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Abstract: We present in this paper a comprehensive framework for the simulation of multifluid1

flows based on the implicit level-set representation of interfaces and on an efficient solving strategy of2

the Navier-Stokes equations. The mathematical framework relies on a modular coupling approach3

between the level-set advection and the fluid equations. The space discretization is performed with4

possibly high-order stable finite elements while the time discretization features implicit Backward5

Differentation Formulae of arbitrary order. This framework has been implemented within the Feel++6

library, and features seamless distributed parallelism with fast assembly procedures for the algebraic7

systems and efficient preconditioning strategies for their resolution. We also present simulation results8

for a three-dimensional multifluid benchmark, and highlight the importance of using high-order finite9

elements for the level-set discretization for problems involving the geometry of the interfaces, such as10

the curvature or its derivatives.11

Keywords: multifluid flows; level-set method; high-order finite elements; Navier-Stokes equations;12

finite-element toolbox; parallel computing13

1. Introduction14

Understanding and predicting the dynamics of systems consisting of multiple immiscible fluids in15

contact is a great challenge for numerical computations, as they involve bulk coupling of the fluids –16

related to the long-range features of the Navier-Stokes equations – and possible strong surface effects.17

Such systems are ubiquitous in the physics world, ranging from simple drops immersed in or18

impacting another fluid, to fluid or gaz mixing in climate or engineering simulations. A lot of efforts19

has been thus recently put in the development of efficient numerical methods to solve these strongly20

coupled fluid problems while tracking the interfaces to accurately account for the surface effects.21

One of the main difficulties of these multifluid simulations is to keep track of the interfaces between22

the fluids as they evolve in time, as well as to characterize accurately their geometry. Two main23

approaches are used to account for these interface changes. In the first one, the interface is tracked24

explicitely with a moving mesh. This large class of “front-tracking” methods – which embrace for25

example the Arbitrary Lagrangian-Eulerian (ALE [1]), the Fat Boundary Method (FBM, [2]) – feature a26

very accurate description of the contact surface, but at high computational costs. The second approach27

uses only a fixed mesh, and represents the interface implicitely with some additional field. This is the28

approach used by e.g. the Volume Of Fluid (VOF [3]), the Phase-Field method ([4,5]) and the Level-Set29
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method (LS [6]). These methods in general provide easier coupling formulations and smaller algebraic30

problems but with less accuracy regarding the description of the interface.31

In this work, we present a level-set based framework for the simulation of generic multifluid32

flows. It features efficient solving strategies for the fluid – incompressible Navier-Stokes –33

equations and the level-set advection. This framework is implemented using the open-source34

Feel++ library – Finite Element Embedded Library in C++ – [7–9] within the FluidMechanics,35

AdvectionDiffusionReaction, LevelSet and MultiFluid toolboxes.36

These toolboxes expose user-friendly interfaces and allow versatile parametrization of the problems37

and solving strategies while managing the parallel assembly of the finite-element algebraic systems and38

their resolution seamlessly.39

We also present a 3D benchmark for our toolboxes. This numerical experiment is an extension of40

the classic rise of a drop in a viscous fluid in 2D. We use two different setups and compare our results41

with other approaches to validate our framework.42

We stress that all the implementations and testcases presented below are freely available [10,11]43

and can be used for a large class of fluid-structure interaction and suspension problems.44

2. Simulating multifluid flows45

We consider a system consisiting of several non-miscible fluids with different physical properties46

occupying some domain Ω. We denote Ωi ⊂ Ω (Ω =
⋃
i Ωi) the domain occupied by the ith fluid. We47

want to study the dynamics of such a system, which means both solving for the fluids motion and48

tracking each fluid subdomain as it evolves in time.49

2.1. Fluid equations50

In this work, we assume that all the considered fluids are incompressible, and thus obey the
incompressible Navier-Stokes equations

ρ [∂t~u+ (~u · ∇)~u]−∇ · σ(~u, p) = ~fb + ~fs (1)
∇ · ~u = 0 (2)

where ~u and p are respectively the velocity and pressure fields, ρ is the fluid density, σ is the fluid stress
tensor and ~fb, ~fs are the bulk and surface forces respectively. We consider in the following Newtonian
fluids, so that

σ(~u, p) = −p I + 2µD(~u) (3)

with µ the fluid viscosity and D(~u) = 1
2
(
∇~u+∇~uT

)
is the fluid strain tensor.51

Note that these equations are satisfied for each fluid independently. In a multifluid system, it must
be supplemented with boundary conditions for the velocity and pressure at both the domain boundary
and at the interface between two fluids. In this work, we assume that there is no slip at the interfaces,
so that the velocity and pressure fields are continuous at all the interfaces. The boundary conditions at
the domain boundaries can be Dirichlet or Neumann:

~u = ~gD on ∂ΩD

σ(~u, p) ~n = ~gN on ∂ΩN

(4)

2.2. Interface tracking: the level-set method52

Let us consider two disjoint – not necessarily connected – fluid domains Ωi, Ωj ⊂ Ω such that53

∂Ωi ∩ ∂Ωj 6= ∅, and denote Γij the interface between them. In order to efficiently track this interface54

Γij(t) as it evolves in time, we use the level set method [6,12,13] which provides a natural way to compute55

geometrical properties of the interface and to handle possible topological changes in a completely56

Eulerian framework.57
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It features a Lipschitz continuous scalar function φ (the level set function) defined on the whole58

domain. This function is arbitrarily chosen to be positive in Ωi, negative in Ωj and zero on Γij , so59

that the interface is implicitely represented by the 0-level of φ.60

As Ωi and Ωj evolve following the Navier-Stokes eq. (2) dynamics, Γij gets transported by the
velocity field u (uniquely defined at the interface by assumption and construction) and therefore obeys
the advection equation:

∂φ

∂t
+ u · ∇φ = 0. (5)

We choose as level set function the signed distance to the interface

φ(x) =


dist(x, Γij) x ∈ Ωi,

0 x ∈ Γij ,
−dist(x, Γij) x ∈ Ωj ,

(6)

as the intrinsic property |∇φ| = 1 eases the numerical resolution of the advection equation and the61

regularity of the distance function allows us to use φ as a support for the regularized interface Dirac62

and Heaviside functions (see below).63

However, the advection equation (5) does not preserve the property |∇φ| = 1 and it is necessary64

to reset φ(t) to a distance function without moving the interface, [14–16]. To redistantiate φ(t) and65

enforce |∇φ(t)| = 1, we can either solve a Hamilton-Jacobi equation, which “transports” the isolines66

of φ to their proper positions, or use the fast marching method, which resets the values of φ to the67

distance to the interface from one degree of freedom to the next, starting from the interface. We provide68

further details about our numerical implementation below (c.f. section 3.5.3).69

As mentioned above, the signed distance to the interface φ allows us to easily define the regularized
interface-related Dirac and Heaviside functions which can be used to compute integrals on the interface
[17,18] or on a fluid subdomain

δε(φ) =


0, φ ≤ −ε,

1
2ε

[
1 + cos

(
πφ
ε

)]
, −ε ≤ φ ≤ ε,

0, φ ≥ ε.
(7)

Hε(φ) =


0, φ ≤ −ε,

1
2

[
1 + φ

ε +
sin(πφε )

π

]
, −ε ≤ φ ≤ ε,

1, φ ≥ ε.
(8)

where ε is a parameter controlling the “numerical thickness” of the interface. We note in these definitions70

that enforcing |∇φ(t)| = 1 is critical to ensure that the interfacial support of δε and Hε is kept constant71

and larger than the mesh size. Typically, we choose ε ∼ 1.5 h, with h the average mesh size of the72

elements crossed by the 0 iso-value of φ.73

The Heaviside function is used to define physical quantities which have different values on each74

subdomain. For example, we define the density and viscosity of two-fluid flows as ρ = ρj +(ρi−ρj)Hε(φ)75

and µ = µj + (µi − µj)Hε(φ). The delta function allows to define quantities on the interface, in76

particular in the variational formulations, where we replace integrals over the interface Γ with integrals77

over the entire domain Ω using the smoothed delta function: if φ is a signed distance function (i.e.78

|∇φ| = 1), we have
∫

Γ 1 '
∫

Ω δε(φ).79

In the following, we consider without loss of generality only the two-fluid case, with only one level80

set function tracking the interface between fluids 1 and 2.81
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2.3. Finite element formulation82

We use finite elements methods to solve eqs. (2) and (5), and work with a continous Galerkin83

formulation. As mentioned above, this can be done by smoothing the discontinuities of the fluid84

parameters (e.g. the fluid density and viscosity) at the interfaces using the regularized Dirac and85

Heaviside functions eqs. (7) and (8). The continuity of the velocity and pressure fields is then imposed86

strongly in the formulation, and we can work with function spaces defined on the whole domain Ω.87

We introduce the usual L2(Ω) function space of square integrable functions, H1(Ω) function space88

of square integrable functions as well as their gradients and the vectorial Sobolev spaces H1(Ω) =89 {
~v ∈

[
H1(Ω)

]d}, H1
gD

(Ω) =
{
~v ∈ H1(Ω),~v|∂ΩD = ~gD

}
and H1

0D (Ω) =
{
~v ∈ H1(Ω),~v|∂ΩD = ~0

}
.90

The variational formulation of the two-fluid coupling problem eqs. (2) and (5) then reads91

Find (~u, p,φ) ∈ H1
gD

(Ω)×L2(Ω)×H1(Ω) s.t. ∀(~v, q,ψ) ∈ H1
0D (Ω)×L2(Ω)×H1(Ω),∫

Ω
ρ(φ) [∂t~u+ (~u · ∇)~u] · ~v+

∫
Ω
σ(~u, p;µ(φ)) : ∇~v =

∫
Ω

~fb · ~v+
∫

Ω

~fs(φ) · ~v+
∫
∂ΩN

~gN · ~v (9)∫
Ω
(∇ · ~u) q = 0 (10)∫

Ω
(∂tφ+ ~u · ∇φ) ψ = 0 (11)

where we have integrated by parts the stress tensor term and used the Neumann boundary condition in92

eq. (4). The surface force term
∫

Ω
~fs ·~v is here generically written as a bulk integral, the surfacic aspect93

being hidden in the force expression ~fs(φ) which in general contains some Dirac distribution δ(φ). In94

our case, the surface forces actually account for the interfacial forces between the two fluids (i.e. the95

surface tension), so that the surface integral can be evaluated as a bulk integral using the regularized96

level set delta function.97

3. Numerical setup98

3.1. The Feel++ toolboxes99

The numerical implementation is performed using the Feel++ — finite element C++ library —100

[7–9]. Feel++ allows to use a very wide range of Galerkin methods and advanced numerical methods such101

as domain decomposition methods including mortar and three fields methods, fictitious domain methods102

or certified reduced basis. The ingredients include a very expressive embedded language, seamless103

interpolation, mesh adaption and seamless parallelization. It has been used in various contexts including104

the development and/or numerical verification of (new) mathematical methods or the development of105

large multi-physics applications [19–21]. The range of users span from mechanical engineers in industry,106

physicists in complex fluids, computer scientists in biomedical applications to applied mathematicians107

thanks to the shared common mathematical embedded language hiding linear algebra and computer108

science complexities.109

Feel++ provides a mathematical kernel for solving partial differential equation using arbitrary110

order Galerkin methods (fem, sem, cg, dg, hdg, crb) in 1d, 2d, 3d and manifolds using simplices111

and hypercubes meshes [7–9,22] :112

i. a polynomial library allowing for a wide range polynomial expansions including Hdiv and Hcurl113

elements,114

ii. a lightweight interface to Boost.UBlas, Eigen3 and PETSc/SLEPc as well as a scalable115

in-house solution strategy116

iii. a language for Galerkin methods starting with fundamental concepts such as function spaces,117

(bi)linear forms, operators, functionals and integrals,118
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iv. a framework that allows user codes to scale seamlessly from single core computation to thousands119

of cores and enables hybrid computing.120

Feel++ provides also an environment for modeling and solving various kinds of scientific and121

engineering problems. The framework, implemented in several Feel++ toolboxes, provides a language122

to describe these models. Based on JSON and INI(we use the .cfg extension) file formats, it is possible123

to configure and simulate a large class of models by defining the relevant physical quantities – such as124

the material properties, the boundary conditions, the sources, the couplings and the solvers. In this125

paper, we have used the MultiFluid toolbox which allows to setup all the necessary ingredients for a126

multifluid flow simulation. This toolbox, which mainly manages the coupling between the fluids present127

in the system, is built on others toolboxes inclined toward monophysics problem resolution, namely the128

FluidMechanics, LevelSet and AdvectionDiffusionReaction toolboxes.129

3.2. Fluid-interface coupling130

The coupling between the fluid and the level-set in eqs. (9) to (11) is highly non-linear and solving131

these equations monolithically would require specific non-linear solvers adapted to each particular132

coupling force ~fs(φ). In order to ease the implementation and development processes, and to benefit133

from efficient solving strategies, we choose an explicit – non-monolithic – coupling in our numerical134

approach.135

At each time step, the fluid equations are first solved with the physical parameters and the surface136

forces computed using the last-step level-set function. We then use the obtained fluid velocity to advect137

the level-set and get the new interface position. We can then apply some redistantiation procedure138

depending on the chosen strategy before proceeding to the next iteration.139

The fluid-level-set coupling algorithm then writes

for n = 0 to Nt do
update δn+1 ← δ(φn), Hn+1 ← H(φn);
update ρn+1 ← ρ(φn), µn+1 ← µ(φn);
update ~fn+1

s ← f(φn);
~un+1, pn+1 ← solve fluid;
φn+1 ← solve level-set;
possibly redistantiate φn+1;

end

140

Note that the successive resolution of the fluid and level-set equations can also be iterated within141

one time step, until a fix point of the system of equations is reached. In practice however, for reasonably142

small time steps, the fix-point solution is already obtained after the first iteration.143

3.3. Space/Time discretization144

We introduce Th ≡ {Ke, 1 ≤ e ≤ Nelt} a compatible tessellation of the domain Ω, and denote145

Ωh =
⋃Nelt
e=1 Ke the discrete – unstructured – mesh associated with average mesh size h. We work146

within the continuous Galerkin variational formulation framework, and use Lagrange finite elements to147

spatially discretize and solve the equations governing the evolutions of the fluid and the level-set. We148

thus introduce Pkh ≡ Pkh (Ωh) the discrete (h-dependent) finite element space spanned by Lagrange149

polynomials of order k.150

Then, from the time interval [0,T ], we select M + 1 equidistributed times: {ti = i δt, 0 ≤ i ≤M},
where δt is the time step. In the Navier-Stokes and level-set advection equations, we apply a fully
implicit time discretization by using a backward differentiation formula of arbitrary order N named
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BDFN . Let φ be a function and denote φ(i) the function at time ti. The time derivative of this function
is then discretized as

∂tφ =
1
δt

[
α0φ

(n+1) −
N∑
i=1

αiφ
(n+1−i)

]
+O(δtN+1) (12)

where the αi are BDFN coefficients. In the numerical benchmarks reported below, we used BDF1 and
BDF2, which write respectively

BDF1 : ∂tφ ≈
1
δt

[
φ(n+1) − φ(n)

]
(13)

BDF2 : ∂tφ ≈
1
δt

[
3
2φ

(n+1) − 2φ(n) + 1
2φ

(n−1)
]

(14)

3.4. Solving the incompressible Navier-Stokes equations151

The spatial discretization of the Navier-Stokes equations is handled via a inf-sup stable finite152

element (Taylor-Hood) [Pk+1
h ]d-Pkh , see e.g. [23]. We define Vh and Qh the discrete function spaces153

where we search the velocity and the pressure solutions respectively. There are given by :154

• Vh =
{
~v ∈ H1

gD
∩ [Pk+1

h ]d
}

155

• Qh =
{
q ∈ Pkh

}
156

We need also to introduce the test function space on the velocity withWh =
{
~v ∈ H1

0D (Ωh) ∩ [Pk+1
h ]d

}
.157

Hereafter we consider the case k = 1. The discrete weak formulation associated to (9)-(10) reads:158

Find (~u
(n+1)
h , ph) ∈ Vh ×Qh such that ∀(~vh, ph) ∈Wh ×Qh:∫

Ωh
ρ(φ)

[α0
δt
~u
(n+1)
h +

(
~u
(n+1)
h · ∇

)
~u
(n+1)
h

]
· ~vh +

∫
Ωh

σ(~un+1
h , pn+1

h ;µ(φ)) : ∇~vh +
∫

Ωh

[
∇ · ~u(n+1)

h

]
qh

=

∫
Ωh

N∑
i=1

αi
δt
~u(n+1−k) · ~vh +

∫
Ωh

~fb · ~vh +
∫

Ωh

~fs(φ) · ~vh +
∫
∂ΩN

~gN · ~v (15)

The non-linear problem represented by (15) is solved monolithically with Newton’s method. From
an algebraic point of view, at each non-linear iteration, the following classical saddle-point system is
inverted (

A B

C 0

)(
U

P

)
=

(
F

0

)
(16)

where A corresponds to the velocity block and B, C to the velocity/pressure coupling. This system is159

solved with gmres using the simple preconditioner, see [23].160

In the benchmark presented at next section, we have only Dirichlet boundary condition type161

defined on the whole boundary of the domain (i.e. ∂ΩN ≡ ∅). In this case, the problem represented by162

the weak formulation (15) is not well-posed, the pressure is defined up to a constant. For solve this163

issue, our strategy consist to164

1. add the information to the Krylov subspace method (gmres) that the system has a null space,165

i.e. the pressure constant.166

2. rescale the pressure solution after each iteration of the Newton algorithm by imposing a mean167

pressure equal to 0.168

Another solution available in FluidMechanics toolbox is to add a Lagrange multiplier in order to169

impose the mean of the pressure. The disadvantages of this approach are to increase the stencil of the170

matrix and to complexify its block structure. This implies a reduction in the efficiency of the solver.171
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3.5. The level-set framework172

3.5.1. Level-set advection173

As mentioned above, the transport of the level-set by the fluid is accounted by the advection174

equation eq. (11) in variational form. This equation is discretized in time using a backward differentiation175

formula (BDFN ) and space discretization is performed using the Pkh discrete spaces introduced above.176

However, as is well-known for central differencing schemes in hyperbolic partial differential equations,177

the naive Galerkin discretization of eq. (11) on Pkh can lead to spurious oscillatory instabilities. To178

circumvent this well-known problem, we stabilize the discrete advection equation. Four different179

stabilization methods are supported in our framework: the Streamline Upwind Petrov-Galerkin (SUPG,180

[24]), the Galerkin Least Squares (GLS, [25,26]), the Sub-Grid Scale (SGS, [27]) and the Continuous181

Interior Penalty (CIP, [28]) methods. Detailed description of these methods can be found in [29–31]. It182

should be noted that the CIP stabilization is much more costly than the three others, as it densifies the183

corresponding algebraic system, and requires larger stencils and thus larger connectivity tables.184

In the benchmarks, we used the GLS stabilization method, introducing the bilinear form

SGLS =
∑
K∈Th

∫
K
τ L[ψ]

(
L[φ]−

N∑
i=1

αiφ
(n+1−i)

)
(17)

with L[φ] = α0
δt φ + ~u · ∇φ, τ a coefficient chosen to adjust the stabilization to the local

advection strength. The choice for the parameter τ was extensively discussed, in particular for
the case of advection-diffusion-reaction (c.f. [27,32,33]), and we provide several of them in our
AdvectionDiffusionReaction toolbox. However, for the specific case of pure transient advection,
which can also be seen as an advection-reaction equation after time discretization, we use the simple
expression

τ =
1

2|~u|
h + 2α0

δt

(18)

In summary, the discrete FEM we solve for the level-set at time t+ δt given the values at previous185

times is186

Find φ(n+1) ∈ Pkh s.t. ∀ψ ∈ Pkh ,

∫
Ωh

[α0
δt
φ(n+1) + ~u(n+1) · ∇φ(n+1)

]
ψ+ S

(
φ(n+1), ψ; ~u(n+1), {φ(i)}i≤n

)
=

∫
Ωh

N∑
i=1

αi
δt
φ(n+1−i) ψ

(19)
where S

(
φ(n+1), ψ; ~u(n+1), {φ(i)}i≤n

)
is the SUPG, GLS, SGS or CIP stabilization bilinear, which187

vanishes as h→ 0 and in the three first cases involves the previous time steps to ensure consistency of188

the stabilized equation with its continuous version.189

The assembly is performed in parallel with automatic choice of the appropriate quadrature order190

and seamless inter-process communication management.191

The linear system is then solved using the PETSc library [34] with a GMRES solver preconditioned192

with an additive Schwartz Method (GASM [35]).193
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3.5.2. Geometrical quantities194

The level-set description of interfaces is very convenient when it comes to compute geometrical
parameters required in the interface forces. As an example, the normal and curvature of the surface
can naturally be obtained from φ as

~n =
∇φ
|∇φ| (20)

κ = ∇ · ~n (21)

These quantities are defined on the whole domain in an Eulerian way, and can therefore naturally be195

used in surface integrals as introduced in eq. (9).196

To compute such derivatives of fields, we use projection operators in order to work with fields
still in Pkh . To this end, we introduce the L2 projection operator Πk

L2 and the smoothing projection
operator Πk

sm, defined respectively as

Πk
L2 : Vh → Pkh

u 7→ uL2 ≡ Πk
L2(u) s.t. ∀v ∈ Pkh∫

Ωh
uL2 v =

∫
Ωh

u v (22)

and197

Πk
sm : Vh → Pkh

u 7→ usm ≡ Πk
sm(u) s.t. ∀v ∈ Pkh∫

Ωh
usm v+ ε

∫
Ωh
∇usm : ∇v− ε

∫
∂Ωh

(
~N · ∇usm

)
v =

∫
Ωh

u v (23)

with ε a – small – smoothing parameter typically chosen as ε ≈ 0.03h/k. These projection operators198

can be defined for both scalar and vector fields in the same way by using the appropriate contractions.199

Note that the smoothing projection operator introduces some artificial diffusion which is controlled200

by ε. This diffusion is reponsible for the smoothing of the projected field, but can also introduce201

artefacts in the computation, so that ε needs to be carefully chosen depending on the simulation. In202

practice, the smoothing operator Πk
sm is used to compute derivatives of order ≥ k+ 1 of fields in Pkh ,203

as such order of derivation are subject to noise.204

The projection operators are implemented by the Projector class, which optimizes the assembly205

of the algebraic systems corresponding to eqs. (22) and (23) by storing the constant terms – such as206

the mass matrix for example – to prevent unnecessary computations at each projection. We usually207

also store the preconditioner of the system for reuse.208

The projection linear systems are solved using PETSc’s GMRES solver with a GASM209

preconditioning method.210

In the benchmarks below, we used ~n = Π1
L2

(
∇φ
|∇φ|

)
and κ = Π1

sm (∇ · ~n) for P1
h simulations, and211

~n = Π1
L2

(
∇φ
|∇φ|

)
and κ = Π1

L2 (∇ · ~n) for higher order ones.212

3.5.3. Redistantiation213

As mentioned above, as the level-set is advected by the fluid, it loses its “distance” property, i.e.214

|∇φ| = 1 is not in general preserved by the advection equation. Therefore, to ensure numerical stability215

and prevent accumulation or rarefaction of the level-set iso-lines which support the regularized Dirac216

and Heaviside functions, one needs to redistantiate the level-set, i.e. recover a signed distance function217

to {φ = 0}. Too main approaches can be used: the first one relies on a efficient direct computation of218
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the distance using the well-known “fast-marching algorithm” [16], while the second consists in solving an219

Hamilton-Jacobi equation [14,15] which steady state enforces |∇φ| = 1. Both methods are implemented220

in our framework; we provide some details in the following.221

The fast-marching method is an efficient algorithm to solve the Eikonal equation in general,222

with an algorithmic complexity of O
(
Ndof log(Ndof )

)
. It uses the upwind nature of this equation to223

“march” away from the 0-iso-level to the rest of the domain, hence the Dijkstra-like complexity. Our224

implementation of the fast-marching algorithm is based on [31], and therefore strongly relies on φ being225

a P1
h field.226

If the level-set is of order k > 1, we can still perform the fast-marching redistantiation using a227

P1
iso space as proposed in [36]. This order-1 Lagrange function space is constructed on a mesh obtained228

by replacing all the Pkh degrees of freedom by nodes. The P1
iso hence has the same number of degrees229

of freedom than the original Pkh one. We can then project φk ∈ Pkh onto φ1
iso ∈ P1

iso, perform the230

fast-marching on φ1
iso, and project back.231

The Hamilton-Jacobi method follows a different approach, and works directly within the
finite-element framework. It consists in solving an Hamilton-Jacobi-like equation which steady states is
a signed distance function, namely

∂τφ+ sign(φ) (1− |∇φ|) = 0 (24)

The sign(φ) term anchors the position of {φ = 0}, and ensures that the redistantiation front gets232

transported from this 0-iso-level, inward or outward depending on the initial sign of φ. In practice, this233

equation is discretized using the advection framework introduced above as234

Find φ(n+1) ∈ Pkh s.t. ∀ψ ∈ Pkh∫
Ωh

[
α0
δτ
φ(n+1) + sign(φ(0))

∇φ(n)
|∇φ(n)|

· ∇φ(n+1)
]
ψ+S

(
φ(n+1)

)
=

∫
Ωh

[
sign(φ(0)) +

N∑
i=1

αi
δτ

φ(n+1−i)
]
ψ

(25)
with sign(φ(0)) ≡ 2Hε(φ(0))− 1

2 and S
(
φ(n+1)

)
a stabilization bilinear form. This equation is usually235

solved for a few iterations with δτ ∼ h. The main advantage of the Hamilton-Jacobi approach is that it236

can be used straigthforwardly for high-order level-set functions. However, it is in general slower than237

the fast-marching method, and numerical errors can quickly accumulate and lead to spurious motion of238

the interface resulting in strong loss of mass of the {φ ≤ 0} domain. To avoid these pitfalls, the number239

of iterations and the pseudo time-step δτ must be carefully chosen, which is not an easy task in general.240

4. 3D rising drops benchmark241

We now present a 3D benchmark of our numerical approach, using the Navier-Stokes solver242

developed with the Feel++ library described in [37]. This benchmark is a three-dimensional extension243

of the 2D benchmark introduced in [38] and realised using Feel++ in [39]. The setup for this benchmark244

was also used in [40] to compare several flow solvers.245

4.1. Benchmark problem246

The benchmark consists in simulating the rise of a 3D drop in a Newtonian fluid. The equations
solved are the aforementioned coupled incompressible Navier Stokes equations for the fluid and advection
equation for the level set eqs. (9) to (11) with ~fb and ~fs respectively the gravitational and surface
tension forces, defined as:

~fb = ρφ ~g (26)
~fs = σκ~n

∣∣∣
Γ
' σκ~n δε(φ) (27)

with ~g ≡ −0.98 ~ez the gravity acceleration and σ the surface tension.247
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We consider Ω a cylinder with radius R = 0.5 and height H = 2, filled with a fluid and containing a248

droplet of another imiscible fluid. We denote Ω1 = {~x, s.t. φ(~x) > 0} the domain outside the droplet,249

Ω2 = {~x, s.t. φ(~x) < 0} the domain inside the drop and Γ = {~x, s.t. φ(~x) = 0} the interface. We250

impose no-slip boundary conditions ~u
∣∣
∂Ω = 0 on Ω walls. The simulation is run from t = 0 to 3.251

Initially, the drop is spherical with radius r0 = 0.25 and is centered on the point (0.5, 0.5, 0.5)252

assuming that the bottom disk of the Ω cylinder is centered at the origin. Figure 1 shows this initial253

setup.254

Figure 1. Initial setup for the benchmark.

We denote with indices 1 and 2 the quantities relative to the fluid in respectively Ω1 and Ω2. The
parameters of the benchmark are then ρ1, ρ2, µ1, µ2 and σ. We also define two dimensionless numbers
to characterize the flow: the Reynolds number which is the ratio between inertial and viscous terms
and is defined as

Re = ρ1
√
|~g|(2r0)3

ν1
,

and the Eötvös number represents the ratio between the gravity force and the surface tension

E0 =
4ρ1|~g|r2

0
σ

.

Table 1 reports the values of the parameters used for two different test cases proposed in [40]. At255

t = 3, the first one leads to an ellipsoidal-shaped drop while the second one gives a skirted shape due256

to the larger density and viscosity contrasts between the inner and outer fluids.257

Table 1. Numerical parameters taken for the benchmarks.

Tests ρ1 ρ2 ν1 ν2 σ Re E0
Case 1 (ellipsoidal drop) 1000 100 10 1 24.5 35 10
Case 2 (skirted drop) 1000 1 10 0.1 1.96 35 125
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To quantify our simulation results, we use three quantities characterizing the shape of the drop at
each time-step: the center-of-mass

~xc =
1
|Ω2|

∫
Ω2

~x,

the rising velocity – focusing on the vertical component

~uc =
1
|Ω2|

∫
Ω2

~u,

and the sphericity – defined as the ratio between the area of a sphere with same volume and the area
of the drop –

Ψ =

4π
(

3
4π |Ω2|

) 2
3

|Γ| .

Note that in the previous formulae, we have used the usual “mass” and area of the drop, respectively258

defined as |Ω2| =
∫

Ω2
1 and |Γ| =

∫
Γ 1.259

4.2. Simulation setup260

The simulations have been performed on the supercomputer of the Grenoble CIMENT HPC center261

up to 192 processors. To control the convergence of our numerical schemes, the simulations have been262

run with several unstructured meshes, which characteristics are summarized in table 2.263

We run the simulations looking for solutions in finite element spaces spanned by Lagrange264

polynomials of order (2, 1, k) for respectively the velocity, the pressure and the level set. The265

corresponding numbers of degrees of freedom for each mesh size are also reported in table 2.266

Table 2. Mesh properties and degrees of freedom: mesh characteristic size, number of tetrahedra,
number of points, number of order 1 degrees of freedom, number of order 2 degrees of freedom and
total number of degrees of freedom of the simulation.

Mesh properties Finite-element DOF
h Tetrahedra Points Order 1 DOF Order 2 DOF #DOF

0.025 380 125 62 546 62 546 490 300 1 595 992
0.02 842 865 136 932 136 932 1 092 644 3 551 796
0.0175 1 148 581 186 136 186 136 1 489 729 4 841 459
0.015 1 858 603 299 595 299 595 2 415 170 7 844 700
0.0125 2 983 291 479 167 479 167 3 881 639 12 603 251

Table 3. Numerical parameters used for simulations and resulting simulation times for each test
case.

Numerical parameters Total time (h)
h #proc ∆t Case 1 Case 2

0.025 64 1× 10−2 3.5 3.6
0.02 128 9× 10−3 4.8 5.1
0.0175 128 8× 10−3 8.9 9.5
0.015 192 7× 10−3 12.3 13.5
0.0125 192 6× 10−3 33.8 39.6

The Navier-Stokes equations are solved using Newton’s method and the resulting linear system is267

solved with a preconditioned flexible Krylov gmres method using the simple preconditioner introduced268

in [41]. The inner “inversions” of the velocity block matrix are performed using a block Jacobi269

preconditioner, with an algebraic multigrid (gamg) preconditioner for each velocity component block.270
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Note that these velocity block inversions are only preconditioned – without any KSP iteration. The271

nested Schur complement “inversion” required for simple is solved with a few iterations of gmres272

preconditioned with an algebraic multigrid (gamg).273

The linear advection equation is solved with a Krylov gmres method, preconditioned with an274

Additive Schwarz Method (gasm) using a direct LU method as sub-preconditionner.275

5. Results276

In this section, we analyze the simulations of the rising drop for the two cases with low-order –277

k = 1 – sections 5.1 and 5.2 and high-order – k = 2 – section 5.3 level set discretization space. Except278

for the comparison between the fast-marching and the Hamilton-Jacobi methods section 5.1.1, the level279

set redistantiations were performed with the fast-marching method every 10 time-steps.280

5.1. Case 1: the ellipsoidal drop281

Figure 2a shows the shape of the drop in the x− z plane at the final t = 3 time step for the282

different aforementioned mesh sizes. The shapes are similar and seem to converge when the mesh size283

is decreasing. The drop reaches a stationary circularity as shown in fig. 2d, and its topology does not284

change. The velocity increases until it attains a constant value. Figure 2c shows the results obtained285

for the different mesh sizes. The evolution of the mass of the drop versus time is shown in fig. 2e. It286

highlights the rather good mass conservation property of our simulation setup, as about 3% of the mass287

is at most lost for the coarsest mesh, while the finest one succeeds in keeping the loss in mass below288

0.7%.289

We also note that our simulation perfectly respects the symmetry of the problem and results in a290

axially symmetric final shape of the drop, as shown in fig. 3.291

5.1.1. Comparison between Hamilton-Jacobi and fast-marching reinitialization292

As mentioned in section 3.5.3, two reinitialization procedures can be used to overcome the293

“deformation” of the level set which becomes more and more different from the distance to the interface294

function as it is advected with the fluid velocity. The fast-marching method resets the values of φ on the295

degrees of freedom away from the interface to match the corresponding distance. The Hamilton-Jacobi296

method consists in solving an advection equation which steady solution is the wanted distance function.297

We have run the h = 0.0175 simulation with both reinitialization methods to evaluate the properties298

of each one, and compare them using the monitored quantities. Figure 5 gives the obtained results.299

The first observation is that the mass loss (see fig. 5e) is considerably reduced when using the300

FM method. It goes from about 18% mass lost between t = 0 and t = 3 for the Hamilton-Jacobi301

method to less than 2% for the fast-marching method. This resulting difference of size can be noticed302

in fig. 4. The other main difference is the sphericity of the drop. Figure 5d shows that when using303

the fast-marching method, the sphericity decreases really quickly and stabilises to a much lower value304

than the one obtained with the Hamilton-Jacobi method. This difference can be explained by the305

fact that the fast-marching method does not smooth the interface. The shape can then contain some306

small irregularities leading to a bad sphericity. Even so, with both methods the sphericity stays quite307

constant after the first second of the simulation. The rising velocity and the vertical position do not308

show any significant difference between the two reinitialization methods.309

5.1.2. Comparison with previous results310

Figure 6 shows a plot of our results compared to the ones presented in [40]. In this paper, the311

authors perform simulations on the same setup and with the same test cases as considered here. To312

ensure consistency of their results, they use three different flow solvers (hence three different space313

discretization methods) coupled with two different interface capturing methods: the DROPS and314

NaSt3D solvers coupled to a level set approach, and the OpenFOAM solver which uses a volume-of-fluid315

method.316



Version August 31, 2018 submitted to Mathematics 13 of 25

0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.2

1.3

1.4

1.5

1.6

x

z

h = 0.025

h = 0.02

h = 0.0175

h = 0.015

h = 0.0125

(a) Shape at final time (t = 3) in the vertical
x− z plane.

0 0.5 1 1.5 2 2.5 3
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

t

z c

h = 0.025

h = 0.02

h = 0.0175

h = 0.015

h = 0.0125

2.5 2.6 2.7 2.8 2.9 31.25

1.3

1.35

1.4

(b) zc center-of-mass vertical component.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

t

u
c,

z

h = 0.025

h = 0.02

h = 0.0175

h = 0.015

h = 0.0125

(c) Vertical velocity.

0 0.5 1 1.5 2 2.5 3
0.85

0.9

0.95

1

t

Ψ
h = 0.025

h = 0.02

h = 0.0175

h = 0.015

h = 0.0125

(d) Sphericity.

0 0.5 1 1.5 2 2.5 3

6.5

6.55

6.6

6.65

6.7

6.75

6.8
·10−2

t

|Ω
2|

h = 0.025

h = 0.02

h = 0.0175

h = 0.015

h = 0.0125

(e) Mass.

Figure 2. Results for the ellipsoidal test case (case 1).

To evaluate the effect of the characteristic mesh size, we plot the results we obtained for the317

simulations run with both h = 0.025 and h = 0.0125 along with the results from [40].318

We can observe an overall good agreement between our results and the benchmark performed in319

[40].320
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Figure 3. Shape at final time in the x− z and y− z planes for test case 1 (h = 0.0125).

(a) Fast Marching method (b) Hamilton-Jacobi method

Figure 4. 3D shape at final time (t = 3) in the x− y plane for test case 1 (h = 0.0175).

5.2. Case 2: the skirted drop321

In the second test case, the drop gets more deformed because of the lower surface tension and the322

higher viscosity and density contrasts. Figure 7 displays the monitored quantities for this test case.323

We observe that the shape of the “skirt” of the drop at t = 3 is quite strongly mesh dependent, but324

converges as the mesh is refined. The other characteristics of the drop are not so dependent on the325

mesh refinement, even for the geometrically related ones, such as the drop mass, which shows a really326

small estimation error (only 2% difference between the coarsest and finest meshes), and displays the327

really good conservation properties of our simulations. We again also note in fig. 8 the symmetry of328

the final shape of the drop, which highlights the really good symmetry conservation properties of our329

approach.330

5.2.1. Comparison between Hamilton-Jacobi and fast-marching reinitialization331

As for the test case 1, we provide a comparison of the results for the test case 2 obtained using332

either the fast-marching or the Hamilton-Jacobi reinitialization method. These results, obtained for an333

average mesh size (h = 0.0175) are shown in fig. 10. As before, they highlight noticeable differences334

between the two methods for geometrically related quantities such as mass loss, sphericity and final335

shape. We can even observe a non-negligible difference for the latter in the region of the “skirt”.336

This difference, mainly related to the diffusive properties of the Hamilton-Jacobi method, can also be337
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Figure 5. Comparison between the Fast Marching method (FM) and the Hamilton-Jacobi (HJ)
method for test case 1 (ellipsoidal drop). The characteristic mesh size is h = 0.0175.
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Figure 6. Comparison between our results (denoted FEEL) and the ones from [40] for the test case
2 (the ellipsoidal drop).

observed on the 3D shapes in fig. 9. The good agreement of the results obtained using the fast-marching338

method tends to suggest that the Hamilton-Jacobi method is not accurate enough – or would require339

more careful and costly adjustment of its parameters – for this kind of three-dimensional simulation.340

5.2.2. Comparison with previous results341

As in section 5.1.2, we compare our results to the benchmark [40], and show the relevant quantities342

in fig. 11.343

We also observe a good agreement between our simulations and the ones from the benchmark.344

We however note that the final shape of the skirted drop is very sensitive to the mesh and none of the345

groups agree on the exact shape which can explain the differences that we see on the parameters in346

fig. 11 at time t > 2.347

5.3. High-order simulations348

As already mentioned, our framework naturally allows the use of high-order Galerkin discretization349

spaces. As an illustration, we present here benchmark simulation results performed using finite element350

spaces spanned by Lagrange polynomials of order (2, 1, 2) and (2, 1, 3) for each test case. The mesh351

size considered here is h = 0.02, and the results are shown in fig. 12 and fig. 13 for test cases 1 and 2352

respectively. We expect the increase in order of the level-set field to improve the overall accuracy.353
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Figure 7. Results for the skirted test case (case 2).
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Figure 8. Shape at final time in the x− z and y− z planes for test case 2 (h = 0.0125).
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Figure 9. 3D shape at final time (t = 3) in the x− y plane for test case 2 (h = 0.0175).

We can indeed observe that the final shapes of high-order simulations look smoother in both cases,354

as confirmed by the sphericity plots. The effect is highly noticeable on the “skirt” which appears for355

the second test-case, which looks even smoother than the one obtained with the finest (h = 0.0125)356

(2, 1, 1) simulation.357

Let us also highlight that the small differences observed with the (2, 1, 3) simulations, in particular358

for the final shapes, are most likely related to the absence of articifial diffusion error in the computation359

of geometrical quantities (especially for the curvature), which suggest more robust and realistic results360

for these simulations.361

We can also notice that more “physically” controlled quantities, such as the position of362

the center-of-mass and the vertical velocity are less impacted by the polynomial order of the363

level-set component, which is not so surprising, as these quantities are mainly determined by the364

(level-set-dependent) fluid equations, which discretization orders where kept constant for this analysis.365

6. Conclusion and outlooks366

We have presented in this paper a comprehensive numerical framework for the simulation of367

multifluid flows. This framework is based on level-set methods solved by a (possibly high-order) finite368

element method. The explicit coupling between the level-set and the fluid has proven to be efficient369
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Figure 10. Comparison between the Fast Marching method (FM) and the Hamilton-Jacobi (HJ)
method for test case 2 (skirted drop). The characteristic mesh size is h = 0.0175.
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Figure 11. Comparison between our results (denoted FEEL) and the ones from [40] for the test
case 2 (the skirted drop).
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and has allowed us to take advantage of reliable and efficient preconditioning strategies to solve the370

fluid equations.371

The framework has been implemented within the Feel++ toolboxes and leverages the efficiency372

of the library to run on large numbers of processors in parallel. It also features user-friendly interfaces,373

and allows for easy model setup and parametrization using the json and cfg standard formats. The374

use of state-of-the-art metaprogramming techniques allows to seamlessly perform simulations in two or375

three dimension, and to increase the polynomial order of the finite elements. We highlight again that376

both the implementation and the benchmarks configuration files are open-source and available online377

[10,11].378

The presented MultiFluid framework has been validated using a three-dimensional two-fluid379

numerical benchmark and achieved results in agreement with the simulations performed with other380

methods.381

We have also compared two different level-set reinitialization procedures (the fast-marching and382

the Hamilton-Jacobi methods) and observed significantlty different behaviors, in particular the former383

is much better at mass conservation than the latter.384

High-order simulations were performed to highlight the increased smoothness of the computed385

interfaces. High-order discretizations of the level-set function also greatly helps for the computation of386

geometrical quantities, such as the curvature of the interface. It avoids the need for artificial diffusion387

in the computation of such derivatives, which can be prove essential for accurate accounts of surface388

effects. In particular the (2, 1, 3) simulations which feature complete diffusion-free geometrical quantities389

suggest that increasing the order of the level-set discretization can be of great interest when seeking390

highly accurate results regarding shapes, or when physical forces involving high derivatives of the391

level-set field are present.392

Further improving the accuracy of the level-set and related quantities using higher order and/or393

hybrid methods is still ongoing.394

The framework presented and validated here provides the building blocks for the simulation of395

complex fluids in complex geometries. Its versatility shall be used in a near future to better understand396

the flow of blood cells in realistic vascular systems, or the dynamics of swimming droplets interacting397

with external surfactants.398
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