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Abstract 

We report on our recent efforts towards identifying bacteria in environmental samples by 

means of Raman spectroscopy. We established a database of Raman spectra from bacteria 

submitted to various environmental conditions. This dataset was used to verify that Raman 

typing is possible from measurements performed in non-ideal conditions. Starting from the 

same dataset, we then varied the phenotype and matrix diversity content included in the 

reference library used to train the statistical model. The results show that it is possible to 

obtain models with an extended coverage of spectral variabilities, compared to environment-

specific models trained on spectra from a restricted set of conditions. Broad coverage models 

are desirable for environmental samples since the exact conditions of the bacteria cannot be 

controlled. 

Keywords : Raman spectroscopy, Single bacterial cell identification, Classification, 

Reference libraries, Outliers removal, Environmental samples 

Introduction 

Raman spectroscopy is a widespread chemical profiling technique that is gaining popularity in 

bacteria monitoring applications. In particular, it is very promising for biological threat 

detection activities (Stöckel et al. 2012a). Spectra from individual bacterial cells are collected 

in a few seconds and can be used for identification down to the strain level (Huang et al. 

2004; Rosch et al. 2005; Willemse-Erix et al. 2009). Because the Raman fingerprint is 

phenotype dependent, it is challenging to assemble a collection of Raman spectra suitable for 

training the chemometric model used in identification. Ideally, all phenotypes considered in a 

given application are represented in the training set. Besides, one asset of Raman 

spectroscopy is the possibility to make measurements with minimal sample preparation or 

even directly in the environmental matrix of the bacteria. Correspondingly, the training set 

includes the matrix contribution. This approach has been successfully applied to cerebrospinal 

fluid analysis (Harz et al. 2009), urinary tract infection (Kloss et al. 2013), or pathogen 

detection in water (Tripathi et al. 2008; Van de Vossenberg et al. 2013; Kusić et al. 2014), for 

instance. Samples investigated in biological threat detection are heterogeneous, both in terms 

of phenotype content and environmental matrix. For such complex samples, purification 

protocols are usually required to isolate the cells before informative spectra can be collected 

(Meisel et al. 2011; Stöckel et al. 2012b; Stöckel et al. 2014). Even so, a matrix component is 

still present in the data and included in the model. The Raman analysis of such heterogeneous 

samples requires a compromise between database scope, keeping the creation of such a 

database tractable and minimizing sample preparation. 

https://link.springer.com/article/10.1007/s11356-015-5953-x#auth-Jean_Charles-Baritaux
https://link.springer.com/article/10.1007/s11356-015-5953-x#auth-Anne_Catherine-Simon
https://link.springer.com/article/10.1007/s11356-015-5953-x#auth-Emmanuelle-Schultz
https://link.springer.com/article/10.1007/s11356-015-5953-x#auth-C_-Emain
https://link.springer.com/article/10.1007/s11356-015-5953-x#auth-P_-laurent
https://link.springer.com/article/10.1007/s11356-015-5953-x#auth-P_-laurent
https://link.springer.com/article/10.1007/s11356-015-5953-x#auth-Jean_Marc-Dinten
https://link.springer.com/article/10.1007/s11356-015-5953-x#ref-CR12
https://link.springer.com/article/10.1007/s11356-015-5953-x#ref-CR3
https://link.springer.com/article/10.1007/s11356-015-5953-x#ref-CR11
https://link.springer.com/article/10.1007/s11356-015-5953-x#ref-CR18
https://link.springer.com/article/10.1007/s11356-015-5953-x#ref-CR2
https://link.springer.com/article/10.1007/s11356-015-5953-x#ref-CR5
https://link.springer.com/article/10.1007/s11356-015-5953-x#ref-CR16
https://link.springer.com/article/10.1007/s11356-015-5953-x#ref-CR17
https://link.springer.com/article/10.1007/s11356-015-5953-x#ref-CR7
https://link.springer.com/article/10.1007/s11356-015-5953-x#ref-CR9
https://link.springer.com/article/10.1007/s11356-015-5953-x#ref-CR13
https://link.springer.com/article/10.1007/s11356-015-5953-x#ref-CR14


The purpose of this study is twofold. First, verify the feasibility and robustness of bacteria 

identification from Raman measurements performed in non-ideal conditions. To this end, a 

comprehensive database of single-cell Raman spectra was collected on a panel of five bacteria 

species (Bacillus cereus, Bacillus subtilis, Staphylococcus epidermidis, Escherichia coli, 

Serratia marcescens). In these experiments, the cells were submitted to various growth 

conditions and embedded in two environmental matrices relevant to field applications: a 

solution of atmospheric air dissolved in water and condensed water from a cooling-tower 

filtration system. A statistical model was trained on this dataset, and classification was 

performed at the species level. The dependence of Raman identification on cultivation 

conditions, namely medium, temperature, and age, has been the subject of earlier studies 

(Hutsebaut et al. 2004; Harz et al. 2005). This work is targeted at environmental samples and 

we include the matrix contribution as an additional variable. Our second goal is to investigate 

the content required in the training set of the chemometric model used for identification. We 

discuss the benefits of outlier detection on our dataset which was acquired over several 

months. We then examine identification robustness to deviations between the conditions (both 

in terms of phenotype and matrix) included in the statistical model and the conditions of the 

sample. Two limit cases are considered as follows: a model trained on a single phenotype and 

single matrix for each species, or conversely a comprehensive model including all available 

diversity for each species. The latter type is of particular interest in applications where the 

model has to approximate a phenotype possibly missing from the training set. This is the case 

of bio-threat detection or for identification of non-cultivable strains (Kumar et al. 2015). 

Materials and methods 

Strains and culture conditions 

Three Gram-positive strains, B. cereus ATCC10702 (BC), Bacillus subtilis ATCC23857 

(BS), and S. epidermidis ATCC14990 (SE), and three Gram-negative strains E. coli 

ATCC9637 (EC), E. coli ATCC11775 (EC), and S. marcescens ATCC27137 (SM), were 

considered in this study. Overnight liquid cultures (16 h incubation time) were prepared in a 

volume of 25 mL. In order to ensure that all species were in exponential phase at the time of 

measurement, the fastest growing species (E. coli and S. marcescens) were re-cultured for an 

additional 4 h prior to Raman analysis by transferring 100 uL of overnight culture in 10 mL of 

fresh medium. Bacterial growth was monitored by optical density. 

Culture medium and temperature were varied for the purpose of this study. As a starting point, 

all microorganisms were cultured in the standard conditions prescribed by the supplier (see 

Table 1). Note that standard conditions differ from bacteria to bacteria. In addition to standard 

conditions, the combinations of media (LB, TSB) with temperatures (30 and 37 °C) were 

applied to the species BS, EC, and SM. Finally, three custom media of increasing nutrient 

content were prepared and used to grow BS and EC (while keeping their standard 

temperature). Medium 1, the least nutritive, was composed of 0.5 g/L NaCl (SIGMA S5886), 

0.186 g/L KCl (PROLABO 26764.298), 4.8 g/L MgSO4 (SIGMA M2643), and 3.603 g/L 

alpha-d-glucose (ALDRICH 15,896-8). Medium 2 was the same composition with the 

addition of 20 g/L soy peptone (enzymatic digest FLUKA 87972). Medium 3 was the same as 

medium 2, plus 5 g/L yeast extract (FLUKA 70161). 
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Strain Abbreviation used in text Standard culture conditions 

B. cereus ATCC10702 BC TSB, 30 °C 

B.sSubtilis ATCC23857 BS TSB, 30 °C 

E. coli ATCC9637 EC LB, 37 °C 

E. coli ATCC11775 EC LB, 37 °C 

S. epidermidis ATCC14990 SE LB, 30 °C 

S. marscesens ATCC27137 SM LB, 30 °C 

TSB trypticase soy broth, LB Luria-Bertani broth 

Table 1. Bacterial strains and standard culture conditions 

Sample preparation 

After culture the cells were washed in sterile water (AGUETTANT, OTEC Sterile water) 

using 3500 rpm (822g) centrifugation for 2 min and re-suspended at a concentration of about 

10
5
–10

6
 cells/μL. We considered three re-suspension solutions: water, AIR, and TARH. AIR 

and TARH are characterized real-world environmental matrices corresponding to atmospheric 

air dissolved in water, and condensed water from a cooling-tower filtration system, 

respectively. Cells grown in non-standard conditions were always suspended in water, while 

cells from standard conditions were suspended in AIR, TARH, or water. In this way, growth 

conditions effects were decoupled from environmental matrix effects. Spectra from cells 

cultured in standard conditions and re-suspended in water are referred to as standard, in 

contrast with spectra where culture, or matrix, was altered. One microliter of suspension was 

sampled and deposited on a Quartz slide (TedPella Inc. 19 × 19 × 0.5 mm). The smear was 

evaporated for 1 min at room temperature and immediately taken to our instrument for 

examination and Raman spectrum collection. Ten spectra were acquired in each smear. 

A collection of spectra—or equivalently, a database—was assembled over the course of three 

measurement campaigns. The first campaign consisted in varying environmental matrices 

(namely AIR and TARH). This campaign involved all five species and was divided in two 

sessions separated by 3 months. The second campaign varied the culture medium (media 1, 2, 

and 3, see “Strains and culture conditions” section), and was realized on BS and EC over two 

1-week sessions separated by 1 month. Experiments involving BS, EC, and SM in the media 

(LB, TSB) at temperatures (30 and 37 °C) were done in the third campaign. Meanwhile, a 

database of standard spectra from the five species was continuously enriched resulting in a 

collection acquired over the course of 10 months. An overview of the whole dataset is 

available in Supp. 1. 

Confocal Raman microspectroscopy 

The collection of spectra was acquired using a custom Raman instrument recently developed 

in our lab. A detailed description can be found in Strola et al. (2014). Briefly, the system 

allows fast detection and targeting of bacterial cells, as well as the measurement of single-cell 

Raman spectra using a confocal arrangement. The beam of a 532-nm, 50-mW laser (Spectra 

Physics Excelsior 532-50-CDRH) is attenuated and focused by a microscope objective (×100, 

0.8 NA, Olympus LMPLFLN) in order to provide a spot size of 1 μm in diameter at the 

sample. Raman back-scattered light from an individual bacterium is collected by the same 

objective, filtered from Rayleigh light, and focused into the entrance fiber of a dispersive 

spectrometer (Hyperflux U1-532, Tornado Spectral systems, Toronto Canada). The 

spectrometer featured a −15 °C TE-cooled CCD, and spectral resolution of 7 cm
−1

 over the 
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band 500–3400 cm
−1

. Shot-noise limited spectra were acquired using 10-s integration time. 

The system has recently been integrated in a transportable instrument called Bacram (30 kg, 

70 × 44 × 71 cm
3
), currently in use to build a relevant bio-defense database. 

Samples from real-world matrices contained non-specific particles and other impurities 

alongside the bacteria. We also observed the formation of a film covering the cells in the 

TARH matrix, in some cases. In this work, bacterial cells were discriminated from other 

particles based on morphology and reflectivity. It is known that a drying droplet exhibits 

convective micro-flow towards the contact line. This caused most non-specific particles to 

accumulate at the border of the smear (the so-called coffee-stain effect). The center regions of 

the smears therefore displayed a reduced number of particles. Unambiguous localization of 

bacteria was straightforward in the center because of the high cell concentration of our 

samples (10
5
–10

6
 cells/μL). The confocal arrangement provided spatial filtering which 

allowed maximizing the bacterial signal with respect to signal from other Raman-active 

substance that may be present in the sample. 

Data analysis 

Data analysis (spectra pre-processing, calculation of indicators and classification) was 

performed using the R software environment. Custom software was written in complement of 

the existing routines. 

Pre-processing of spectra consisted in cosmic spikes removal, smoothing, restriction to a 

region-of-interest (ROI), and finally, normalization by the mean signal in the ROI. Smoothing 

was performed using Savitzky-Golay polynomial filters (degree 4, on 9 points). A 9-point 

filter corresponds to 18 cm
−1

, while the typical full-width-at-half-maximum of the Raman 

peaks ranges from 20 to 60 cm
−1

. This smoothing approach enables to increase the signal-to-

noise ratio (SNR) with minimum peak distortion and loss of intensity. We chose a ROI 

composed of the two regions 650–1800 and 2600–3200 cm
−1

. 

Classification was performed using the support vector machine (SVM) implementation “svm” 

of the R package “e1071,” interfacing the “LIBSVM” library. We used SVM with a linear 

kernel, and a “C” parameter value of 10 (“C” being the regularization parameter in the 

Lagrange formulation of SVM). Classification performance was assessed by cross-validation. 

Note that the same cross-validation procedure was consistently employed for all the results 

presented in this work. It consists of an external leave-one-date-out cross-validation, with 

training set balancing. In leave-one-date-out cross-validation the test set is composed of 

spectra from a single date. This date is omitted in the training set. This way it is ensured that 

training set and test set are independent. Besides, correlations due to nonspecific day-to-day 

variations are avoided. Balancing was implemented at the level of species, growth conditions, 

and environmental matrices, when applicable. Larger classes were randomly sub-sampled in 

order to ensure a same number of spectra in each class. In order to improve SNR, the test 

spectra were averaged by groups of five in each cross-validation round. Classification stability 

was evaluated by repeating every cross-validation round ten times with 90 % of the training 

set sub-sampled randomly. We report the average sensitivity (true-positive rate), standard 

deviation of sensitivity, and average specificity (true-negative rate). Classification was 

performed at the species level. 

An outlier detection procedure was implemented to ensure the consistency of the dataset. 

Outliers are defined with respect to the spectra of a single strain in a single condition. This 



means that a given spectrum will be compared to the spectra of the same strain in the same 

conditions. The procedure consists in two steps. The first step considers the group of spectra 

acquired on a single date. Spectra with a large Euclidean distance to the average of the group 

are tagged as outliers. In the second step, all spectra of a given condition are treated together, 

irrespective of the date. We compute the Mahalanobis distance (Mahalanobis 1936) from each 

spectrum to the distribution of spectra in the same conditions. Spectra with a large 

Mahalanobis distance are considered unlikely to belong to the distribution and are marked 

outliers. The first step enforces homogeneity among acquisitions performed the same day, 

while the second step ensures statistical consistency across all dates. 

Results 

Standard spectra 

Average standard spectra of each species are displayed in Fig. 1. The most prominent spectral 

bands in the signature region are attributed to the ring breathing modes of phenylalanine at 

1004 cm
−1

, amid III at 1245 cm
−1

, the deformation vibration of CH2 in proteins at 1337 cm
−1

, 

the deformation vibration of CH2/CH3 in lipids at 1451 cm
−1

, and amid I at 1666 cm
−1

. We 

also note the strong contribution of the CH stretching vibration in the band 2800–3150 cm
−1

. 

A more detailed assignment can be found elsewhere (Movasaghi et al. 2007). The two large 

bands around 800 and 1100 cm
−1

 are background signal from the quartz substrate. It is 

apparent that Raman spectra of each of the species BC, BS, and SE are well distinct from the 

spectra of the four other species. By contrast, there is a close resemblance of the spectra 

measured on EC and SM. A SVM model was trained on the standard spectra for a 

classification at the species level. Cross-validation results are presented in the form of a 

confusion matrix in Table 2. Note that the number of spectra reported in the confusion matrix 

differs from species to species. These spectra correspond to test spectra, while the SVM 

model was fit on a balanced training set in each cross-validation round (see “Data analysis” 

section). The mean classification rate at the species level is 96.8 %, which is in accordance 

with performance generally reported for Raman spectroscopy on lab cultures (Harz et al. 

2005). We observe that misclassified spectra originate from confusions between EC and SM, 

which reflects the high similarity between Raman spectra recorded on these two species. 
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Fig. 1. Average Raman spectra in standard conditions. The spectra were smoothed and 

normalized to unit mean 

Predicted label 

  BC BS SE EC SM Sens. Spec. 

Test label BC 265         100 100 

BS   380       100 100 

SE     151     100 100 

EC       446 29 93.8 97.6 

SM       25 235 90.3 98.5 

Average sensitivity 96.8 %. Note classifier was trained on balance dataset 

Sens. sensitivity (true-positive), Spec. specificity (true-negative) 

Table 2. Confusion matrix for a SVM model applied to spectra in standard conditions 

The bar diagram in Fig. 2 (see also Supp. 2) assesses the strategy of outlier rejection and 

spectral averaging outlined in “Data analysis” section. Outlier rejection applies to the training 

set, while averaging by groups of five applies to the spectra in test. Sensitivity (true-positive 

rate) and the corresponding standard deviation were evaluated by cross-validation, with and 

without applying the proposed strategy. Substantial gain in sensitivity and reduction of 

dispersion (standard deviation) are provided by averaging and rejecting outliers. Averaging 

spectra helps reducing instrumental variations, while outlier rejection reduces non-specific 

variations in the dataset. This is particularly beneficial in the case of EC and SM which 

display very close spectral signatures. 
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Fig. 2. Effect of outlier detection and spectra averaging. Results obtained on standard spectra 

Figure 3 shows the sensitivity of the classifier for an increasing number of dates in the 

training set. Each new date contributes ten spectra to the training set. For each species, we 

keep increasing the number of dates whenever new dates are available and use the maximum 

number of dates otherwise. This way, the training set includes a new date for at least one 

species in between two points of the curves in Fig. 3. We chose to grow the training set by 

dates rather than by spectra because spectra were acquired in daily sessions, with day to day 

biological variations. Sensitivities are reaching a plateau as the number of dates increases. 

Sensitivities for the BC, BS, and SE converge to 100 %, while EC and SM converge to 93.8 

and 90.3 %, respectively. Convergence is effective after 6 dates for the Gram positive, while 

EC and SM require about 20 dates. The larger number of dates required by EC and SM is not 

surprising since a finer model has to be established to discriminate these species. We 

emphasize that these results were obtained on a dataset recorded over the course of several 

months, which shows the stability of the Raman approach, provided that all relevant 

biological diversity is incorporated in the classification model. 

 

Fig. 3. Classification performance as a function of number of acquisition dates in the training 

set of the SVM model. Each acquisition date corresponds to ten spectra. In between two 

points the number of dates increases for at least one species 
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Varying culture conditions 

In this section, we investigate the classification at the species level of bacteria submitted to 

various growth conditions using Raman spectroscopy and a SVM model. BS, EC, and SM 

were cultured in LB and TSB at two temperatures (30 and 37 °C). In addition, BS and EC 

were grown in three media of increasing nutrient content. Cells were washed and re-

suspended in FreeWater prior to Raman measurements. We refer to “Materials and methods” 

section for details. This part of the study was limited to BS, EC, and SM since most 

classification errors were due to confusions between EC and SM. BS was kept as the unique 

element of the groups BC, BS, and SE. Although the test set was restricted to BS, EC, and 

SM, the training set still contained spectra from the five species. We examine the performance 

of several training sets for the SVM model. A specific training set (denoted SPEC) is 

composed exclusively of spectra from the same conditions as the test set. At the opposite, a 

standard training set (denoted STD) contains only standard spectra, independently of the test 

set. We additionally define an extended training set (EXT) by making the union of SPEC and 

STD, and an exhaustive training set (EXH) which includes all conditions at our disposal 

(including environmental matrices studied in the sequel). 

The results for BS, EC, and SM in LB and TSB at temperatures 30 and 37 °C are presented in 

the bar diagram in Fig. 4 (see also Supp. 3). No data was available for BS in LB at 37 °C. 

Sensitivities and corresponding standard deviations are plotted. BS is always identified 

correctly, independently of growth conditions and training set. By contrast, the performance 

of SVM on EC and SM is strongly dependent on the training set. We note that performance 

depends on growth conditions to a lesser extent. Similarly to what was observed on standard 

spectra, misclassifications correspond to confusions between EC and SM. The most favorable 

condition for these two species is LB 37 °C (standard condition of EC), with 96 % sensitivity 

for EC and 93.5 % sensitivity for SM on the standard training set. For all other conditions, a 

standard training set leads to as classifier that is biased towards SM and unable to identify EC 

(30 % success in average, with 19.4 % standard deviation). This problem is mitigated by 

replacing the training set STD with SPEC. This results in 94.3 % average sensitivity on EC 

and SM. Training sets EXT and EXH are essentially equivalent to SPEC in this case. Their 

advantage is a slight reduction in performance gap between EC and SM. 
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Fig. 4. Classification of BS, EC, and SM cultured in (LB, TSB) at temperatures (30 and 

37 °C). Sensitivity and standard deviation are represented. Standard (STD), specific (SPEC), 

extended (EXT), and exhaustive (EXH) training sets are evaluated 

Figure 5 shows the classification results for BS and EC grown in the three custom media (see 

also Supp. 4). The training set SPEC was not considered for this data. We note that medium 1 

was not nutritive enough to permit bacterial growth. The spectra from both species in medium 

1 are poorly identified when the model is trained on STD. For BS, this problem is addressed 

by switching the training set to EXT or EXH. The same strategy applied to EC improves the 

results, yet the sensitivity does not exceed 63 % (EXT training set). The success rate for BS in 

medium 2 and medium 3 is 100 % regardless of the training set (including STD). On the other 

hand, EC spectra from medium 2 and medium 3 require the training sets EXT or EXH in 

order to raise the sensitivity from about 50 % in STD to nearly 95 %. 

 

Fig. 5. Classification results on BS and EC cultured in three media of increasing nutrient 

content. Sensitivity and standard deviation are represented. Standard (STD), extended (EXT), 

and exhaustive (EXH) training sets are evaluated 
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In all these results, EXT or EXH training sets improve average sensitivity, and sometimes, 

robustness (by reducing the standard deviation). 

Varying environmental matrix 

This section discusses the classification of bacteria measured directly in environmental 

matrices. The five species BC, BS, SE, EC, and SM were embedded in AIR and TARH prior 

to Raman acquisitions (see “Sample sreparation” section). SVM was trained on the four 

datasets STD, SPEC, EXT, and EXH described in “Varying culture conditions.” The 

sensitivities and corresponding standard deviations of the four models are displayed in Fig. 6 

(data available in Supp. 5, Supp. 6, Supp. 7). We begin with noting that the four models 

perform equally well on the classification of species BC, BS, and SE, with 99.7 % average 

sensitivity. This is not the case for the discrimination of the two spectrally close species EC 

and SM. While the STD training set is insufficient to identify EC in AIR (4 % success), the 

SPEC, EXT, and EXH training sets lead to satisfactory results on the AIR matrix. The 

corresponding scores exceed 75 % for EC, and 92 % for SM in AIR. We note, however, that 

the TARH matrix remains problematic for SM, even when specific spectra are added to the 

training set. In this case, the model is strongly biased towards EC, since the majority of SM 

spectra end up identified as EC, while EC scores 98.1 %, in average. 

 

Fig. 6. Classification of BC, BS, SE, EC, and SM measured in AIR and TARH environmental 

matrices. Sensitivity and standard deviation are represented. Standard (STD), specific (SPEC), 

extended (EXT), and exhaustive (EXH) training sets are evaluated 

Discussion 

Datasets acquired in heterogeneous conditions, and over extended periods of time, are likely 

to contain non-specific variations. It is essential to ensure consistency of the data entering the 

statistical model, both globally and condition-wise. In our case, this was implemented by 

applying an outlier detection procedure to the data. With this approach, stable classification 

results were obtained on data assembled over a 10-month period. Outlier detection is not only 

useful to prepare training data but also to treat test data. This is extremely valuable for 

samples from non-ideal conditions. We noted that outlier detection was mostly beneficial to 

the spectrally closest species of our study. We also showed that averaging several test spectra 

helps reducing the dispersion of the results. Although not valid in the general case, this 

averaging is nonetheless relevant in many practical cases. In biological threat detection, for 

instance, a suspicious sample can be assumed to be highly concentrated in a single pathogen. 
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As expected, the requirements for establishing a reliable classifier are largely determined by 

the spectral distances of the bacteria under scrutiny. For very distinct phenotypes, intra-

species variations induced by changing conditions remain lower than inter-species distances. 

Consequently, a standard training set suffices to define the classes of an SVM model. This 

was the case of BC, BS, and SE in our work. For all conditions considered in this study, these 

species were correctly classified using a model trained on standard spectra. This observation 

may prove very useful in applications involving a small number of spectrally well-distinct 

microorganisms because the construction of a specific database is avoided. Our panel of 

bacteria contained also the spectrally close species EC and SM. For these two, intra-species 

variations dominated inter-species variations, and specific spectra had to be included in the 

training set. We demonstrated high sensitivity on EC and SM submitted to various growth 

conditions or measured directly in the AIR matrix when the training set included diversity. 

The TARH matrix, however, remained problematic. One reason for this was the higher 

impurity content of TARH, compared to AIR. This caused not only spectral distortions but 

also a sampling bias since the cells which were well distinct from non-specific particles—

often based on size and contrast—ended up measured more frequently. As a result, a tighter 

cluster of spectra was collected, making classification more challenging. The TARH case thus 

shows the limits of measurements made without sample preparation. 

Specific databases may not be well adapted for analyzing environmental samples, for which 

the precise history is most likely unknown. One may consider instead a comprehensive 

dataset consolidating all species and conditions available. This training set was referred to as 

exhaustive in this work, and was found to outperform the specific training set in most cases. 

Still, it should be kept in mind that adding diversity to the training set possibly leads to a 

degradation of the results when inter-species distances are small compared to the additional 

variability. Although this situation was not observed in the present work, it was reported in 

the case of a study involving several Bacillus strains (Hutsebaut et al. 2004). For this reason, 

we also considered an extended training set. It is a midpoint between specific and exhaustive 

training sets, with the goal of balancing diversity and performance. In our evaluations, this 

extended training set performed comparably to the exhaustive training set. This strategy is 

well adapted to samples where the exact matrix or exact bacterial strain is possibly missing 

from the training set, and has to be approximated (Stöckel et al. 2014; Kumar et al. 2015). 

Conclusion 

The promise of culture-free identification of bacteria in environmental samples by Raman 

spectroscopy is largely conditioned upon our ability to build robust statistical models with 

sufficient coverage. We demonstrated the feasibility of Raman typing from measurements 

performed non-ideal conditions, and investigated the identification robustness to deviations 

between conditions included in the statistical model and conditions of the sample. We started 

with a condition-specific model trained on a dataset matching at best the sample conditions. 

This approach lead to very satisfying identification results on a panel of five species measured 

directly in two environmental matrices relevant for field applications: atmospheric air 

dissolved in water, and condensed water from a cooling tower. This result is encouraging for 

the deployment of a Raman instrument in the field. Yet, difficulties appeared for the bacteria 

with the closest spectral signatures. This suggests a tradeoff between sample preparation and 

direct in situ measurements. We then varied the diversity content of the training set, with the 

goal of building a model with broad coverage. Two limit cases were considered: the least 

amount of diversity and all the diversity available. Interestingly, the model with least amount 

of diversity (trained solely on standard spectra) was sufficient to classify the most spectrally 
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distinct bacteria, independently of their conditions. The exhaustive model, on the other hand, 

resulted in very satisfying performance on the entire dataset. This last approach is promising 

for environmental samples since the investigated phenotype, or environmental matrix may be 

missing from the training set and need to be approximated. 

The results of this study will help refining the content of a bio-pathogens reference library 

currently under construction. By carefully selecting a library that accounts for the spectral 

distances between the pathogens of interest, as well as spectral variabilities resulting from 

non-ideal measurements, we anticipate that our Raman instrument will efficiently integrate 

the chain of analytical tools deployed in the field in response to biological threat. 
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