
HAL Id: hal-01865622
https://hal.science/hal-01865622v1

Submitted on 31 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On a senary quartic form
Jianya Liu, Jie Wu, Yongqiang Zhao

To cite this version:
Jianya Liu, Jie Wu, Yongqiang Zhao. On a senary quartic form. Periodica Mathematica Hungarica,
2020, 80 (2), pp.237-248. �10.1007/s10998-019-00308-y�. �hal-01865622�

https://hal.science/hal-01865622v1
https://hal.archives-ouvertes.fr


ON A SENARY QUARTIC FORM

JIANYA LIU, JIE WU & YONGQIANG ZHAO

Abstract. We count rational points of bounded height on the non-normal senary
quartic hypersurface x4 = (y21 + · · ·+ y24)z2 in the spirit of Manin’s conjecture.

1. Introduction

Recently, we [7] proved Manin’s conjecture for singular cubic hypersurfaces

(1.1) x3 = (y21 + · · ·+ y2n)z,

where n is a positive multiple of 4. In this short note, we show that our method used
in [7] also works for higher degree forms like

(1.2) xm = (y21 + · · ·+ y2n)zm−2,

where n > 4 and m > 4. To illustrate, we establish an asymptotic formula for the
number of rational points of bounded height on the quartic hypersurface

(1.3) Q : x4 = (y21 + y22 + y23 + y24)z2,

in the spirit of Manin’s conjecture.
It is easy to see that the subvariety x = z = 0 of Q already contains � B4 rational

points with |x| 6 B, |z| 6 B, and |yj| 6 B with 1 6 j 6 4, which is predominant and
is much larger than the heuristic prediction that is of order B2. One therefore counts
rational points on the complement subset U = Qr{x = z = 0}. Let H be the height
function

H(x : y1 : · · · : y4 : z) = max
{
|x|,
√
y21 + · · ·+ y24, |z|

}
for (x, y1, . . . , y4, z) = 1. Let B be a large integer, and define

NU(B) :=
∣∣{(x : y1 : · · · : y4 : z) ∈ U : H(x : y1 : · · · : y4 : z) 6 B

}∣∣.
This counts rational points in U whose height is bounded by B, and the aim of this
note is obtain an asymptotic formula for it. To this end, we need to understand in
advance a similar quantity

N∗U(B) :=
∑

16|x|6B, 16y21+···+y246B2, |z|6B
x4=(y21+···+y24)z2

1.

One sees, in N∗U(B), that the co-prime condition (x, y1, . . . , y4, z) = 1 in NU(B) is
relaxed. Our main result is as follows.
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Theorem 1.1. As B →∞, we have

NU(B) = C4B
3 logB

{
1 +O

(
1

4
√

logB

)}
,(1.4)

N∗U(B) = C∗4B
3 logB

{
1 +O

(
1

4
√

logB

)}
(1.5)

with C4 := 192
5ζ(3)

C4 and C∗4 := 192
5

C4, where C4 is defined as in (2.6) below, and ζ is the

Riemann zeta-function.

We note that the exponent of B in the main terms of the above theorem is 3 instead
of 2 as predicted by the usual heuristic. This phenomenon may be explained by the
fact that the hypersurface Q is not normal.

It is easy to check that Q has an obvious quadric bundle structure given by

(1.6) Q[a:b] :

{
b2x2 = a2(y21 + y22 + y23 + y24),
ax− by = 0,

and {Q[a:b]} covers Q as long as [a : b] goes thorough P1(Q). From this, it is possible
to interpret Theorem 1.1 in the framework of the generalized Manin’s conjecture by
Batyrev and Tschinkel [1], as was done in the work of de la Bretèche, Browning, and
Salberger [3]. However, we will not pursue such an explanation here. The only sole
purpose of this short note is to show that our method used in [7] also works for higher
degree forms Q.

Finally, we remark that using the method in our joint paper [4] with de la Bretèche,
one can get power-saving error terms in Theorem 1.1, which we will not pursue here.

2. Outline of the proof of Theorem 1.1

Denote by r4(d) the number representations of a positive integer d as the sum of four
squares : d = y21 + · · ·+ y24 with (y1, . . . , y4) ∈ Z4. It is well-known (cf. [5, (3.9)]) that

(2.1) r4(d) = 8r∗4(d) with r∗4(d) :=
∑

`|d, ` 6≡0(mod 4)

`.

Let 1�(n) be the characteristic function of squares. In view of the above, we can write

(2.2) N∗U(B) = 32

{∑
n6B

∑
d|n4

d6B2

r∗4(d)1�

(
n4

d

)
−
∑
n6B

∑
d|n4

d<n4/B2

r∗4(d)1�

(
n4

d

)}
.

Hence to prove (1.5) in Theorem 1.1, it is sufficient to establish asymptotic formulae
for the following two quantities

(2.3) S(x, y) :=
∑
n6x

∑
d|n4

d6y

r∗4(d)1�

(
n4

d

)
, T (B) :=

∑
n6B

∑
d|n4

d<n4/B2

r∗4(d)1�

(
n4

d

)
.

For S(x, y), our result is as follows.
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Theorem 2.1. Let ε > 0 be arbitrary. We have

(2.4) S(x, y) = xy
(
4P (ψ) + 3

2
P ′(ψ)

)
+Oε

(
x

5
4y

7
8 + x

1
2
+εy

9
8

)
uniformly for x3 > y > x > 10, where ψ := log x − 1

4
log y and P (t) is a quadratic

polynomial, defined as in (4.18) below. In particular, for any fixed η ∈ (0, 1] we have

(2.5) S(x, y) = 4C4xy

(
log x− 1

4
log y

){
1 +O

(
1

(log x)η

)}
uniformly for x > 10 and x2(log x)−8(1−η) 6 y 6 x3, where

(2.6) C4 :=
23

150
ζ(5)

∏
p

(
1 +

1

p
+

2

p2
+

2

p3
+

1

p4
+

1

p5

)(
1− 1

p

)
is the leading coefficient of P (t).

Now we turn to analyze T (B) which is more difficult, since the range of its second
summation depends on the variable n of the first summation. Thus Theorem 2.1 does
not apply to T (B) directly. In §5 we show that Theorem 2.1 together with delicate
analysis is sufficient to establish the following result.

Theorem 2.2. As B →∞, we have

(2.7) T (B) =
2

5
C4B

3 logB

{
1 +O

(
1

4
√

logB

)}
,

where C4 is as in (2.6) above.

As in [2, 7], we shall firstly establish an asymptotic formula for the quantity

(2.8) M(X, Y ) :=

∫ Y

1

∫ X

1

S(x, y) dx dy.

by applying the method of complex integration. Then we derive the asymptotic formula
(2.4) for S(x, y) in Theorem 2.1 by the operator D defined below. Let Ek be the set of
all functions of k variables. Define the operator D : E2 → E4 by

(2.9) (Df)(X,H;Y, J) := f(H, J)− f(H,Y )− f(X, J) + f(X, Y ).

The next lemma summarises all properties of D needed later.

Lemma 2.1. (i) Let f ∈ E2 be a function of class C3. Then we have

(Df)(X,H;Y, J) = (J − Y )(H −X)

{
∂2f

∂x∂y
(X, Y ) +O

(
R(X,H;Y, J)

)}
for X 6 H and Y 6 J , where

R(X,H;Y, J) := (H −X) max
X6x6H
Y 6y6J

∣∣∣∣ ∂3f∂x2∂y
(x, y)

∣∣∣∣+ (J − Y ) max
X6x6H
Y 6y6J

∣∣∣∣ ∂3f∂x∂y2
(x, y)

∣∣∣∣.
(ii) Let S(x, y) and M(X, Y ) be defined as in (2.3) and (2.8). Then

(DM)(X −H,X;Y − J, Y ) 6 HJS(X, Y ) 6 (DM)(X,X +H;Y, Y + J)

for H 6 X and J 6 Y .
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The next elementary estimate ([2, Lemma 6(i)] or [7, Lemma 4.3]) will also be used
several times in the paper.

Lemma 2.2. Let 1 6 H 6 X and |σ| 6 10. Then for any β ∈ [0, 1], we have

(2.10)
∣∣(X +H)s −Xs

∣∣� Xσ((|τ |+ 1)H/X)β,

where the implied constant is absolute.

3. Dirichlet series associated with S(x, y)

In view of the definition of S(x, y) in (2.3), we define the double Dirichlet series

(3.1) F(s, w) :=
∑
n>1

n−s
∑
d|n4

d−wr∗4(d)1�

(
n4

d

)
for <e s > 5 and <ew > 0. The next lemma states that the function F(s, w) enjoys a
nice factorization formula.

Lemma 3.1. For min06j62<e (s+ 2jw − 2j) > 1, we have

(3.2) F(s, w) =
∏

06j62

ζ(s+ 2jw − 2j)G(s, w),

where G(s, w) is an Euler product, given by (3.8), (3.10) and (3.11) below. Further, for
any ε > 0 and for min06j62<e (s+ 2jw− 2j) > 1

2
+ ε, G(s, w) converges absolutely and

(3.3) G(s, w)�ε 1.

Proof. Since the functions r∗4(d) and n−s
∑

d|n4 d−wr∗4(d)1�(n4/d) are multiplicative, for
<e s > 5 and <ew > 0 we can write the Euler product

F(s, w) =
∏
p

∑
ν>0

p−νs
∑

06µ62ν

p−2µwr∗4(p
2µ) =

∏
p

Fp(s, w).

In the above computations, speacial attention should be paid to the effect of the func-
tion 1�. The next is to simplify each Fp(s, w). To this end, we recall (2.1) so that

(3.4) r∗4(p
µ) =

1− pµ+1

1− p
(p > 2), r∗4(2

µ) = 3

for all integers µ > 1. On the other hand, a simple formal calculation shows

(3.5)

∑
ν>0

xν
∑

06µ62ν

y2µ
1− z2µ+1

1− z
=

1

1− z
∑
ν>0

xν
(

1− y4ν+2

1− y2
− z1− (yz)4ν+2

1− y2z2

)

=
1 + xy2(1 + z + z2) + xy4(z + z2 + z3) + x2y6z3

(1− x)(1− xy4)(1− xy4z4)
and

(3.6)

1 +
∑
ν>1

xν
(

1 + a
∑

16µ62ν

y2µ
)

= 1 +
∑
ν>1

xν
(

1 + a
y2 − y4ν+2

1− y2

)

=
1 + axy2 + (a− 1)xy4

(1− x)(1− xy4)
·
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When p > 2, in view of (3.4), we can apply (3.5) with (x, y, z) = (p−s, p−w, p) to write

(3.7) Fp(s, w) =
∏

06j62

(
1− p−(s+2jw−2j))−1Gp(s, w),

where

(3.8)

Gp(s, w)

:=

(
1 +

p2 + p+ 1

ps+2w
+
p3 + p2 + p

ps+4w
+

p3

p2s+6w

)(
1− p2

ps+2w

)(
1− 1

ps+4w

)−1
.

While for p = 2, the formula (3.6) with (x, y, z, a) = (2−s, 2−w, 2, 3) gives

(3.9) F2(s, w) =
∏

06j62

(
1− 2−(s+2jw−2j))−1G2(s, w),

where

(3.10) G2(s, w) :=
1 + 3 · 2−s−2w + 2−s−4w+1

1− 2−s−4w

∏
16j62

(1− 2−(s+2jw−2j)).

Combining (3.7)–(3.10), we get (3.2) with

(3.11) G(s, w) :=
∏
p

Gp(s, w) (<e s > 5, <ew > 0).

It is easy to verify that for min06j62(σ + 2ju − 2j) > 1
2

+ ε, we have |Gp(s, w)| =
1 + O(p−1−ε). This shows that under the same condition, the Euler product G(s, w)
converges absolutely and (3.3) holds. By analytic continuation, (3.2) is also true in the
same domain. This completes the proof. �

4. Proof of Theorem 2.1

In the sequel, we suppose

(4.1) 10 6 X 6 Y 6 X3, (XY )3 6 4T 6 U 6 X12, H 6 X, J 6 Y,

and for brevity we fix the following notation:

(4.2) s := σ + iτ, w := u+ iv, L := logX, κ := 1 + L−1, λ := 1 + 4L−1.

The following proposition is an immediate consequence of Lemmas 4.2-4.5 below.

Proposition 4.1. Under the previous notation, we have

M(X, Y ) = X2Y 2P (logX − 1
4

log Y ) +R0(X, Y ) +R1(X, Y ) +R2(X, Y ) +O(1)

uniformly for (X, Y, T, U,H, J) satisfying (4.1), where R0, R1, R2 and P (t) are defined
as in (4.8), (4.13), (4.16) and (4.18) below, respectively.

The proof is divided into several subsections.
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4.1. Application of Perron’s formula. The first step is to apply Perron’s formula
twice to transform M(X, Y ) into a form that is ready for future treatment.

Lemma 4.2. Under the previous notation, we have

(4.3) M(X, Y ) = M(X, Y ;T, U) +O(1)

uniformly for (X, Y, T, U) satisfying (4.1), where the implied constant is absolute and

(4.4) M(X, Y ;T, U) :=
1

(2πi)2

∫ κ+iT

κ−iT

(∫ λ+iU

λ−iU

F(s, w)Y w+1

w(w + 1)
dw

)
Xs+1

s(s+ 1)
ds.

The proof is the same as that of [7, Lemma 6.2].

4.2. Application of Cauchy’s theorem. In this subsection, we shall apply Cauchy’s
theorem to evaluate the integral over w in M(X, Y ;T, U). We write

(4.5) wj = wj(s) := (2j + 1− s)/(2j) (1 6 j 6 2)

and

(4.6) F∗1(s) := ζ(s)ζ(2− s)G(s, w1(s)), F∗2(s) := ζ(s)ζ( s+1
2

)G(s, w2(s)).

Lemma 4.3. Under the previous notation, for any ε > 0 we have

(4.7) M(X, Y ;T, U) = I1 + I2 +R0(X, Y ) +Oε(1)

uniformly for (X, Y, T, U) satisfying (4.1), where

I1 :=
4

2πi

∫ κ+iT

κ−iT

F∗1(s)X
s+1Y (5−s)/2

(3− s)(5− s)s(s+ 1)
ds,

I2 :=
16

2πi

∫ κ+iT

κ−iT

F∗2(s)X
s+1Y (9−s)/4

(5− s)(9− s)s(s+ 1)
ds,

and

(4.8) R0(X, Y ) :=
1

(2πi)2

∫ κ+iT

κ−iT

(∫ 11
12

+ε+iU

11
12

+ε−iU

F(s, w)Y w+1

w(w + 1)
dw

)
Xs+1

s(s+ 1)
ds.

Furthermore we have

(4.9)
(DR0)(X,X +H;Y, Y + J)

(DR0)(X −H,X;Y − J, Y )

}
�ε X

7
6
+εY

11
12

+εH
5
6J +X1+εY

13
12

+εHJ
5
6

uniformly for (X, Y, T, U,H, J) satisfying (4.1).

Proof. We want to calculate the integral

1

2πi

∫ λ+iU

λ−iU

F(s, w)Y w+1

w(w + 1)
dw

for any individual s = σ + iτ with σ = κ and |τ | 6 T . We move the line of integration
<ew = λ to <ew = 3

4
+ ε. By Lemma 3.1, for σ = κ and |τ | 6 T , the points

wj(s) (j = 1, 2), given by (4.5), are the simple poles of the integrand in the rectangle
3
4

+ ε 6 u 6 λ and |v| 6 U . The residues of F(s,w)
w(w+1)

Y w+1 at the poles wj(s) are

(4.10)
4F∗1(s)Y

(5−s)/2

(3− s)(5− s)
,

16F∗2(s)Y
(9−s)/4

(5− s)(9− s)
,
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respectively, where F∗j (s)(j = 1, 2) are defined as in (4.6).
It is well-known that (cf. e.g. [8, page 146, Theorem II.3.7])

(4.11) ζ(s)� |τ |max{(1−σ)/3,0} log |τ | (σ > 1
2
, |τ | > 2)

where c > 0 is a constant. When σ = κ and 11
12

+ ε 6 u 6 λ, it is easily checked that

min
06j62

(σ + 2ju− 2j) > 1 + 4(11
12

+ ε− 1) = 3
4

+ 3ε > 1
2

+ ε.

It follows from (4.11) and (3.3) that F(s, w)�ε U
2(1−u)L4 for σ = κ, |τ | 6 T, 11

12
+ ε 6

u 6 λ and v = ±U . This implies that∫ λ±iU

11
12

+ε±iU

F(s, w)Y w+1

w(w + 1)
dw �ε Y L4

∫ λ

11
12

(
Y

U2

)u
du�ε

Y
23
12L4

U
11
6

�ε 1.

Cauchy’s theorem then gives

1

2πi

∫ λ+iU

λ−iU

F(s, w)Y w+1

w(w + 1)
dw =

4F∗1(s)Y
(5−s)/2

(3− s)(5− s)
+

16F∗2(s)Y
(9−s)/4

(5− s)(9− s)

+
1

2πi

∫ 11
12

+ε+iU

11
12

+ε−iU

F(s, w)Y w+1

w(w + 1)
dw +Oε(1).

Inserting the last formula into (4.4), we obtain (4.7).
Finally we prove (4.9). For σ = κ, |τ | 6 T , u = 11

12
+ ε and |v| 6 U , we apply (4.11)

and (3.3) as before, to get

F(s, w)� (|τ |+ |v|+ 1)
1
6L4 �

{
(|τ |+ 1)

1
6 + (|v|+ 1)

1
6

}
L4.

Also, for σ, τ, u, v as above, we have

rs,w(X,H;Y, J) :=
(
(X +H)s+1 −Xs+1

)(
(Y + J)w+1 − Y w+1

)
� X2((|τ |+ 1)H/X))

5
6
−εY

23
12

+ε((|v|+ 1)J/Y )1−ε

� X
7
6
+εY

11
12

+εH
5
6J(|τ |+ 1)

5
6
−ε(|v|+ 1)1−ε

by (2.10) of Lemma 2.2 with β = 5
6
− ε and with β = 1− ε. Similarly,

rs,w(X,H;Y, J) =
(
(X +H)s+1 −Xs+1

)(
(Y + J)w+1 − Y w+1

)
� X2((|τ |+ 1)H/X))1−εY

23
12

+ε((|v|+ 1)J/Y )
5
6
−ε

� X1+εY
13
12

+εHJ
5
6 (|τ |+ 1)1−ε(|v|+ 1)

5
6
−ε

by Lemma 2.2 with β = 1− ε and with β = 5
6
− ε. These and Lemma 2.1(i) imply

(DR0)(X,X +H;Y, Y + J) =

∫ κ+iT

κ−iT

∫ 11
12

+ε+iU

11
12

+ε−iU

F(s, w)

(2πi)2
rs,w(X,H;Y, J)

s(s+ 1)w(w + 1)
dw ds

�ε X
7
6
+εY

11
12

+εH
5
6J +X1+εY

13
12

+εHJ
5
6 .

This completes the proof. �
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4.3. Evaluation of I1.

Lemma 4.4. Under the previous notation, we have

(4.12) I1 = R1(X, Y ) +O(1)

uniformly for (X, Y, T ) satisfying (4.1), where

(4.13) R1(X, Y ) :=
4

2πi

∫ 5
4
+iT

5
4
−iT

F∗1(s)X
s+1Y (5−s)/2

(3− s)(5− s)s(s+ 1)
ds.

Further we have

(4.14)
(DR1)(X,X +H;Y, Y + J)

(DR1)(X −H,X;Y − J, Y )

}
� X

5
4Y

7
8HJ

uniformly for (X, Y, T,H, J) satisfying (4.1).

Proof. We shall prove (4.12) by moving the contour <e s = κ to <e s = 5
4
. When

κ 6 σ 6 5
4
, it is easy to check that

min
06j62

(σ + 2jw1(σ)− 2j) = min
06j62

(j + (1− j)σ) > 3
4
·

By Lemma 3.1 the integrand is holomorphic in the rectangle κ 6 σ 6 5
4

and |τ | 6 T ;

and we can apply (4.11) and (3.3) to get F∗1(s) � T (σ−1)/3L2 in this rectangle, which
implies that∫ 5

4
±iT

κ±iT

F∗1(s)X
s+1Y (5−s)/2

(3− s)(5− s)s(s+ 1)
ds� X2Y 2L2

T 4

∫ 5
4

κ

(
XT 1/3

Y 1/2

)σ−1
dσ

� X2Y 2L2

T 4
+
X

9
4Y

15
8 L2

T
47
12

� 1.

This proves (4.12).

To establish (4.14), we note that F∗1(s) � (|τ | + 1)
1
4 for σ = 5

4
and |τ | 6 T . By

(2.10) of Lemma 2.2 with β = 1,

rs,w1(s)(X,H;Y, J) :=
(
(X +H)s+1 −Xs+1

)(
(Y + J)(5−s)/2 − Y (5−s)/2)

� X
5
4Y

7
8HJ(|τ |+ 1)2.

Combining these with Lemma 2.1(ii), we deduce that

(DR1)(X,X +H;Y, Y + J) =
4

2πi

∫ 5
4
+iT

5
4
−iT

F∗1(s)rs,w1(s)(X,H;Y, J)

(3− s)(5− s)s(s+ 1)
ds

� X
5
4Y

7
8HJ,

from which the desired result follows. �



ON A SENARY QUARTIC FORM 9

4.4. Evaluation of I2.

Lemma 4.5. Under the previous notation, for any ε > 0 we have

(4.15) I2 = X2Y 2P (logX − 1
4

log Y ) +R2(X, Y ) +Oε(1)

uniformly for (X, Y, T ) satisfying (4.1), where P (t) is defined as in (4.18) below and

(4.16) R2(X, Y ) :=
16

2πi

∫ 1
2
+ε+iT

1
2
+ε−iT

F∗2(s)X
s+1Y (9−s)/4

(5− s)(9− s)s(s+ 1)
ds.

Further we have

(4.17)
(DR2)(X,X +H;Y, Y + J)

(DR2)(X −H,X;Y − J, Y )

}
�ε X

1
2
+εY

9
8HJ

uniformly for (X, Y, T,H, J) satisfying (4.1).

Proof. We move the line of integration <e s = κ to <e s = 1
2

+ ε. Obviously s = 1 is

the unique pole of order 2 of the integrand in the rectangle 1
2

+ ε 6 σ 6 κ and |τ | 6 T ,

and the residue is X2Y 2P (logX − 1
4

log Y ) with

(4.18) P (t) :=

(
16(s− 1)2F∗2(s)e

t(s−1)

(5− s)(9− s)s(s+ 1)

)′∣∣∣∣
s=1

.

Here P (t) is a linear polynomial with the leading coefficient C4 given by (2.6) above.
When 1

2
+ ε 6 σ 6 κ, we check that

min
06j62

(σ + 2jw2(σ)− 2j) = 1
2

min
06j62

(j + (2− j)σ) > 1
2

+ ε.

Hence when 1
2

+ ε 6 σ 6 κ and |τ | 6 T , (4.11) and (3.3) yields F∗2(s)� T (1−σ)/2L3. It
follows that∫ κ±iT

1
2
+ε±iT

F∗2(s)X
s+1Y (9−s)/4

(5− s)(9− s)s(s+ 1)
ds� X2Y 2L3

T 4

∫ κ

1
2

(
Y T 2

X4

)(1−σ)/4

ds

� X2Y 2L3

T 4
+
X

3
2Y

9
4L3

T
7
2

� 1.

These establish (4.15). To prove (4.17), we note that for σ = 1
2

+ ε and |τ | 6 T , we

have F∗2(s)�ε (|τ |+ 1)1/3 thanks to (4.11) and (3.3), and

rs,w2(s)(X,H;Y, J) :=
(
(X +H)s+1 −Xs+1

)(
(Y + J)(9−s)/4 − Y (9−s)/4)

�ε X
1
2
+εY

9
8HJ(|τ |+ 1)2

by Lemma 2.2 with β = 1. Combining these with Lemma 2.1(i), we deduce that

(DR2)(X,X +H;Y, Y + J) =
16

2πi

∫ 1
2
+ε+iT

1
2
+ε−iT

F∗2(s)rs,w2(s)(X,H;Y, J)

(5− s)(9− s)s(s+ 1)
ds

�ε X
1
2
+εY

9
8HJ.

This proves the lemma. �
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4.5. Completion of proof of Theorem 2.1. Denote by M(X, Y ) the main term in
the asymptotic formula of M(x, y) in Proposition 4.1, that is M(X, Y ) := X2Y 2P (ψ)
and ψ := log(X/Y 1/4). Then Lemma 2.1(i) gives

(DM)(X,X +H;Y, Y + J) =
{
XY

(
4P (ψ) + 3

2
P ′(ψ)

)
+O(XJL2 + Y HL2)

}
HJ.

Since D is a linear operator, this together with Proposition 4.1 implies that

(DM)(X,X +H;Y, Y + J) =
{
XY

(
4P (ψ) + 3

2
P ′(ψ)

)
+Oε(R)

}
HJ

with

R := X
7
6
+εY

11
12H−

1
6 +X1+εY

13
12J−

1
6 +X

5
4Y

7
8 +X

1
2
+εY

9
8 +XJL2 + Y HL2.

The same formula also holds for (DM)(X −H,X;Y − J, Y ). Now Lemma 2.1(ii) with

H = XY −
1
14 and J = Y

13
14 allows us to deduce

S(X, Y ) = XY
(
4P (ψ) + 3

2
P ′(ψ)

)
+Oε

(
X

5
4Y

7
8 +X

1
2
+εY

9
8

)
,

where we have used the following facts

(X
5
4Y

7
8 )

5−24ε
6 (X

1
2
+εY

9
8 )

1+24ε
6 = X

27
24
− 4(17−24ε)ε

24 Y
11
12

+ε > X1+εY
11
12

+ε,

(X
5
4Y

7
8 )

11
14 (X

1
2
+εY

9
8 )

3
14 = X

61+12ε
56 Y

13
14 > X1+εY

13
14 .

This finally completes the proof of Theorem 2.1.

5. Proof of Theorems 2.2 and 1.1

Proof of Theorems 2.2. The idea is to apply Theorems 2.1 in a delicate way. Trivially
we have r∗4(d) 6 dτ(d) (here τ(n) is the divisor function), and therefore

(5.1) S(x, y) 6 y
∑
n6x

∑
d|n4

τ(d)� xy(log x)14

for all x > 2 and y > 2, where the implied constant is absolute.
Let δ := 1 − (logB)−1 and let k0 be a positive integer such that δk0 < (logB)−3 6

δk0−1. Note that k0 � (logB) log logB. In view of (5.1), we can write

(5.2)

T (B) =
∑

16k6k0

∑
δkB<n6δk−1B

∑
d|n4

d<n4/B2

r∗4(d)1�

(
n4

d

)
+O(B3)

6
∑

16k6k0

(
S(δk−1B, δ4(k−1)B2)− S(δkB, δ4(k−1)B2)

)
+O(B3).

Similarly (even easily),

(5.3) T (B) >
∑

16k6k0

(
S(δk−1B, δ4kB2)− S(δkB, δ4kB2)

)
.

By (2.5) of Theorem 2.1 with η = 1
4
, a simple computation shows that

T (B) 6 2(1− δ)1− δ5k0
1− δ5

· C4B
3 logB

{
1 +O

( 1
4
√

logB

)}
+O(B3),(5.4)

T (B) > 2(δ−1 − 1)
δ5 − δ5(k0+1)

1− δ5
· C4B

3 logB

{
1 +O

(
1

4
√

logB

)}
.(5.5)
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By noticing that

(1− δ)1− δ5k0
1− δ5

=
1− δ5k0

1 + δ + δ2 + δ3
=

1

5
+O

(
1

4
√

logB

)
,

(δ−1 − 1)
δ5 − δ5(k0+1)

1− δ5
=

δ4 − δ5k0+4

1 + δ + δ2 + δ3 + δ4
=

1

5
+O

(
1

4
√

logB

)
.

The desired asymptotic formula (2.7) follows from (5.4) and (5.5). �

Proof of Theorem 1.1. Applying (2.4) of Theorem 2.1 with (x, y) = (B,B2), we have

(5.6)
∑
n6B

∑
d|n4

d6B2

r∗4(d)1�

(
n4

d

)
= 2C4B

3 logB

{
1 +O

(
1

4
√

logB

)}
.

Inserting this and (2.7) into (2.2), we obtain (1.5) with C∗4 = 192
5

C4.
Finally (1.4) follows from (1.5) via the inversion formula of Möbius. �
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singulière, Astérisque 251 (1998), 51–77.
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