half. 

Teacher: Why twelve and a half?  

Sam:  Because if I multiplied 8 times 125 [unintelligible] 

Teacher:  So by 125, right?  

Sam: But that will be a thousand, so …  

Teacher: Doesn't matter. But (writing on the board) 8 times 125 is 1000. What is 3 times 

125? 

Student:  375. 



Sam is trying to expand the fraction to hundredths (realizing that expanding by 125 and simplifying 

to hundredths is the same as expanding by 12.5) but the teacher feels that this is not straightforward 

and accessible to all pupils, so she takes over and breaks the argument down.  After a few more simple 

problems, where students don't need to calculate, they are asked to convert the fraction 9/40. At first, 

a student (Will) suggests to reduce by two and expand by five. Then he adds:  

Will: Or multiply (sic) by two and a half. 

Teacher: Excellent, two and a half. Do you [all] agree? 

Kim:  And couldn't you expand to thousands? 

Teacher:  Also. And if you were to do that, by what number would you expand? 

Kim:  So, that would be times … (thinking) … two hundr …  

Teacher:  Twenty five. Either, as Will said, we expand by two and a half, which is not very 

common, (she turns to the board and writes) if we want hundredths in the 

denominator we expand by two and a half (she writes this on the board), do you 

agree? Forty times two and a half is one hundred, right? And the numerator … 18 

and 4 and a half […] 22 and a half. So what percent is 9/40?  

Students:  Twenty two and a half.  

Teacher:  Or, as Kim said, expand by 25 (she writes on the board), the numerator (sic) is 1000, 

do you agree? And the denominator (sic) is …  

Students:  225. 

Teacher:  And we got the same thing, 22.5 %.  

At this point, Karen allows a student (Will) to carry out an argument that is (like Sam's) based on 

expanding by decimals, but this time the student breaks it down into two warrants first, and Karen 

praises it. Will feels encouraged to suggest expanding by a decimal. Finally, another student supplies 

an argument based on the expansion to thousands (which had been shown by Karen before, see the 

transcript above). Both methods are now endorsed by the teacher, publicly, as valid arguments, and 

demonstrated on the board. When Karen summarizes these approaches, however, she qualifies Will's 

solution as "not very common".  

Conclusions 

The above examples illustrate how the enacted arguments were influenced by the three participants, 

the teacher, the textbook, and the students. Even though Karen was the most influential provider of 

mathematical arguments, arguments that were made in the classroom included students' own 

warrants, and became accepted as correct and valid by the teacher. At the same time, even as Karen 

acted as the decision-maker when it comes to choosing what representations are useful in warrants, 

i.e. efficient, for her class, what was her choice not to include the textbook's geometrical 

representation warrants based on? Clearly, the textbook does not give it a utilitarian value, i.e. it does 

not provide opportunities for its direct use, and makes the representation void of value, outside the 

possible provision of better insight, as the authors claim, but Karen did not find the claim convincing 

enough. In that sense, her decision was very much determined by two factors: a) by her pedagogical 



content belief about the efficiency of a certain type of arguments and b) by the problems 

(opportunities for arguments rather than argument forms themselves) presented by the textbook 

authors in the unit. The second factor, in turn, is given weight by Karen's utilitarian view of the goals 

of mathematics education, i.e. being able to correctly solve problems provided by the curriculum.   

The case of the rule-of-three method is perhaps even more interesting, especially as the ratio warrant 

that underlies it is also at the heart of a method Karen presents when she shows the procedure for 

finding the percent in a word problem, but decides that the justification is not straightforward enough 

for her class, and backs the procedure up with her own authority. What made her do that? When asked 

about the need to mathematically justify mathematical statements, Karen conceded that not all 

arguments are accessible to students (or not all of them). As I showed above, the textbook authors 

also use a warrant that they acknowledge is out of the students' immediate reach. Again, we observe 

similar tendencies, and at the same time it appears that in this case Karen's perception of her students' 

abilities accounted for her decision not to justify.   

In her classes, Karen also allowed students to provide arguments that she had not intended to take 

place, and accepted them as long as they were mathematically correct. At the same time, she 

manipulated such publicly expressed arguments according to her perception of accessibility to all 

students and made frequent evaluative comments about the methods and arguments, labeling them as 

efficient, common practice, convenient, easier, or universal. This qualitative evaluation springs from 

her beliefs about her students' mathematical ability and what it means to be good in mathematics: in 

her view, some students are better at understanding the problem, and innately capable of finding and 

choosing the most efficient, original, or convenient method, an attribute she also gives 

mathematicians in general. For the others, she needs to show simply which method to use, and they 

need to learn it by solving many similar problems, i.e. for some students drilling is the only way to 

succeeding in mathematics. The episodes seemed to confirm that this belief corresponds with the 

students' contributions: the weaker students would rely on arguments promoted by Karen, while 

students who feel confident in their own warrants, could keep using their own. 

In terms of the teacher's influence, it appears that the teacher is independently imposing her own 

beliefs that are very local, e.g. the choice of method, but the choice of representation is also clearly 

determined by the curriculum (and its tasks) and beliefs that are much more global. Further, the 

teacher's choice of not justifying mathematically can be caused by her own belief but also reinforced 

by similar examples in the textbook. Finally, the students' arguments are evaluated by the teacher in 

terms of their mathematical correctness, their efficiency, and their accessibility to all other students 

(as perceived by the teacher). They are then often re-formulated by the teacher, which potentially 

reinforces the dependency of the weaker students on the teacher's choice of argument.      
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