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I. NON-CAUSAL ENCODING AND DECODING
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Fig. 1. Non-Causal Encoding function f : U™ x 8™ — X™ and Decoding function g : Y" x Z" — V" .

Theorem I.1 (Non-Causal Encoding and Decoding)

1) Joint probability distribution Q(u, s, z,x,y,v) is achievable if and only if it decomposes as follows:

/

Q(u, S, Z) = Pusz(u7 S, 2)7

Qylz,s) =T (ylz, s), W
Y - (X,5) - (U, 2),

Z - (U,5) = (X,Y),
and Pys; (u, s,2) @ Q(x|u, s) @ T (y|z, s) ® Q(v|u, s, z, x,y) is achievable.
2) Joint probability distribution Pys;(u, s, 2) @ Q(z|u, s) @ T (y|z, s) @ Q(v|u, s, z,x,y) is achievable if:

max <I(WI,W2§Y72)_I(W17W2§Uvs)> > 0, ()
3) Joint probability distribution Pys;(u, s,2) @ Q(x|u, s) QT (y|x, s) @ Q(v|u, s, z, x,y) is not achievable

l:f:.
ma (I<W1;Y,er2> —f(Wz;U,srwo) <0, )

where Q is the set of distributions Q € A(U x S X Z x Wy X Wa x X x Y x V) with auxiliary random
variables (W1, Ws) that satisfies:

Z(w17w2)€W1 X Wa Q(”a S,2,W1,W2,2,Y, U)
= Pusz(”, S, Z) Y Q($|’LL, S) ® T(y|fE, S) ® Q(v|u, $,%2,Z, y)v
Y o (Xa S) —©- (U7 Z; Wl;WQ)v

Z o (U7 S) —-©- (X7KW17W2)7

V —e- (KZaWhWQ) - (Uv‘S’vX)
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The probability distribution Q € Q decomposes as follows:
Pusz(u, 8,2) @ Q(z|u, s) ® Q(wy, wa|u, s,7) @ T (ylz, s) ® Q(v|y, z, w1, ws).

The supports of the auxiliary random variables (W1, Ws) are bounded by max(|Wi|, | Ws|) < (|B|+1) -
(IB|+2) with B=UXSXZxXx)YxV.

Remark 1.2 The mutual informations in equation (2) are continuous over the set of probability
distributions Q. Moreover, QQ is compact since the supports of the auxiliary random variables (W7, W5)
are finite and Q has equality constraints. As mentioned in [8] pp. 7083 and in [2] pp. 9, we can consider

the maximum instead of the supremum in equation (2).

Remark 1.3 The achievability result of Theorem 1.1 without state informations S and Z was already

stated in [1], with a unique auxiliary random variable W = (W7, W5).

Remark 1.4 As mentioned in Theorem 1.1 1), probability distribution Q(u, s, z, z,y,v) should satisfy
the marginal distributions over the source Pys;(u, s, z), the channel 7 (y|z,s) and the Markov chains
representing the network topology. If a probability distribution Q(u, s, z,x,y,v) does not decomposes
with Pys;(u, s, 2) ® Q(z|u, s) T (y|z, s) @ Q(v|u, s, z, z,y), then the error probability can not converge
to zero and this probability distribution is not achievable. This remark is valid for all coding theorems

presented in this document.
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A. Achievability Proof

Denote by Q(u, s, z, z, w1, ws,y,v) € Q the joint probability distribution that achieves the maximum

in equation (2). There exists § > 0 and rate R > 0 such that :

R > I(Wy,WyU,S)+9, “
R < I(W,WyY,Z)—4. 5)
e Random codebook. We generate |M| = 2"R pairs of sequences (Wj'(m), W3 (m)) with index

m € M drawn from the i.i.d. marginal probability distribution Q"

WiW> *

e FEncoding function. The encoder observes the sequences of source symbols U"” € U™ and state
symbols S™ € S™. It finds the index m € M such that the sequences (U™, S™, W{*(m), W3'(m)) €
Ar™(Q) are jointly typical. Encoder sends the sequence X™ drawn from the conditional probability
distribution Qf?'zlswlvvz depending on sequences (U™, S™, Wi (m), Wi (m)).

e Decoding function. The decoder observes the pair of sequences (Y, Z™) and finds the index m € M

such that the sequences (Y™, Z™, W' (m), W3 (m)) € A" (Q) are jointly typical. Decoder returns the

®mn

sequence V" drawn from the conditional probability distribution QV|yZW1W2

(Y™, Zm, Wi(m), Wg'(m)).

depending on sequences

From the properties of typical sequences, packing and covering Lemmas stated in [9] pp. 27, 46 and
208, equations (4), (5), imply there exists a i € N such that the expected probability of error events are

bounded by ¢ for all n > n:

wfp((0n.5 ¢ 40@)] <= o
E, :7> <vm eM, (UM, 8" W (m), WE(m)) ¢ A:"(@)] <, @
E, :73 <3m’ £m, st (Y, Z0, Wi(m'), W(m')) A;”(g))] <e. @)

For all n > 7, there exists a code ¢* € C(n) such that sequences (U™, S™, Z", W{*(m), Wi (m), X", Y™, V") €
A%"(Q) are jointly typical for distribution Pys, (u, s, 2) ® Q(x, w1, wa|u, s) T (y|z, s) @ Q(v|y, 2, w1, wa)
with probability more than 1 — 3e.

The cardinality bound is stated in Lemma 6 in the Appendix. This concludes the achievability proof

of Theorem I.1.
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B. Converse Proof
We introduce the random event of error E € {0, 1} defined as follows:
b { 0 if [|Qn-9||,<e <« (U8, Z", X" Y" V") e A™(Q), ©
1oif [|Qn—-9l], > <« (U852 X"Y" V") ¢ A" (Q).
Consider a sequence of code ¢(n) € C that achieves the probability distribution Q(u, s, z, x,y, v), ie. for

which the probability of error Pe(c) = P(E = 1) is small. We have equations:

_ n n i—1 i—1
0 = Z[ Z+17 i+10 Li+1o Z+1,Y;,Z‘Y Z )

— ZI(Y"*,ZZ‘—%UZ-,S,-,E,ZA Tty S Yk, Z8) (10)
=1

Z[( i+1> Z+17 2—‘,—17 z+17E7Z‘YZ ! ZZ 1)

IN

- ZI(Yi—l,Zi—l;Ui,Si! P SE Y, Z0) (11)
i=1

= Y I(Wri Y5, ZilWas) — > I(Wa; Uy, Si|Whe). (12)
i=1 i=1

Equation (10) comes from Csiszar Sum Identity stated pp. 25 in [9].
Equation (11) comes from the properties of the mutual information.
Equation (12) comes from the introduction of the auxiliary random variables W;; =
(UM, 80,Y, Z% ) and Wa; = (Y1, Z'"1). The pair of random variables (Wi ;, W) satisfy

the three Markov Chains that correspond to the set of probability distributions Q:

}/i - (le SZ) - (U27 Zi7 Wl,i7 WQ,i)v (13)
Zi - (Ui, S;) —o= (X4, Y, Wi 3, Way), (14)
Vi o= (Y5, Zi, W13, Wa ;) o= (Ui, Si, Xi). (15)

e The first Markov chain comes from the memoryless property of the channel and the fact that Y; does
not belong to (W3 ;, Wa ;).

e The second Markov chain comes from the i.i.d. property of the source and the fact that Z; does not
belong to (W1 ;, Wa;).

e The third Markov chain comes from the non-causal decoding: V; is a function of the pair (Y, Z")

that is included in (Y;, Z;, W1 3, Wa ;).
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n n

0 < Y I(WiiY5, ZilWas) — Y I(Wa; Uy, Si|Wh,s)

i=1 =1
< n- <I(W1,T; Yr, Zp|Wor,T) — I(War; Ur, ST|W1,T,T)> (16)
< n- <I(W1,T7T§ Y7, Zr|\Wor) — I(War; Ur, ST!WLT,T)) (17)
< n-max <I(W1;YT,ZT|W2)—I(W2;UT,5T|W1)> (18)
< nrélgé <I(W1;YT,ZT\W2,E:O)—I(WQ;UT,ST]W1,E:0)+E> (19)
< nrélgé <I(W1;Y,Z\W2)—I(WQ;U,S\W1)+2€>. (20)
Equation (16) comes from the introduction of the uniform random variable 7" over {1,...,n} and the

introduction of the corresponding mean random variables Uz, St, Z7, Wi, Wor, X1, Y7, Z7.
Equation (17) comes from the properties of the mutual information.

Equation (18) comes from identifying W, with (W; 7, T") and Wy with W5 7 and taking the maximum
over the probability distributions Q that belong to Q. This is possible since the random variables (W5 7, T")
and Wy r satisfy the Markov chains of the set of probability distributions Q, as stated in Lemma 7 in
the Appendix.

Equation (19) comes from the empirical coordination requirement as stated in Lemma 8. Sequences are
not jointly typical with small error probability P(E = 1).

Equation (20) comes from Lemma 9 that states that the probability distribution induced by the coding
scheme P((UT,ST,ZT,XT,YT,VT) = (u,s,z,x,y,v)‘E = O) is closed to the target probability
distribution Q(u, s, z,x,y,v). The continuity of the entropy function stated pp. 33 in [10] concludes

the converse proof of Theorem I.1.
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II. PERFECT CHANNEL

n
n n l n
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Fig. 2. The perfect channel is defined by Tys = 1 (y|z) and the decoding is lossy.

Theorem II.1 (Perfect Channel)

1) The joint probability distribution Q(u, s, z,xz,v) is achievable if and only if it decomposes as follows:

Q(u, S, Z) = Pusz(u7 S, 2)7

2D
Z - (U,S) - X,

and Pusz(u, s, 2) @ Q(z|u, s) @ Q(v|u, s, z,x) is achievable.
2) The probability distribution Pys;(u, s, z) @ Q(x|u,s) @ Q(vlu, s, z, ) is achievable if:

max <I(W2;Z|X)+H(X)—I(X,W2;U,S)> > 0, (22)
3) The probability distribution Pys;(u, s, z) @ Q(x|u, s) @ Q(v|u, s, z, ) is not achievable if:

s (T0V2: 21%) + HX) ~ 10X Wai0.9)) <0, @3

€Qp

where Qp is the set of distributions Q € AU x S x Z x Wy x X x V) with auxiliary random variable
Wy that satisfies:
Zw2€W2 Q(uv S§,2, T, W2, ’U)

= Pusz(u, 8, 2) @ Q(z|u, s) ® Q(v|u, s, 2, ),

Z - (U,S) e (X, W2),

V - (X,Z,W;3) - (U, S).

The probability distribution Q € Q, decomposes as follows:
Qu, s, z,x,we,v) = Puysz(u,s,z)® Q(z|u,s) ® Qws|u, s,x) @ Q(v|x, z,ws).

The support of the auxiliary random variable Wy is bounded by [Ws| < |B|+1 with B=U x S x Z x
X XY XV

Remark II.2 This result generalizes the coding theorem of Wyner Ziv stated in [2].
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A. Achievability Proof

This proof can be obtained from achievability result of Sec. I-A, by replacing random variables Wy
and Y by X. Note that I(Ws; Z|X) + H(X) — I(X, W5, U, S) = (X, Wy; X, Z) — (X, Wy; U, S).
Denote by Q(u,s, z,x,w2,v) € Qp the joint probability distribution that achieves the maximum in

equation (22). There exists § > 0 and rate R > 0 such that :

R > I(X,WyU,S)+0, (24)
R < I(X,Wy; X,Z)—4. (25)
e Random codebook. We generate |M| = 2"R pairs of sequences (X™(m), W(m)) with index

m € M drawn from the i.i.d. marginal probability distribution Q?VV"Z .

e FEncoding function. The encoder observes the sequences of source symbols U” € U™ and state
symbols S € S™. It finds the index m € M such that the sequences (U", S™, X" (m), W3 (m)) €

A™(Q) are jointly typical. Encoder sends the corresponding sequence X" (m) through the channel.

e Decoding function. The decoder observes the pair of sequences (X", Z™) and finds the index m € M
such that the sequences (X", Z", X" (m), W3'(m)) € A:"(Q) are jointly typical (for probability
distribution Qxzw, ® 1,|,). Decoder returns the sequence V" drawn from the conditional probability
distribution Q?‘ZZWZ depending on sequences (X", Z", W3 (m)).

From the properties of typical sequences, packing and covering Lemmas stated in [9] pp. 27, 46 and

208, equations (24), (25), imply there exists a 7 € N such that the expected probability of error events

are bounded by ¢ for all n > n:

E. :P((U", S") ¢ A;"(Q))] <e, (26)
E. :7> (\m e M, (U8, X"(m), WE(m) ¢ A:”(g))} < @7
E. :79 <3m’ £m, st (X", 2", X"(m), Wi (m/)) € A;“(Q)ﬂ <e. (28)

For all n > 7, there exists a code ¢* € C(n) such that sequences (U", S", Z™, X™(m), W3 (m),V") €
AX™(Q) are jointly typical for distribution Py, (u, s, 2) @ Q(z, walu, s) ® Q(v|x, z,wy) with probability

more than 1 — 3e.
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10

The cardinality bound is stated in Lemma 6 in the Appendix. This concludes the achievability proof

of Theorem II.1.
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B. Converse Proof
We introduce the random event of error E € {0, 1} defined as follows:
b { 0 if [|Qn-9||,<e <+« (U"S",2Z", X" V") e A™(Q), 29)
1 if ||jQn—-Ql|, > < (U",5" 2" X" V") ¢ A(Q).
Consider a sequence of code c¢(n) € C that achieves the probability distribution Q(u, s, z, z,v), i.e. for

which the probability of error Pe(c) = P(E = 1) is small. We have equations:
0 = HX",ZY1E=0)-I1(X",Zz"U",S"|E=0)—HX",Z"lU",S",E =0) (30)
N H(X;, Z|E=0) - > I(X",Z" U, Si|Uf\, Sy, E = 0)

i=1 i=1
— H(X™,Z"U",8",E =0) 31)

IN

= iI(X“,Z", nL St X, ZiE = 0) — Zn:I(X",Z”, nL St Uy, SilE = 0)
— H(X" zZMun, 8" E=0)+n-¢e - (32)
= ZI(X",Z—", St Xy, Zi|E = 0) — zn:I(X",Z‘i, n St UL Si|E = 0)

; =1
+ zn:I(Z,-;X,-,Zi\X",Z—", HEY {‘H,E:O)—zn:I(Zi;Ui,S,-\X",Z_i, LS, E=0)
— ;I(IX” Z"u",S"E=0)4+n-¢ - (33)
= ZI(X“,Z—Z', n St 1 Xy, Zi| B = 0) — ZH:I(X",Z‘Z', n, St UL Si|E = 0)

i =1

+ Y H(Z|X", 27Uy, SP0 Ui Si B = 0) — H(X™, ZMU™, 8" E=0)+n-c (34)
i=1
< Y IX™Z7NUR SP X, ZiE =0) = Y I(X", 27 UR, S Us, S5l E = 0)
+ Y H(Z|U;, Si, E=0)— H(Z"|U",S",E=0)+n-2 (35)
i=1
< Y IX™Z7NUR SP X, ZiE =0) =Y I(X", 27U, 8P Ui, Si|E = 0) +n - 3e
(36)
= ) I(Xi,Wau; Xi, Zi|E = 0) — I(X;, Wai; Ui, S| E = 0) + - 3e. (37)

i=1
Equations (30) and (31) come from the properties of the mutual information.

Equation (32) comes from the i.i.d. property of the information source and Lemma 10 in the Appendix

April 22, 2015 DRAFT
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that implies > I(U},, S7.1; Ui, Si|E =0) < n -e.

Equations (33) and (34) come from the properties of the mutual information.

Equation (35) comes from the i.i.d. property of the information source (U, S, Z) and Lemma 10 in the Ap-
pendix that implies 1" | H(Z;| X", Z~*, U 1,5 1,U;, i, E=0) =Y H(Z;|U;, S;, E =0) < n-e.
Equation (36) comes from the i.i.d. property of the information source (U, S, Z) and Lemma 10 in the
Appendix that implies > | H(Z;|U;, S;, E =0) — H(Z"|U",S",E =0) <n-e.

Equation (37) comes from the introduction of the auxiliary random variable Wsy; =
(X4, 727, 21,5 1). The random variable W5 ; satisfy the Markov Chains that correspond to the

set of probability distributions QQ, corresponding to the perfect channel:
Z;i -~ (U;, Si) —— (Xi, Way), (38)
Vi o (X, Zi, Wa ;) = (U;, Si). (39)
e The first Markov chain comes from i.i.d. property of the source and the fact that Z; does not belong
to Wa;.

e The second Markov chain comes from the non-causal decoding: V; is a function of (X™, Z") that is

included in (X;, Z;, Wa,) = (X;, Z;, X4, Z 7, S Sit)-

n
0 < Y I(Xi,Wau; Xi, Zi|E = 0) — I(Xi, Wai; Ui, Si| E = 0) + 3ne
=1

= n- <I(XT, Wors Xp, Zr|T, E = 0) — I(Xg, Wa; Up, Sp|T, E = 0) + 3a> (40)

S n- (I(XT7 WQ,TaT;XTy ZT|E = 0) - I(XT7 WZ,TaT; UT7 ST|E — 0) + 35) (41)

< n- max <I(XT, Wa; X7, Zr|E = 0) — I( X7, Wa; Ur, ST|E = 0) + 36) (42)
€Q
< n'gla(é( (I(X,WQ;X,Z)—I(X,WQ;U,S)+4E>. (43)
€Q
Equation (40) comes from the introduction of the uniform random variable 7" over {1,...,n} and the

introduction of the corresponding mean random variables Uz, St, Zr, War, X7, V7.

Equation (41) comes from the i.i.d. property of the information source (U,S) and Lemma 11 in the
Appendix that implies I(7; Ur, St|E = 0) = 0.

Equation (42) comes from identifying W5 with (W5 p,7T') and taking the maximum over the probability
distributions that belong to Q,. This is possible since the random variables (W, 7, T') satisfy the Markov

chains of the set of probability distributions Q, as stated in Lemma 7 in the Appendix.
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Equation (43) comes from Lemma 9 that states that the probability distribution induced by the coding
scheme P((Ur, St, Zr, X1, Vr) = (u, s, z,:n,v)!E = 0) is closed to the target probability distribution

Q(u, s, z,x,y,v). The continuity of the entropy function stated pp. 33 in [10] concludes the converse

proof of Theorem II.1.
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ITI. LOSSLESS DECODING

ZTL

u" X" yn un

Pun ¢ (7 »
o L 7

Fig. 3. Noisy channel 7 (y|z, s) and lossless decoding 1 (i1|u).

Theorem III.1 (Lossless Decoding)

1) The joint probability distribution Q(u, s, z, x,y, ) is achievable if and only if it decomposes as follows:
Q(U, 37 Z) = PUSZ(U7 87 2)7

Qylz,s) = T(ylz,s),

Q(afu) = 1 (itfu), (44)

Y - (X,95) - (U, 2),

Z - (U,5) = (X,Y),
and Pusz(u, s,2) ® Q(xlu, s) @ T (y|x, s) @ L(a|u) is achievable.
2) The probability distribution Pys;(u, s, z) @ Q(x|u, s) @ T (y|x, s) ® 1(d|u) is achievable if:

o (10W3:v.2) = 10V 810) - 1)) > 0 @)
3) The probability distribution Pys;(u, s, z) ® Q(z|u,s) @ T (y|z,s) ® L(a|u) is not achievable if:
o (10 33%.2) — 10¥3810) = HQO) ) <o (6)
€Q

where Qy is the set of distributions Q € A(U X S X Z x Wy x X x Y x U) with auxiliary random

variable W that satisfies:
Zwlewl Q(ua S,2,W1,x,Y, ﬁ‘)
= Pusz(u, 8,2) ® Q(a|u, 5) @ T (y|z, s) ® L(afw),

Y o (X,S) - (U727W1)7

Z - (U,S) - (X,Y, ).

The probability distribution Q € Q, decomposes as follows:

Qu, s, z,w1,2,y,0) = Pusz(u,8,2) @ Qx|u,s) ® Qwi|u, s,z) @ T (y|z,s) @ Q(u|u).

April 22, 2015 DRAFT
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The support of the auxiliary random variables W is bounded by Wy| < |B|+ 1 with B=U xS x Z x
X xYxVW.

Remark II1.2 This result was already stated in [4] and [5] with a more restrictive lossless decoding

constraint: P(U” # U™) < e. It generalizes the coding theorem of Gel’fand Pinsker stated in [3].

April 22, 2015 DRAFT



16

A. Achievability Proof

This proof can be obtained from the achievability result of Sec. I-A, by replacing random variables
Wy and V by U. Note that (U, W1;Y,Z) — I(Wy; S|U) — H{U) = I(W1,U;Y, Z) — I(W1,U; U, S).
Denote by Q(u, s, z, w1, z,y,u) € Q the joint probability distribution that achieves the maximum in

equation (45). There exists § > 0 and rate R > 0 such that :

R > I(Wy,U;U,S)+3, (47)
R < I(W,U;Y,Z)—o. (48)
e Random codebook. We generate |M| = 2"R pairs of sequences (W' (m),U"(m)) with index

m € M drawn from the i.i.d. marginal probability distribution Q"

Wwiu*
e FEncoding function. The encoder observes the sequences of source symbols U" € U™ and state

symbols S™ € S™. It finds the index m € M such that the sequences (U™, S™, W' (m),U™(m)) €

AZ"(Q) are jointly typical (for probability distribution Quew, ® 1,,). Encoder sends a se-
®n

x|uswy

quence X" drawn from the conditional probability distribution Q

(5™, Wit (m), U™ (m)).

depending on sequences

e Decoding function. The decoder observes the pair of sequences (Y, Z™) and finds the index m € M
such that the sequences (Y, Z"™, W{*(m),U™(m)) € Af"(Q) are jointly typical. Decoder returns
the sequence U™ = U"(m).

From the properties of typical sequences, packing and covering Lemmas stated in [9] pp. 27, 46 and
208, equations (47), (48), imply there exists a 7 € N such that the expected probability of error events

are bounded by ¢ for all n > n:

E. _’P<(U", S™) ¢ A;”(Q))] <e, (49)
B[P (vme M, (078" W ). 0 (m) ¢ 47(@)) | <= (50)
E. -77 <E|m' #m, s.t. (Y™, Z", W] (m'),U™(m')) € A;"(Q))} <e. (51)

For all n > 7, there exists a code ¢* € C(n) such that sequences (U™, S", Z", W*(m), X", Y™, U") €
A"(Q) are jointly typical for distribution Pys,(u,s,2) ® Q(z,wilu,s) ® T (y|z,s) ® L(a|u) with

probability more than 1 — 3e.
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The cardinality bound is stated in Lemma 6 in the Appendix. This concludes the achievability proof
of Theorem III.1.

An alternative achievability proof based on superposition coding can be found in [4] and [5].
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B. Converse Proof
We introduce the random event of error E € {0, 1} defined as follows:
b { 0 if [|Qn-9||,<e <« (U"S",Z",X"Y"U") € A™(Q), 52)
1if |jQ"-Q||, > = (U",S",Z" X" Y"U") ¢ A™(Q).
Consider a sequence of code ¢(n) € C that achieves the probability distribution Q(u, s, z,x,y, 1), i.e.

for which the probability of error Pe(c) = P(E = 1) is small. We have equations:

n-HU) = HU (53)
= H(E)+ H(U™E) — H(E|U") (54)
< 1+P(E=0)-HU"E=0)+PE=1)- HU"E =1) (55)
< 1+ HU"|E=0)+P(E=1)-n-log, U (56)
< HU'WE=0)+n-e. (57)

Equation (53) comes from the i.i.d. property of the source.

Equations (54), (55) and (56) comes from the properties of the mutual information.

Equation (57) comes from the hypothesis of small error probability Pe(c) = P(E = 1) and large length
n € N of the codewords, hence 2 + P(E = 1) - log, [U| < e.
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HU"E=0) = I{U%Y" Z"E=0)+HU"Y",Z",E =0) (58)
= I(U%:Y",ZME=0)+n-¢ (59)
= > IUMY, ZilY 27 E=0)+n-¢ (60)
i=1
< Y UYL ZTNY, Zi|E=0)+n e 61)
i=1

n
= > IU" Y 27 S8 Y, Zi|E = 0)

i=1

n
— S ISR Y ZUT YT 2 E=0) - 62)
=1

n
= > IU" Y, 2, 873V, Zi|E = 0)

i=1

— ZI(SZ-;Yi—l,Z"—HU", "L, E=0)+n-¢ (63)

i=1

n
= ZI(UivU_i7Yi_17Zi_lv :L+1aYYuZZ|E:0)

i=1

- Y (S UTL YL 2 S UL E = 0) +n - 2 (64)

i=1
n n
= Y I(U, W13 Ys, ZlE =0) = > I(W1;Si|U, E=0)+n-2. (65

i=1 i=1
Equation (58) comes from the properties of the mutual information.
Equation (59) comes from Fano’s inequality that implies H(U"|Y™,Z",E = 0) < n - ¢, as stated in
Lemma 1.
Equation (60), (61) and (62) come from the properties of the mutual information.
Equation (63) comes from Csiszdr Sum Identity stated pp. 25 in [9].
Equation (64) comes from the independence of random variables (U;,S;) with (U~*, S% ;) that implies
that 37" | I(S; U, S |Us, E = 0) < n-e, as stated in Lemma 10 in the Appendix.
Equation (65) comes from the introduction of the auxiliary random variable Wy, = (U, Y1 S ).
The Markov chain property Y; —e— (X, S;) —o— (U;, W1 ;) is satisfied for all i € {1,...,n} since the
channel is memoryless and Y; do not belong to W ;. The random variable W ; belongs to the set of

probability distributions Q, for lossless decoding.
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HU"E=0) < Y I(Us,W1:Y;, Zi|E=0)= > I(Wy;8i|Us, E=0)+n-2e

i=1 i=1

= n- <I(UT, Wl,T;YTa ZTlT,E = 0) — I(WI,T§ STlUT,T,E = 0) + 26) (66)

= n- (I(UT, Wi, T;Yr, Zp|E = 0) = IWh, 7, T; S7|Ur, E = 0)

— I(T;Yp,Zp|E =0) + I(T; Sp|Up, E = O)+2a> (67)
< n- (I(UT, Wy, T;Yr, Zp|E =0) = I(Wy 7, T; Sp|Ur, E = 0) + 25) (68)
< nmax <I(UT, Wy Yo, Zr|E = 0) — I(Wy; Sp|Ur, E = 0) + 25) (69)
< nmax (I(U, Wh:Y, Z) — I(Wy; S|U) + 35). (70)
Equation (66) comes from the introduction of the uniform random variable 7" over {1,...,n} and the

corresponding mean random variables Ur, S, Zr, Wi r, X1, Yr, ﬁT.
Equation (67) comes from the properties of the mutual information.
Equation (68) comes from the independence of T' with (Urp, St) that implies I(T; Sp|Ur, E = 0) = 0,
as stated in Lemma 11 in the Appendix. The memoryless property of the channel guarantees that the pair
of random variable (W, 1, T) satisfies the Markov chain Y7 —e- (X7, St) -~ (Up, Wy 7, T). Hence the
pair (W 7, T) belongs to the set of probability distributions @y, as stated in Lemma 7 in the Appendix.
Equation (69) comes from taking the maximum over the probability distributions Q that belong to
Q. Equation (70) comes from Lemma 9 that states that the probability distribution induced by the
coding scheme P((UT, St, Zr, X1, Yr, U}) = (u,s,2,2,y,14) ‘E = 0) is closed to the target probability
distribution Q(u, s, z, x,y, 4). The continuity of the entropy function stated pp. 33 in [10] concludes.
Combining equations (57) and (70) gives equation (71). It is satisfied for all ¢(n) € C that achieves

the probability distribution Q(u, s, z, z,y,0).

H(U) < max <I(U, Wh:Y, Z) — I(Wy; S|U) + 4e>. (71)

This concludes the converse proof of Theorem III.1.
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Lemma 1 By Fano’s inequality, we have the following equation:

HU"Y",Z" E=0)<n-e¢. (72)

Proof IIL.3 (Proof of Lemma 1) The decoding g : Y" x Z"™ — U™ is deterministic, hence
H(U™|Y™ Z" E = 0) = 0. We have the following equations:

HU"|Yy", Z"\E=0) < HU",U"[Y", Z" E=0) (73)
< H{U™y"™ zZ",E=0)+HU"|U",Y", Z",E = 0) (74)
< H{U™U",E=0) (75)
< - (HOUID) +e) (76)
= n-e. 77

Equations (73) and (74) come from the properties of the entropy.

Equation (75) comes from the deterministic decoding: U” is a deterministic function of (Y™, zm).
Equation (76) comes from the cardinality bound log, ‘{u" s.t.u” € A;”(ﬂ")}‘ <n- (H(U|U) + 6),
on the set of sequences ' that are jointly typical with 4",

Equation (77) comes from the target joint distribution Q(u, s, z, x,y,4) that satisfy Q(u|u) = 1(d|u)
hence H(U|U) = 0.
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IV. SEPARATION BETWEEN SOURCE AND CHANNEL

ZTL

I

Fig. 4. Random variables of the source (U, Z, V') are independent of the random variables of the channel (S, X,Y).

Theorem IV.1 (Separation between Source and Channel)
1) The product of probability distribution Q(u, z,v)Q Q(s, x,y) is achievable if and only if it decomposes
as follows:
Q(’LL, Z) = Puz(u7 Z),
QA(s) = Ps(s), (78)
Qylz, s) =T (ylz, s).
and Pyz(u, z) ® Q(vlu, 2) @ Ps(s) ® Q(z|s) @ T (y|z, s) is achievable.
2) Joint probability distribution Py,(u,z) @ Q(v|u, z) ® Ps(s) @ Q(z|s) @ T (y|z, s) is achievable if:

o (FOV3:Y) 4 10¥2: 2) = 10¥158) ~ 1075 0) ) 0, 79)

e S

3) Joint probability distribution Pyz(u, z) @ Q(v|u, z) @ Ps(s) @ Q(z|s) ® T (y|x, s) is not achievable if:
o 10V 4 1(W2s.2) = 10743 9) ~ 1072:0)) <0, 50)

where Qs is the set @ € A(UX ZX Wy x V) x A(SX Wy x X xY) of product of probability distributions

with auxiliary random variables (W1, W3) that satisfies:
Z(M1,M2)€W1XW2 Q(U, 2, W2, U) & Q(Su Z,ws, y)

= Puz(u, 2) @ Qv]u, 2) © Ps(s) @ Q(x]s) @ T(y|x, s),
Y o (X,S5) o W7,

Z U - W,

V -o (Z,Ws) - U.

The probability distribution Q € Qs decomposes as follows:

Puz(u, 2) @ Q(walu) @ Q(v]z, wa) ® Ps(s) @ Q(z|s) @ Q(wi|s,x) @ T (y|x, s).
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The supports of the auxiliary random variables (W1, Ws) are bounded by max(|W |, [Wa|) < (|B]+1) -
(IB|+2) with B=UXSXZxX XY xV.

Remark IV.2 This separation result was already stated in [6] for a given distortion level and a given

channel cost.
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A. Achievability Proof

The achievability proof is based on the combination of the achievability proof of Gel’fand Pinsker [3]
and the achievability proof of Wynzer Ziv [2].
Denote by Q(u,z,ws,v) ® Q(s,z,w1,y) € Qs the joint probability distribution that achieves the

maximum in equation (79). There exists 6 > 0 and rates R > 0, R, > 0 and R, > 0 such that :

R+Ry, > I(WyU)+6, (81)

R, > I(W;8)+6, (82)

R+R, < IWpY)-—4, (83)

R, < I(Wy;Z)—6. (84)

e Random codebook. Source Codebook: We generate |M x My,| = 2MMR+Ru) sequences

W3 (m,l2) drawn from the i.i.d. probability Q%" with indexes by (m,lz) € M x My,.
Channel Codebook: We generate |[M x M|, | = 2"(R+RuL) sequences W (m,l;) drawn from

the i.i.d. probability Q%™ with indexes (m,l;) € M x My,.

e Encoding function. Encoder observes the source sequence U™ and find the indexes (m,ly) €
M x My, such that (U™, W3 (m,lz)) € A"(Q) are jointly typical. For each index m € M,
it finds an index 1 € M|, such that (S™, W*(m,l;)) € A" (Q) are jointly typical. Encoder sends
the sequence X" drawn from the probability Qf?‘gwl depending on (S™, W{'(m,11)).

e Decoding function. The decoder observes the output sequence Y™ and the sequence of state infor-
mation Z". It finds the pair of indexes (m,l;) € M x M|, such that (Y™, W*(m,l;)) € A (Q).
It finds the index lp € My, such that (Z", W3'(m,l2)) € A" (Q). It returns the sequence V" drawn
from the probability Q\?‘;‘WZ depending on (Z", W3}).

From the properties of typical sequences, packing and covering Lemmas stated in [9] pp. 27, 46 and

208, equations (81), (82), (83), (84) imply there exists a 7 € N such that the expected probability of
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error events are bounded by ¢ for all n > n

E. _’P< ¢ ATM(Q >} (85)
5[ <S" ¢ A™(Q )] (86)
E, :7> <\7(m,zz) eEMx My, (U, WP(m, 1)) ¢ A;”(Q))] <e, (87)
E|P (vzl eMy, (S",Wim,b)) ¢ A;"(Q)ﬂ <e, (88)
E. -P<3(m’, 1) # (m,ly), st (Y, Wi/, 1})) € A;"(Q))] <e, (89)
E, b(azg £ 1y, st (27, W(m, 1)) € A;"(Q)ﬂ <e. (90)

For all n > 7, there exists a code ¢* € C(n) such that sequences (U™, S™, Z™, W (m, 1), Wi (m,l2),
X" Y™ V) e A (Q) are jointly typical for distribution Py, (u, 2) ® Q(wa|u) ® Q(v|z, w2) @ Ps(s) ®
Q(x|s) ® Q(wyls,x) ® T (y|z, s), with probability more than 1 — 6e.

The cardinality bound is stated in Lemma 6 in the Appendix. This concludes the achievability proof
of Theorem IV.1.
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B. Converse Proof

We consider the product of probability distribution Q(u, z,v)® Q(s, x,y) and we introduce the random

event of error £ € {0, 1} defined as follows:

E:{O if [jQ"-Ql[,<e <= (U"S"Z"X"Y"V")e A (Q), o

1oif [|Qn—-9l], > <« (U™85"Z", X" Y™ V") ¢ A (Q).
Consider a sequence of code c¢(n) € C that achieves the probability distribution Q(u, z,v) ® Q(s,z,y),
i.e. for which the probability of error Pe(c) = P(E = 1) is small.

Upper Bound. For every code, the random variables satisfy the following equations:

I({U™Y"|E =0)

= Y IUMY Y E=0) (92)
=1

< Y IU"YTLY|E =0) 93)
=1

= D IO YL SE G YIE =0) = Y I(SE ViU YL E = 0) (94)
=1 =1

= Y IU"Y"LSEYE=0)- ) I(S; YU, S, E = 0) (95)
=1 =1

= Y IU"Y"L SR YE=0) =) I(S; UYL SE[E=0)+n-e (96)
=1 =1

= Y IW1sY|E=0)—Y I(Wi;;S|E=0)+mn-e (97)
=1 i=1

Equations (92), (93) and (94) come from the properties of the mutual information.

Equation (95) comes from Csiszdr Sum Identity stated pp. 25 in [9].

Equation (96) comes from the i.i.d. property of the information source U and the independence with the
channel states S, hence by Lemma 10 in the Appendix: >>1" | I(S; U™, S]'|E =0) < n-e.

Equation (97) comes from the introduction of the auxiliary random variable W7 ; = (U™, Y1, )
The Markov chain property Y; —-e- (X;, S;) -o- Wy ; is satisfied since the channel is memoryless and Y;

is not included in W7y ;.
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Lower Bound. For every code, the random variables satisfy the following equations:

I({U™Y"|E =0)
= I(U",Z™Y"|E =0) 98)
> I({U™Y"Z" E =0) 99)
S Uy U B = o) (100)
=1
> zn:I(UZ-;Y",Z_i,Ui_1|ZZ-,E:0) —n-e (101)
=1

= > IU;, 25", 2 U E =0) = > I(Z; Y™, 27U E=0)—n-c  (102)

i=1 =1

= Y IU;Y", 2 U E=0)= Y I(Z;Y", 27\ U E=0)—n-c (103)
i=1 =1

= Y I(U;WoulE=0) = > I(Zi;Wau|E=0)—n-e. (104)
=1 =1

Equation (98) comes from the Markov chain Z" -e- U™ -~ Y.

Equations (99) and (100) come from the properties of the mutual information.

Equation (101) comes from the i.i.d. property of the information sources (U, Z) and Lemma 10 in the
Appendix that implies > " I(U;; 274, U Z;, E =0) <n-e.

Equation (102) comes from the properties of the mutual information.

Equation (103) comes from the Markov chain property Z; e U; -~ (Y™, Z~% U*~!) that is valid for all
i €{l,...,n}. This comes from the i.i.d. property of the source (U, Z).

Equation (104) comes from the introduction of the auxiliary random variable Wo,; = (Y, Z~¢ U™1).
The random variable W5 ; satisfies the Markov Chains that correspond to the set of product probability

distributions Qs for the separation between source and channel:
Zi —o— UZ —— W277;7 (105)

e The first Markov chain comes from the i.i.d. property of the source and the fact that Z; does not belong
to W27Z'.
e The second Markov chain comes from the non-causal decoding: V; is a function of (Y™, Z™) that is

included in (Z;, Wa;) = (Z;, Y™, Z7H, U 1).
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Combining upper and lower bounds. Equations (97) and (104) give equation (107):

0 < Y IW13Yi|E=0)—> I(Wi;Si|E =0)

i=1 =1
+ Y I(Wois Zi|E=0) = > I(WyiUi|E=0)+n-2 (107)
i=1 =1

= n- <I(W1,T;YT|T,E =0) — I(Whir;S7|T, E =0)

+ I(W2,T§ ZT‘T, E = 0) - I(W2,T§ UT’T,E = O) + 26) (108)

IN

n- <I(WLT,T; Y7|E = 0) — I(Wy.0,T; Sp|E = 0)
+ I(Warp,T; Zp|E = 0) — I(Wap, T; Ug|E = 0) + 2e> (109)

< n- <I(W17T,T; Y) — I(WLT,T; S) + I(WZT,T; Z) — I(WZT,T; U) + 3€> (110)

< n- max <I(W1;Y) +I(Wo; Z) — I(W1;S) — I(Wa U) + 3€>. (111)
€
Equation (108) comes from the introduction of the uniform random variable 7" over {1,...,n} and the

corresponding mean random variables Ur, S, Zr, Wi 7, War, X7, Y7, V1.

Equation (109) comes from the independence of 7' with St and with Ur as stated in Lemma 11 in the
Appendix. This implies [(T; Sp|E = 0) = I(T;Ur|E = 0) = 0.

Equation (110) comes from replacing the mean random variables (Ur,St, Zp, X, Yy, V) by the
random variables (U, S,Z, X,Y,V) with probability distribution Q(u,z,v) ® 9Q(s,z,y). Lemma 9
states that the probability distribution induced by the coding scheme P((ST, Ur, Zp, Xy, Yy, V) =
(s,u,z,x,y, v)|E = 0) is closed to the target probability distribution Q(u, z,v) ® Q(s,x,y). It remains
to apply the continuity of the entropy function stated pp. 33 in [10] to obtain this upper bound with the
additional error term: n - €.

Equation (111) comes from identifying W, and Wy with (W; 7,T) and (Wor,T) and taking the
maximum over the distributions Q(u, z,w2,v) ® Q(s,z,wi,y) € Qs. Auxiliary random variables
Wy = (Wi, T) and Wy = (Wor,T) satisty the three Markov chains of the set Qs as stated in

Lemma 7 in the Appendix:

Y o (X, §) o~ W1, (112)
7 o U - W, (113)
Vo (Z,W,) - U. (114)
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Remark IV.3 By construction, W; and W5 are correlated since Wy ; = (U n yi-l Zﬂrl) and Wo,; =
(Y™, Z=% U~1) have a common part, namely (U*~!, Y1), However, the random variables of the
channel (S, X,Y’) are independent of ones of the source (U, Z, V). Hence, the optimal distribution for
maximizing the first term I(Wy;Y") — I(WW1;S) of equation (111) does not depends on the distribution of
random variables W5 and (U, Z, V). Similarly, the optimal distribution for maximizing the second term

I(Wy; Z) — I(Wy; U) of equation (111) does not depends on the distribution of random variables W
and (S, X,Y).

max <E[f(X)] +E[9(Y)D - maxE[f(X)] +mQ%xE[g(Y)} — max (E[f(X)] +E[9(Y)]>.

% Ox xR Qv
Hence, the optimal distribution Q € Qg for the optimization problem of equation (111) is a product
of independent probability distributions Q(u, z, ws,v) ® Q(s,x,w,y). The author would like to thank
Pablo Piantanida, Matthieu Bloch and Claudio Weidmann for useful discussions about the independence

of the auxiliary random variables (W7, W3) for this converse.
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V. CAUSAL DECODING

Zi

" X" Y Vi

()
Pusz C \D D
s" t !

Fig. 5. Non-causal encoding function f : U™ x S™ — A'™ and causal decoding function g; : Y* x Z* — Vforalli € {1,...,n}.

Theorem V.1 (Causal Decoding)

1) Joint probability distribution Q(u, s, z,x,y,v) is achievable if and only if it decomposes as follows:
Q(U, 37 Z) = PUSZ(U7 87 2)7

Qyla, s) = T(ylz, ),

(115)
Y o (X, 5) = (U, 2),

Z - (U,S) - (X,Y).
and Pys; (u, s,2) @ Q(x|u, s) @ T (y|z, s) ® Q(v|u, s, z, x,y) is achievable.
2) Joint probability distribution Pys;(u, s,2) ® Q(z|u, 8) @ T (y|z, s) ® Q(v|u, s, 2, z,y) is achievable if:

qlax <I(W1;Y,Z|W2)—I(W1,W2;U75)> > 0, (116)
€Qq
3) Joint probability distribution Pys;(u, s, z) @ Q(x|u, s) T (y|x, s) ® Q(v|u, s, z,x,y) is not achievable

qlax <I(W1;Y,Z|W2) — I(W1,Wa; U, S)) <0, (117)

where Qq is the set of distributions Q € A(U X S X Z X Wy X Wo X X x Y x V) with auxiliary random
variables (W1, W5) that satisfies:
Z(wl,wg)EV\h X Wa Q(uv $,%2,W1, W2, Z,Y, 1))
— Pusz(ua S, Z) ® Q(.’L"U, S) ® T(ylxu S) ® Q(’U|U, $,2,7, y)7
Y - (Xa S) - (Uv Za WlaWQ)v

Z - (Ua S) —©- (X7KW17W2)5

V o (Y, Z,Ws) - (U, S, X, W).
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The probability distribution Q € Qg decomposes as follows:
Pusz(u, 8, 2) ® Q(x|u, s) ® Q(wy, walu, s,x) @ T (ylz, s) @ Q(v|y, z,ws).

The supports of the auxiliary random variables (W1, W3) are bounded by: max(|Wy|, [Wa|) < (|1B| +
D-(IB|+2)with B=UxXxS X ZxXxYxV.

Remark V.2 Note that the last Markov chain is different from the previous results for coordination since

V' is generated using Q(vly, z, w2) instead of Q(vly, z, w1, ws).

Remark V.3 This result was already stated in [7] without considering state informations at the encoder

S and at the decoder Z.
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A. Achievability Proof

We consider a probability distribution Q € Q4 that satisfies equation (116). There exists a § > 0 and

rates R > 0, R > 0 such that:

R > I(WyU,S)+9, (118)
R. > I(Wy;U,S,Ws) + 4, (119)
R+R. < I(WyY,Z,W,) — 6. (120)

We consider a block-Markov random code ¢ € C(n) defined over B € N blocs of length n € N. The

total length of the code is denoted by N =n-B € N.

e Random codebook. We generate |M| = 2"R sequences W4 (m) drawn from the i.i.d. probability
distribution Q2™ with index m € M. We generate |[M x M| = 2"RTRY sequences W (m, 1)

drawn from the i.i.d. probability distribution Q" with indexes (m,l) € M x ML.

e Encoding function. At block b € {2,... B — 1}, the encoder observes the sequence of symbols of
source and state (Uj',,,S5;, ) € U™ x 8™ over the next block b + 1. It finds an index m € M
such that the sequences (Up, 1, Sy, 1, Wa'y, 1 (m)) € AZ"(Q) are jointly typical. Encoder observes
the jointly typical sequences of symbols (U}*, S}', Wz’fb) e U" x 8" x W5 of the current block b and

finds the index [ € M such that the sequences (Uy', Sy', Wy, Wi, (m, 1)) € AZ"(Q) are jointly

Xn

typical. Encoder sends the sequence X;' drawn from the transition probability Qxlus\Nle

on the sequences (U}, S, W3, W', (m,1)) of block b € N.

depending

e Decoding function. At the end of block b € {2,... B—1}, the decoder observes the pair of sequences
(Y}", Z}') and recalls the sequence W', of block b € N. It finds the indexes (m, ) € M x M| such
that (Y*, Zp', W3y, Wi (m, 1)) € AZ"(Q) are jointly typical. It deduces the sequence W3, (m)

corresponding to index m € M over the block b + 1 € N. In the next block b+ 1 € N, it

Xn

returns the sequence V' ; drawn from the transition probability Qv|yzwz

(Yzﬁrlv Zl?—i—l? W£b+1 (m)).

depending on the sequences

e First bloc. Encoder finds the index m € M such that the sequences (U;!, Sy, W3, (m)) € A" are

jointly typical in the second block b. It sends index m € M to the decoder using classical Gel’fand
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Pinsker [3] coding scheme. Decoder returns an arbitrary sequence of symbols V" € V™.

Remark V.4 In the first bloc, Gel’fand Pinsker [3] coding scheme can be used to transmit index
m € M. Consider (U, S) as state information for the encoder, Y as decoder output and Z as state
information of the decoder. Equation (116) proves that there exists a distribution Q,,,|us such that

I(W;Y,Z)— I(W;U,S) > 0.

0 < I(Wi;Y,Z,Wa) — I(Wy:U, S, Wa) — I(Wa; U, S) (121)
= I(W;Y, Z|W2) — I(Wh; U, S|Wa) — I(Wo; U, S) (122)
= I(WyY, Z|Wa) — I(W1,Wa; U, S) (123)
= I(Wi,WaY, Z) — I(Wy, Wa: U, 8) — [(Wa: Y, Z) (124)
< max ([(W; Y, Z) — I(W;U, S)) —I(WasY, Z). (125)

Xxw |us

Hence Gel’fand Pinsker [3] coding scheme can be used at a rate strictly greater than I(Ws;Y, Z).
If it is necessary, the length n € N of the first block can be adapted to transmit the index m € M

reliably.

e Last bloc. Encoder sends a sequence of symbols X33 € A™ jointly typical with the se-

quences (Ug, Sk, W3'p) € U™ x 8" x W3. Decoder returns the sequence Vj drawn from

Xn
v]yzw,

(UB, Sk, 25, X5, YE, Vi) € A (Q) are jointly typical over the last block.

the transition probability Q depending on the sequences (Yg,Zg,WQ”’B). The sequences

=1, b b+1,6+2, |

um,sm) ' : Y NANNMNN ,
A A A |

Wk ' : X A 3 '

| | [ i | |

| /// | |

[y SSSN SN NS :

| | | | | |

| | | | | |

X" < N } | |

| [ [ | | |

| | | | | |

(Y, 2" eSS S SRS Sy :
NN

Wy | | ~ ] | |

| | l | 1 | | |
ittt

| | | | | |
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For each block b € {2,..., B}, the properties of typical sequences, packing and covering lemmas
stated in [9] pp. 27, 46 and 208, equations (118), (119), (120) imply there exists a 7 € N such that the

expected probability of error events are bounded by ¢ for all n > #:

. [P((.sm ¢ 47(@) | <, (126)
E. _P (Vm eM, ((Ugy1,Spi1, Wapir(m)) & A;"(Q))] <e, (127)
E. P <\ﬂ e My, (U7, Sy Wiy, Wiy(m,1)) ¢ A;"(Q)ﬂ <e, (128)
E. _P<E|(m’,l’) # (m, 1), s.t. (Yy', Z5, Wy, W (m/, 1)) € A;“(Q)ﬂ <e. (129)

For each block b € {2,..., B}, for all n > n, there exists a code ¢* € C(n) such that sequences
(U, Sy 2y s Wy Wl Xt Yy Vi) € Af™(Q) are jointly typical for distribution Pys(u, 8, 2) @
Q(x|u, s) ® Q(wy, walu, s,x) @ T (y|z,s) @ Q(v|y, z,ws) with probability more than 1 — 4e.

We denote by @N € AUXS X ZxX x)Y xV), the empirical distribution of symbols over every blocs
b€ {2,...,B} removing the first bloc. We show @N is close to the empirical distribution Q™ over all the
B blocks, for a number of block B € N sufficiently large, i.e. for which % JUXSEXZXXxYXxV| <e.

We denote by ()1, the empirical distribution of symbols over the first bloc.

v -],
- (onesa) @,
— %.HQl—@N tv§%~‘UxSxeX><y><V <e.

Then, the expected error probability is bounded by e.

)

QN -QN+QN -9

QY -9

)

QN—@N((+((©N—Q tvzz-:)]

VZQE—%-‘UXSXZXXXJ/XVD}

Q¥ -2

IN
=
o

b

t

B-1

Z€>]§1—<1—4E> )
tv

April 22, 2015 DRAFT

Q¥ -2

IN
=
o

b

IA
=
[¢)
h!
P N N N



35

This implies the existence of a code ¢* € C(N) with an error probability below (1 — 4e)P~1 for all
N >DB-n.
The cardinality bound is stated in Lemma 6 in the Appendix. This concludes the achievability proof

of Theorem V.1.
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B. Converse Proof

We consider the joint probability distribution Q(u, s, z, x,y,v) and we introduce the random event of

error E € {0,1} defined as follows:

E:{o if [lQ"-9|[,<e < (U8 2" X" Y V") e A(Q), 130

1 if HQ” — QHtV >e < (U",S™,Z", X" Y" V") ¢ A(Q).
Consider a sequence of code ¢(n) € C that achieves the probability distribution Q(u, s, z, x, y, v), i.e. for
which the probability of error Pe(c) = P(E = 1) goes to zero. We have the following equations:

n n
0 = > UL, P Y, ZilY' 270 = > IV, 275 U3, Sil Uy, ST (131)
i=1 1=1

n n
= Y U SEs Y ZIYTL 27N = (YT 2 USSP U S (132)
i=1 1=1

= > I(Wri Y, Zi|Way) — Y I(Wai, Wai Uy, ;). (133)
i=1 =1

Equation (131) comes from Csiszar Sum Identity stated pp. 25 in [9].

Equation (132) comes from the i.i.d. property of the information source (U,S) that implies
I(U;, Si; Ufy 1, 87 ,) = 0 for all i € {1,...,n}.

Equation (133) comes from the introduction of the auxiliary random variables Wy ; = (U, S ;) and

Wa,; = (Y1, Z"=1). The two random variables (W, ;, Wa ;) satisfy the Markov Chains corresponding

to the set of probability distributions Qyq:

Zi - (UZ7SZ) —©- (Xi,}/i,Wl,i,WZi), (134)
Y o (X4, Si) = (Ui, Ziy, Wi, Waji), (135)
Vi o= (Y3, Zi, Wa,i) o= (Ui, Si, Xi, Wii). (136)

e The first Markov chain comes from i.i.d. property of the source and the fact that Z; does not belong
to (Wi, Wa,).

e The second Markov chain comes from memoryless property of the channel and the fact that Y; does
not belong to (Wi ;, Wa;).

e The third Markov chain comes from the causal decoding: V; is a function of (Y, Z%) that corresponds

to (Y;lyzivyi_lv Zi_l) = (lea Zi7W2,i)-
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0 = ZH:I(WM; Yi, Zi\Wa,;) — Xn:f(Wlm Wa; U, Si) (137)
i=1 i=1

= n-: <I(W1,T; Yr, Zp\Wor, T) — I(Wip, Wor; Ur, ST|T)> (138)

= n- <I(W1,T; Yr, Zp|\Wor, T) — I(Wyp, W r,T; Ur, ST)> (139)

< nemax (I(W1; Y, Zp|Wa) — I(W1, Wa; Ur, ST)) (140)

< nrélgé <I(W1;YT,ZT\W2,E:O) —I(Wl,WQ;UT,ST]E:0)+E> (141)

< nrélgé (I(Wl;Y,Z\Wg)—I(Wl,Wg;U,S)—i—QE). (142)

Equation (138) comes from the introduction of the uniform random variable 7" over {1,...,n} and the

introduction of the corresponding mean random variables Uz, St, Z7, Wi, Wor, X1, Y7, Vr.
Equation (139) comes from the i.i.d. property of the information source that implies I(7’; Ur, St) = 0.
Equation (140) comes from identifying W, and W5 with W; 1 and (W5 7, T) and taking the maximum
over the probability distributions that belong to Qq. This is made possible since the random variables
Wi, and (Wa r,T) satisfies the three Markov chains of the set of probability distributions Qg, as stated
in Lemma 7 in the Appendix.

Equation (141) comes from the empirical coordination requirement as stated in Lemma 8 in the Appendix.
Sequences are not jointly typical with small error probability P(E = 1).

Equation (142) comes from Lemma 9 that states that the probability distribution induced by the coding
scheme P((UT, St, Zr, X7, Yr,Vr) = (u,s,z,x,vy, v)‘E = O) is closed to the target probability
distribution Q(u, s, z, x,y,v). The continuity of the entropy function stated pp. 33 in [10] concludes.

This concludes the converse proof of Theorem V.1.
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VI. CAUSAL ENCODING

Zn

()
Pusz ‘ C \D D
S t !

Fig. 6. Causal encoding function f; : U* xS* — X, forall i € {1,...,n} and non-causal decoding function g : Y™ x Z" — V"

Theorem VI.1 (Causal Encoding)

1) Joint probability distribution Q(u, s, z,x,y,v) is achievable if and only if it decomposes as follows:

/

Q(u, s, z) = Pusz(u, 8, 2),
Qylz,s) =T (ylz, s),
Y o (X,5) - (U, 2),

(143)

Z - (U,S) - (X,Y).
and Pusz (U, s,2) @ Q(z|u, s) @ T (y|z, s) ® Q(v|u, s, z,x,y) is achievable.
2) Joint probability distribution Pys;(u, s, 2) @ Q(z|u, s) @ T (y|z, s) ® Q(v|u, s, z,x,y) is achievable if:

gleaéi <[(W1,W2;Y, Z) — [(Wg;U,S’Wﬂ) > 0, (144)

3) Joint probability distribution Pys;(u, s, z) @ Q(x|u, s) T (y|x, s) ® Q(v|u, s, z,x,y) is not achievable

max <I<W1, Was Y, Z) — I(Wa; U, S|W1>) <0, (145)
E e

where Qe is the set of probability distributions Q € AU X S X Z X W1 X Wa x X x Y x V) with
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auxiliary random variables (W1, W5) that satisfies:

2w wa)ewn xwy Qs 8,2, W1, w2, T, Y, v)
= Pusz(u, 5, 2) ® Q(z|u, s) @ T (y|z, s) @ Q(v|u, s, z,x,9y),
(U, S) independent of W1,
X - (U, S, W;) - Wa,
Y o (X,8) e (U, Z, Wy, Ws),

Z - (Ua S) —©- (X7KW17W2);

V - (Y, Z, W1, Ws) = (U, S, X).

The probability distribution Q € Qe decomposes as follows:
PUSZ(uv S, Z) & Q(wl) ® Q(w2|u’ S, wl) ® Q($|u7 S, wl) ® T(y|3:, S) ® Q(’U|y, 2, wlyw2)'

The supports of the auxiliary random variables (W1, Ws) are bounded by max(|Wi|,|Wa|) < (|B|+1) -
(IB|+2) with B=UXS X ZXxX x) x V.

Remark VI.2 This result was already stated in [1] without considering state informations at the encoder

S and at the decoder Z.
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A. Achievability Proof

We consider a probability distribution @ € Q. that achieves the maximum in equation (144). There

exists a 6 > 0 and a rate R > 0 such that:

R

v

I(Wa2; U, S|Wh) + 6, (146)
R < I(WyY,Z) +I(Was Y, Z|Wh) — 0 = I(Wy, W3 Y, Z) — 6. (147)

We consider a block-Markov random code ¢ € C(n) defined over B € N blocs of length n € N. The

total length of the code is denoted by N = n - B € N and R denotes the rate of the code.

e Random codebook. We generate |M| = 2"R sequences W/ (m) drawn from the i.i.d. probability
distribution Q\%l" with index m € M. For each index m € M, we generate the same number
|M| = 2"R of sequences W5 (m, 1) with index 11 € M, drawn from the i.i.d. conditional probability

distribution Q\%’;“Wl depending on sequence W' (m).

e Encoding function. At the beginning of block b € {2,... B—1}, the encoder observes the sequences
of source symbols (U, S} ;) € U™ x 8™ of the previous block b — 1. It also recalls the index
mp—1 € M of the sequence W (my_1) € W} over block b — 1. It finds index m; € M such that
the sequences (U;' |, S |, W' (mp—1), W3 (mp—1,mp)) € AF"(Q) are jointly typical. It deduces

the sequence W' (m;) corresponding to the current block b € {2,... B — 1}. Encoder sends the

®n

sequence X;' drawn from the conditional probability Qx‘uswl

depending on sequences W{*(m;) and

(U, Sy) observed causally on the current block b € {2,... B — 1}.

Remark VI.3 An alternative encoder can choose index m; € M such that the sequences
O, Sy, X, W (mp—1), W3t (mp—1,mp)) € AX*(Q) are jointly typical, including with
sequence X;' ;. This alternative encoder introduces more correlation between the random variables
and the Markov chain X -e- (U, S, W) -e- W5 is removed. However the corresponding rate constraint
writes I(Wo; U, S, X|W1) = I(Wa; U, S|Wy) + I(Wy; X|W1,U, S). Hence, the price of removing
the Markov chain X —e- (U, S, W;) -o- Ws is equal to I(Wo; X|W7,U, S) and the converse proof

concludes it is not optimal.

e Decoding function. At the end of block b € {2,...B — 1}, the decoder recalls sequences

(Y,",,Z} ) and the index my_; € M corresponding to the sequence W' (my_1). It observes
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the sequences (Y}, Z]') and finds index m;, € M such that (Y;*, Z;, W'(my)) € A(Q)

and (Y|, 2 |, W (mp—1), W3 (mp—1,mp)) € A"(Q) are jointly typical. Decoder returns

Xn

sequence V" ; drawn from the conditional probability distribution Q
v|yzwiw,

(Y, Zp s Wi (mp—1), W (mp—1,mp)).

depending on sequences

e First bloc at the encoder. An arbitrary index m; € M of W{*(m;) € WY{ is given to both encoder C
and decoder D. Encoder sends the sequence X;' drawn from the conditional probability distribution
Qf?'ﬁswl depending on sequences Wi'(m1) and (Uy', S;' ) observed causally on the current block b;.
At the beginning of the second bloc b, encoder recalls (Uj!, Sy, W{*(m1)) and finds index mo
such that sequences (Uy', Sy, W' (m1), W3 (m1, mz)) € AZ"(Q) are jointly typical. Encoder sends

the sequence X;! drawn from the conditional probability Qf?'gswl depending on sequences W (m2)

and (Uy., Sy ) observed causally on the second block by.

e First bloc at the decoder. At the end of second block by, the decoder finds the index mo
such that (Yb’Z,ZIZ,W{L(mg)) € A(Q) and (Y},’f,Zﬁ,W{L(ml),Wg(ml,mg)) € AM(Q) are

jointly typical. Over the first bloc, decoder D returns V' € V" drawn from the condi-

Xn
v|yzwiw,

(U, Sy, Zit , Wit(ma ), Wat (ma, ma), X, Y0, Vi) € A" (Q) are jointly typical over the first block
by.

tional probability Q depending on sequences (Y}?, Zp', Wi'(m1), W3 (m1,ma)). Sequences

e Last bloc. Encoder C and decoder D choose arbitrary sequences X7 and Vj. Sequences are not

jointly typical on the last block.

Remark VI4 The source and state (U,S) are jointly encoded using two streams of information
represented by the auxiliary random variables W and W,. Auxiliary random variable W5 is used to
quantify the past source and the past codeword (U, S, W7). The quantification index is transmitted in the

next block using codeword W;. This process works in this way from one block to another.

For each block b € {1,..., B — 1}, the properties of typical sequences, packing and covering lemmas

stated in [9] pp. 27, 46 and 208, equations (146), (147) imply there exists a 7 € N such that the expected
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ib—2b—-1, b b+1,

3
S I B I

> H%j >

__.___‘.___é___7___74___..___,z___ ‘

—-7‘———"‘\:4———5———7-——7‘\—7‘-——"

probability of error events are bounded by ¢ for all n > n:
. [P(.sm ¢ 4n@) | <. (149

E. P(Vm eM, (U}q,Sy 1, Wi (mp—1), W3 (mp—1,m)) ¢ A:”(Q))] <&, (149)

E. 7><3m' £m, st {(Yb", Z0, Wi (m')) € A;"(Q)} N

{(Ybn—lv Zy oy, W (mp1), W5 (mp—1, m')) € A;"(Q)}ﬂ <e. (150)

Lemma 2 proves that equation (147) implies equation (150).

For each block b € {1,...,B — 1}, for all n > 7, there exists a code ¢* € C(n) such that sequences
ap, Sy, Zy , Wit(mg), Wat (mp, mps1), X1, Y1, V') € AR™(Q) are jointly typical for the probability
distribution Pys;(u, s,2) ® Q(wi) ® Q(wa|u, s, w) ® Qz|u, s,w1) T (y|z, s) @ Q(v|y, z, w1, ws) with
probability more than 1 — 3e.

We denote by @N € A(UXS X ZxX xYxV), the empirical distribution of symbols over every blocs
be{l,...,B—1} removing the last bloc. We show @N is close to the empirical distribution Q¥ over all

the B blocks, for a number of blocks B € N sufficiently large, i.e. for which % AUXSEXZXXXYXV| < €.
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We denote by ), the empirical distribution of symbols over the last bloc.

Then, the expected error probability is bounded by e.

IN

<

<

lo-a|,

|5 (B +as) -

%.HQB_@N tvg%-‘UxSxeXxyxV <e.
7.0)

:7>< QY -0 tvz%ﬂ

:7>< QN -QN+QN -2 wzza)]

(o~ +[j0* -], =)

:79< oN -0 tv22s—%(uX3xeXxyxvm
:7>< QN -0 tvzz-:)] <1- <1—3s>B_1.

This implies the existence of a code ¢* € C(N) with an error probability below (1 — 3¢)P~! for all

N > B -n.

The cardinality bound is stated in Lemma 6 in the Appendix. This concludes the achievability proof

of Theorem VI.1.
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Lemma 2 (Packing Lemma)
R < I(WyY,2)+ (WY, Z|W1) — 8 = (Wi, Wa; Y, Z) — 4, (151)

For each block b € {1,...,B — 1} and for each previous message my,_1, equation (151) implies that for
all € > 0, there exists a n € N such that for all n > n, the expected error probability is upper bounded

by € > 0, as stated in equation (152).
E. [73 <3m' £m, st {(Yb", Z0, Wi (m')) € A;"(Q)} N
{01, 230 W ), W (my, ') € A;ﬂ(g)})] < (s
Proof VI.5 (Lemma 2) Consider € > 0 that satisfies § > 7. Hence, we have:
R—I(Y,Z,Wh) — I(Y, Z;Ws|W;) 4+ 6 < —§ + b6 < —¢. (153)

We have the following equations:

[P (3 # . sa {00 2 W) € 4@}

{0 20 W2 ) W3 .)€ 2:7(@)) ) 154
< X efp({ovzpwren) e an@) o
m’'#m
{0000 23 Wm0 W3 () € 4220} ) (155
- 3 fp(0r o) € 4@
m’'#m
» e [P (04102502 W ), W 1) € 42@)) (156)
<> X slp(enzwre - wean)]
m/#m (yn,z7 wi)eA™(Q)
x > [P0 2 W) W) = ) )] a5

(ym2mwiwy) €A™ (Q)
Equation (154) comes from the definition of the error event for block b € {1,..., B —1}. Notations Y™,
Z™ stand for Y"(m), Z™(m) corresponding to the correct index m € M.
Equation (155) comes from Boole’s inequality.
Equation (156) comes from the independence of the random variables (Y}, Z;', W{*(m')) over block b
with the random variables (Y} ,, Z}" |, W{"(my_1), W3'(my—1,m')) over block b — 1. This comes from
the i.i.d. property of the source, the codebook with independent codewords and the block-Markov coding

process.
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Equation (157) comes from Boole’s inequality.

> X epp(enawre) =)

m/#m (yn,z"wi) €A™ (Q)

X Z Ec |:'P((YL"1,ZZ?1,W1n(mb_1)7W2n(mb_l7m/)) = (ynvznvw?vwg)>]

(ym,zmwitwy) €Az (Q)

> 0% mfp(ez=one)| <elp(wre) = ut)]

m/#Fm (y",2" wi) €A™ (Q)

« ¥ & P (05 2 W ) = () )|

(2w,

cArn(Q)

IN

x E. [’P (WQ"(mb_l, m') = wj

Wit (mp—1) = w’f)} (158)

—-n (H(Y,Z)s) —-n (H(Wl)s)
> > 2 X 2

m/#m (ym,z"wi) €A™ (Q)

—n H(Y,Z,Wl)—é‘) —n(H(WgIWl)—E)
X Z 2 ( X 2 (159)

IN

(=" Wl wh)

€Arn(Q)
n<H(Y,Z,W1)H(Y,Z)H(W1)+3s> n(H(Y,Z,Wl,Wg)H(Y,Z,Wl)H(W2W1)+35)
< Z 2 X 2 (160)
m’'#m
n(I(Y,Z;Wl)I(Y,Z;W2W1)+6s>
< 2"R %2 (161)
n<F{1(Y,Z;W1)I(Y,Z;W2W1)+6s>
= 2 (162)
< 9TmeE, (163)

Equation (158) comes from the independence of the sequences (Y}, Z;") with W{*(m'). The codebook
with superposition induces that the sequence W3'(my_1, m’) depends on W7 (mjp_1).
Equations (159), (160), (161), (162) comes from the properties of the typical sequences and of the mutual
information.
Equation (163) comes from the choice of £ > 0 that satisfies § > Te.

This proves that there exists a 7 such that for all n > n, equation (152) is satisfied. This concludes

the proof of Lemma 2.
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B. Converse Proof

We consider the joint probability distribution Q(u, s, z, x,y,v) and we introduce the random event of

error E € {0,1} defined as follows:

E:{ol lQn—-9Ql|, <e <« (U"8" 2" X" Y", V") € A™(Q), 6

1if ||jQn-Ql], > <= (U™,5" 2" X" Y™ V") ¢ A(Q).
Consider a sequence of code ¢(n) € C that achieves the probability distribution Q(u, s, z, x, y, v), i.e. for
which the probability of error Pe(c) = P(E = 1) goes to zero. The converse is based on the following
equations:

0 = Z[(Ui_lﬂsi_l;yhzi‘ ij—l? i+1 Z[ z+17 z—l—l’UZ?S‘UZ ! SZ 1) (165)
=1

S IUT STLYR 20 YL Z) ZI 2R UL SUTTL ST (166)

IN

n n
= > I(Wii,Wais¥i, Zi) = Y T(Wa; Ui, Si| W ). (167)
i=1 =1
Equation (165) comes from Csiszar Sum Identity stated pp. 25 in [9].
Equation (166) comes from the properties of the mutual information.
Equation (167) comes from the introduction of the auxiliary random variables Wy ; = (U*~1, $*~1) and

Wa; = (Y%, 2 ). For all i € {1,...,n}, the auxiliary random variables Wy ; and W5 ; satisfy the

properties corresponding to the set of probability distributions Qe:

(Us, S;) are independent of W1 ;, (168)
X; = (U, Si, Wi ;) o= Way, (169)
Y e (X5, Si) o (Ui, Zi, W1 i, Wa), (170)
Zi - (U, Si) = (X3, Y3, Wy 4, Wa ), (171)
Vi (Y3, Zi, Wi 3, Wa ;) - (Us, S, X). (172)

e Equation (168) comes from the i.i.d. property of the source and states (U,S) that implies that
Wi = (U1, S%71) is independent of (U;, S;).

e Equation (169) comes from the causal encoding function that implies that X; is a deterministic function
of (U, S;, U=1, 8=t which is equal to (U;, S;, Wi ;).

e Equation (170) comes from the memoryless property of the channel and the fact that Y; is not included

in (Wl,i, WQJ').
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e Equation (171) comes from the i.i.d. property of the source and states (U;, S;, Z;) and the fact that Z;
is not included in (W ;, Wa ;).

e Equation (172) comes from the causal encoding and the non-causal decoding as stated in Lemma 3.

Equation (167) gives:

n

0 < Y I(Wii, Wi Vi, Zi) — Y I(Wais Us, Si| W)

i=1 =1
= n- <I(W1,T, Wor;Yr, Zp|T) — I(Wa,r; Ur, ST|W1,T,T)> (173)
< nemax <I(W1, W Yr, Zr) — I(Wa; Ur, ST|W1)> (174)
< nrélgé (I(Wl,Wg;YT,ZT\E:O) —I(WQ;UT,ST]W1,E:0)+E> (175)
= n-max <I(W1,W2;Y,Z)—I(WQ;U,S|W1)+2€>. (176)
Equation (173) comes from the introduction of the uniform random variable 7" over {1,...,n} and the

introduction of the corresponding mean random variables Ur, St, Zr, Wi, Wor, X1, Y7, V7.
Equation (174) comes from identifying W, and W5 with (W) 7, T") and Wy 1 and taking the maximum
over the probability distributions that belong to the set Q.. This is possible since the random variables
(Wi, T) and Wo r satisfy the properties of the set of probability distributions Q. as stated in Lemma
7 in the Appendix.

Equation (175) comes from the empirical coordination requirement as stated in Lemma 8 in the Appendix.
Sequences are not jointly typical with small error probability P(E = 1).

Equation (176) comes from Lemma 9 that states that the probability distribution induced by the coding
scheme P((UT, St, Zr, X7, Yr,Vr) = (u,s, z,x,y,v)‘E = O) is closed to the target probability
distribution Q(u, s, z, x,y,v). The continuity of the entropy function stated pp. 33 in [10] concludes.

This concludes the proof of Theorem VI.1.
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Lemma 3 Markov chain V; - (Y;, Z;, W1 ;, Wa ;) —o— (U;, Si, X;) is satisfied for all i € {1,... ,n}.
Proof VI.6 (Lemma 3) We evaluate the following probability:
PWViYs, Zi, Wi, Wi, Us, Si, X;)
= P(W‘K7Zi7Ui_lasi_17 i:L-h 7,+17UZ7SZ7X)

= Z P(%in_17Yi_17Zi_1|YYivzi7Ui_17Si_17YYi:L—17 2+17U27517X) (177)
Xi-1yi-1 zi-1

= Z P(Zi_lnfhziaUi_175i_17}/izl-17 z+17U27527X)
Xi-1Yyi-1 gi-1

X P(Xi_l‘}/:iuZ’i7Ui_l7Si_17}/;'7j-17 7,+17U27527XlazZ 1)
X P(Yi_l‘K7Zi7Ui_lasi_17 i:L-h 7,+17UZ7SZ7XZ7ZZ ! XZ 1)

X P(W‘K7Zi7Ui_lasi_17 i:L-hZin-{-luU’i7Si7Xi7Zi_17Xi_17Yi_1)' (178)

We can remove (U;, S;, X;), in the four conditional probability distributions:

P(ZNY;, 2, U ST YL 20 U 8 X)) = P2y, 2, U ST YL 20, (179)

PXTNY, 2, U ST Y 20U, 80 X, 2 = PPy, z, U st v 2 2, (180)
POYITNY, 2, U ST Y 20 U S X, 2 X = Py Ty, 2, U ST Y 20, 2 XY, as
PWVilYs, Z;, U 8T Y, 200, U;, 8, X, 2 XL YT = Py, 2, U s vz 2 X Y as

Equation (179) comes from the i.i.d. property of the information source: Z‘~!' only depends on
(Ui-1, 51,

Equation (180) comes from the causal encoding: X! is a deterministic function of (U*~!, §*=1).
Equation (181) comes from the memoryless property of the channel: Y*~! only depends on (X?~! §¢=1),
Equation (182) comes from the non-causal decoding: V; is a deterministic function of (Y",2Z") =
(Y=L Y, Y, 27 20, 22 ).

Hence we have:

P(‘/ZD/M Zi7 Wl,ia W2,i7 Ui7 Si7 XZ)

= oo PVLXTLYTL 2N, 2, U ST Y 2 ) (183)
Xifl’yifl’Zifl

= PWViY;, Z;, U1, 8 YL, 20 ) (184)

= PWVilY;, Zi, W1, Wa ;). (185)

The above equation corresponds to the Markov chain V; - (Y}, Z;, W1 ;, Wa ;) —o— (U;, S;, X;) and it

concludes the proof of Lemma 3.
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VII. STRICTLY CAUSAL DECODING

n Xn 1—1 ‘/;
P ¢ @ Y o
!

Fig. 7. Non-causal encoding function f : U™ x S™ — X'™ and strictly causal decoding function g; : V™! x 21 — V for all
1e€{1,...,n}

Theorem VII.1 (Strictly Causal Decoding)

1) Joint probability distribution Q(u, s, z,x,y,v) is achievable if and only if it decomposes as follows:
Q(u, s, 2) = Pusz(u, 8, 2),

Qylz,s) = T(ylz, s),

Y o (X,5) - (U,Z,V),

(186)

Z - (U,S) - (X,Y,V).
and Pys; (u, 8,2) @ Q(x,v|u, s) @ T (y|z, s) is achievable.
2) Joint probability distribution Pys,(u, s,z) @ Q(z,v|u,s) @ T (y|x, s) is achievable if:

max <I(W1;Y,Z|V) —I(W,V; U, S)) > 0, (187)

QEQsd

3) Joint probability distribution Pys,(u, s,z) @ Q(z,v|u, s) @ T (y|x, s) is not achievable if:

max <I(W1;Y,Z|V) —I(W,V; U, S)) <0, (188)

QEQsd
where Qgq is the set of distributions Q € A(U X S x Z x Wy x X x Y x V) with auxiliary random

variable W that satisfies:
Zwlewl Q(uv S,2,W1,2,Y, 1))

= Pasaltty 5, 2) ® Oz, vlu, 5) ® T(ylz, 5),
Y o (X7 S) —-©- (U7 Z7 Wluv)u

Z - (U,S) o (X,Y, W, V).

The probability distribution Q € Qsq decomposes as follows:
Pusz(“, S, Z) ® Q(:Ev ’U|’LL, S) ® Q(wl |’LL, S, T, U) ® T(y|$7 S).
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The supports of the auxiliary random variable Wy is bounded by: Wh| < |B|+ 1 with B=U x S x
ZXX XY X

Remark VIIL.2 Strictly causal decoding requires the output of the decoder V' is not directly correlated
with (Y, Z). Hence, the general probability distributions Pys(u,s,z) @ Q(z|u,s) @ T(y|lr,s) ®
Q(vlu, s, z,z,y) reduces to Pys;(u, s, 2) @ Oz, v|u, s) @ T (y|z, s).

Remark VIL.3 This result was already stated in [7] without considering state informations at the encoder

S and at the decoder Z.
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A. Achievability Proof

The achievability proof is very similar to the one of Theorem V.1 for causal decoding replacing W
by V. We consider a probability distribution Q € Qgq that satisfies equation (187). There exists a § > 0

and rates R > 0, R > 0 such that:

R > I(V:U,S)+5, (189)
R+R. < I(WyY,Z,V)—6. (191)

We consider a block-Markov random code ¢ € C(n) defined over B € N blocs of length n € N. The
total length of the code is denoted by N =n-B € N.

e Random codebook. We generate |M| = 2"R sequences V"(m) drawn from the i.i.d. probability
distribution Q2™ with index m € M. We generate |M x M| = 2"R+R sequences W' (m, 1)

drawn from the i.i.d. probability distribution Q3" with indexes (m,l) € M x ML.

e Encoding function. At block b € {2,...B — 1}, the encoder observes the sequence of symbols
of source and state (U, 54, ;) € U™ x 8™ of the next block b + 1. It finds an index m € M
such that the sequences (U}, Sy, 1, V) (m)) € AZ"(Q) are jointly typical. Encoder observes the
jointly typical sequences of symbols (U;*, Sp, V') € U™ x S™ x V"™ of the current block b and finds

the index [ € M| such that the sequences (U, Sy, V", W', (m,1)) € A:"(Q) are jointly typical.

Xn

Encoder sends the sequence X;' drawn from the transition probability Q
X|usvwy

sequences (Uy', Sy, Vy", W', (m, 1)) of block b € N.

depending on the

e Decoding function. At the end of block b € {2,... B—1}, the decoder observes the pair of sequences
(Y}, Z}') and recalls the sequence V;" of block b € N. It finds the indexes (m,l) € M x M such
that (Y, Z]', V', W], (m, 1)) € Af"(Q) are jointly typical. In the next block b+ 1 € N, it returns

the sequence V}\ ;(m) corresponding to index m € M over the block b+ 1 € N.

e First bloc. Encoder finds the index m € M such that the sequences (U}, Sy, Vi'(m)) € A" are
jointly typical in the second block b. It sends index m € M to the decoder using classical Gel’fand

Pinsker [3] coding scheme. Decoder returns an arbitrary sequence of symbols V" € V™.
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Remark VIL.4 In the first bloc, Gel’fand Pinsker [3] coding scheme can be used to transmit index
m € M. Consider (U, S) as state information of the encoder, Y as decoder output and Z as state
information of the decoder. Equation (187) proves that there exists a distribution Q,,,|,s such that

IW:Y,Z) — I(W;U,S) > 0.

0 < IWpY,Z,V)—I(W;U,S,V)—I(V;U,S) (192)
= I(W.Y, Z|V) — I(Wy; U, S|V) — I(V;U, S) (193)
= I(W.Y,Z|V) - I(W,V;U,S) (194)
= I(W1,V;Y,Z)— I(W1,V;U,S) — I(V:Y, Z) (195)
< max (1W:Y,2) = 10W3U,9)) = 1(V3Y, 2). (196)

Hence Gel’fand Pinsker [3] coding scheme can be used at a rate strictly greater than I(V;Y, 7). If
it is necessary, the length n € N of the first block can be adapted to transmit the index m € M

reliably.

e Last bloc. Encoder sends a sequence of symbols X33 € A™ jointly typical with the se-
quences (Ug,S%,VE) € U™ x 8™ x V". Decoder returns the sequence Vj. The sequences

(UR, Sk, 2%, X5, YE, Vi) € A™(Q) are jointly typical over the last block.

For each block b € {2,..., B}, the properties of typical sequences, packing and covering lemmas
stated in [9] pp. 27, 46 and 208, equations (189), (190), (191) imply there exists a 7 € N such that the

expected probability of error events are bounded by ¢ for all n > n:

. [P((07,57) ¢ 47(9)) | <= (197
B[P (Y e M, (WSt W) £ 42(@)) | <= (198
E. —77 (Vl € My, (U, Sy, V", Wity(m, 1)) ¢ A;"(Q))} <e, (199)
E. —73 (El(m’,l’) # (m, 1), s.t. (Y, Zy, V', Wity (m', 1)) € A;"(Q))} <e. (200)
For each block b E {2,...,B}, for all n > @, there exists a code ¢* € C(n) such that sequences

(U, S5, 25, W, Xit Yy, Vi) € AZ(Q) are jointly typical for distribution Pys; (u, s, 2)@Q(z, v|u, 5)®
Q(w1|u, s,x,v) @ T (y|x, s) with probability more than 1 — 4e.
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The remaining of the proof is very similar to the achievability part of Theorem V.1. The cardinality

bound is stated in Lemma 6 in the Appendix. This concludes the achievability proof of Theorem VII.1.
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B. Converse Proof

We consider the joint probability distribution Q(u, s, z, x,y,v) and we introduce the random event of
error E € {0,1} defined as follows:

v (201)

E_{ 0 if ||Q"-9||,<e <= (U",S",Z" X", Y", V") e A(Q),
1 if HQ"—QHW>5 — (U",8",Z", X" Y", V") ¢ A(Q).

Consider a sequence of code ¢(n) € C that achieves the probability distribution Q(u, s, z, x, y,v), i.e. for

which the probability of error Pe(c) = P(E = 1) goes to zero. We have the following equations:

0 = ZI nL St Y, Z| Y 7 Z[ vl Zih Uy, S Ur, ST ) (202)
=1
n . .
— Z[( RS Y, Z YT 2 = Y I 2 U, ST UL S) (203)

n
— Z[( RS Z YT 2 V) = Y I 2 U 8P Vis U, S) - (204)

IA

n
ZI(Yi—l,Zi—l, PSP Ye ZiVe) = > I 2 U LS ViU, Si)(209)

n n
= D I(Wis Y, Zi|Vi) = Y I(Wh, Vis Ui, Si). (206)
i=1 i=1
Equation (202) comes from Csiszdr Sum Identity stated pp. 25 in [9].

Equation (203) comes from the i.i.d. property of the information source (U,S) that implies
I(U;, Si; Uy, 8% ) =0 foralli € {1,...,n}.
Equation (204) comes from the strictly causal decoding that implies V; is a deterministic function of

(Y1, Zi=1). Hence, for all i € {1,...,n} we have:
I(Vi; Uy, S Y=Yz oy, St y) = 0, (207)
(U7, P Yo, ZlY'H 270 = IURy, SEG Ya, ZiYH, 2071 V) (208)
= I(Vi;UMy, P Ya, Zi Y 27 = 0. (209)

Equation (205) comes from the properties of the mutual information.
Equation (206) comes from the introduction of the auxiliary random variable W;; =
(yi=l,z=1,ur 5" ,) that satisfies the Markov Chains corresponding to the set of probability

distributions Qsq:
Zi = (U, ;) = (X3, Y, W13, Vi), (210)

Y, o (X;,5;) = (Ui, Zi, Wh,, V). (211)

April 22, 2015 DRAFT



55

e The first Markov chain comes from i.i.d. property of the source and the fact that Z; does not belong
to Wl,i~
e The second Markov chain comes from memoryless property of the channel and the fact that Y; does

not belong to Wy ;.

n n

0 = > I(WiiYi, ZilVi) = Y I(Wi, Vis Uy, Sy) 212)
i=1 i=1

= n- <I(W1,T; Yr, Zp|Ve,T) — I(Whr, V; Ur, ST]T)> (213)

< n- <I(W1,T,T; Yr, Zr|\Vr) — I(Wir, T, Vr; Ur, ST)> (214)

< n- max <I(W1; Yr, Zr|V) — I(W1,V; Ur, ST)) (215)

< nrélgé <I(W1;YT,ZT\V,E:O) — I(W4,V; UT,ST]E:0)+E> (216)

< n - max <I(W1;Y,Z|V)—I(Wl,V;U,S)+2€>. (217)

Equation (213) comes from the introduction of the uniform random variable 7" over {1,...,n} and the

introduction of the corresponding mean random variables Ur, St, Zr, Wi, X7, Y7, V7.

Equation (214) comes from the i.i.d. property of the information source that implies I(T; Up, St) = 0.
Equation (215) comes from identifying W, with (W; 7, T') and taking the maximum over the probability
distributions that belong to Qsg. This is made possible since the pair of random variables (W5 7,T’)
satisfies the three Markov chains of the set of probability distributions QQsq, as stated in Lemma 7 in the
Appendix.

Equation (216) comes from the empirical coordination requirement as stated in Lemma 8 in the Appendix.
Sequences are not jointly typical with small error probability P(E = 1).

Equation (217) comes from Lemma 9 that states the probability distribution induced by the coding scheme
P((UT,ST,ZT,XT,YT,VT) = (u,s,z,w,y,v)|E = O) is closed to the target probability distribution
Q(u, s, z,x,y,v). The continuity of the entropy function stated pp. 33 in [10] concludes.

This concludes the converse proof of Theorem VII.1.
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VIII. STRICTLY CAUSAL ENCODING

ZTL
Ui—l X. yn V&L
7DUSZ C . K-T\ D
st ] \H
Fig. 8. Strictly causal encoding function f; : U*~! x 8™ — X, for all i € {1,...,n} and non-causal decoding function

g: YY" x Z" > VY".

Theorem VIIIL.1 (Strictly Causal Encoding)

1) Joint probability distribution Q(u, s, z,x,y,v) is achievable if and only if it decomposes as follows:
(

Q(u, s, z) = Pusz(u, 8, 2),
Qylz, s) = T(ylz, s),
(U, S) independent of X, (218)

Y o (X,95) - (U, 2),

Z - (U,S) - (X,Y).
and Pys; (u, s,2) @ Q(x) @ T (y|z, s) @ Q(v|u, s, z,z,y) is achievable.
2) Joint probability distribution Pys,(u, s,z) ® Q(z) @ T (y|x, s) ® Q(v|u, s, 2, x,y) is achievable if:

max <I(X, Wa: Y, Z) — I(Wa: U,S!X)) >0, (219)
e se
3) Joint probability distribution Pys;(u, s,z) @ Q(z) @ T (y|x, s) @ Q(v|u, s, z, x,y) is not achievable if:
max <I(X, Was Y, Z) — I(Wo; U,S|X)> <0, (220)
e se

where Qse is the set of probability distributions Q € A(U X S X Z X Wy X X x Y x V) with auxiliary
random variable Wy that satisfies:
D wsew, Qs 8,2, w2, 2,y,v)
= Pusz(u, 5,2) ® Q) @ T (ylz, s) ® Qv|u, s, 2,2, y),
(U, S) independent of X,
Y o (X,S5) - (U, Z, W),

Z - (U,S) - (X7Y7W2)7

Ve (Y,Z,X,Ws) - (U,S).
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The probability distribution Q € Qse decomposes as follows:
Pusz(u, 5,2) @ Qx) © Qwslu, s,2) @ T (ylz, s) @ Qvly, 2,2, wy).

The supports of the auxiliary random variable Wy is bounded by |Ws| < |B| 4+ 1 with B=U x S X Z x
X XY XV

Remark VIIL.2 Strictly causal encoding requires the channel input X to be independent of the source
and state (U,S). Hence, the general probability distributions Py, (u, s,2) @ Q(z|u,s) @ T (y|z,s) ®
Q(vlu, s, z,x,y) reduces 10 Pusz(u, s,2) @ Q) @ T (ylz, s) ® Qvlu, s,z,y, 2).

Remark VIIL.3 This result was already stated in [1] without considering state informations at the encoder

S and at the decoder Z.
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A. Achievability Proof

The achievability proof is very similar to the one of Theorem VI.1 for causal encoding replacing W}
by X. We consider a probability distribution Q € Qs that achieves the maximum in equation (219).

There exists a § > 0 and a rate R > 0 such that:
R > I(Wy U S|X)+ 9, (221)
R < I(X3Y,2)+I(WyY, Z|X) -0 =1(X, Wy Y, Z) — 4. (222)

We consider a block-Markov random code ¢ € C(n) defined over B € N blocs of length n € N. The

total length of the code is denoted by N = n - B € N and R denotes the rate of the code.

e Random codebook. We generate |M| = 2"R sequences X™(m) drawn from the i.i.d. probability
distribution Q%™ with index m € M. For each index m € M, we generate the same number
| M| = 2"R of sequences WJ'(m, 1) with index 11 € M, drawn from the i.i.d. conditional probability

distribution Q\%:‘LX depending on sequence X" (m).

e Encoding function. At the beginning of block b € {2,... B—1}, the encoder observes the sequences
of source symbols (U} |, S} ;) € U™ x 8™ of the previous block b — 1. It also recalls the index
my—1 € M of the sequence X" (m;_1) € X™ over block b— 1. It finds index m;, € M such that the
sequences (U 1,5 1, X™(mp—1), W3t (my—1,myp)) € A"(Q) are jointly typical. Encoder sends

the sequence X" (m;) corresponding to the current block b € {2,... B — 1}.

e Decoding function. At the end of block b € {2,...B — 1}, the decoder recalls sequences
(Y,",,Z} ;) and the index mp_1 € M corresponding to the sequence X"(mjp_1). It observes
the sequences (Y}',Z}') and finds index m;, € M such that (Y, Z]', X"(my)) € A"(Q)

and (V)" , Z] |, X" (mp—1), W3 (mp—1,myp)) € AL"(Q) are jointly typical. Decoder returns the

Xn

sequence V}" | drawn from the conditional probability distribution Q
v|yzxw,

(YL, Zyy, X (mp—1), W3 (mp—1,m)).

depending on sequences

e First bloc at the encoder. An arbitrary index m; € M is given to both encoder C and
decoder D. Encoder sends the corresponding sequence X"(m;) € X™. At the beginning of
the second bloc bg, encoder recalls (Uj!, 3, X™(m1)) and finds index m2 such that sequences

(U, Sy, X (ma), W3l (ma,mz)) € AF"(Q) are jointly typical. Encoder sends the corresponding
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sequence X" (mz) on the second block bs.

e First bloc at the decoder. At the end of second block by, the decoder finds the index mo such
that (Y2, Zp), X"(mg)) € AFY(Q) and (Y, Z], X" (m1), W3 (m1,m2)) € A"(Q) are jointly
typical. Over the first bloc, decoder D returns V' € V" drawn from the conditional proba-

oy . . . ®
bility distribution Q¢ ;LZXWZ

(U, Sy Zye, X (ma), Wal(ma, me), Yy, Vi) € AZ"(Q) are jointly typical over the first block b;.

depending on sequences (Y;', Z , X" (m1), W3'(m1,m2)). Sequences

e Last bloc. Encoder C and decoder D choose arbitrary sequences X and Vj. Sequences are not

jointly typical on the last block.

For each block b € {1,..., B — 1}, the properties of typical sequences, packing and covering lemmas
stated in [9] pp. 27, 46 and 208, equations (221), (221) imply there exists a 7 € N such that the expected

probability of error events are bounded by ¢ for all n > n:
E. P((U", S") ¢ Aé"@))] <e, (223)

E. P(Vm € Ma (Ubn—lvSZL—l’Xn(mb—l)7W;(mb—bm)) ¢ A;n(Q)>:| <eg, (224)

E. -77 <E|m' #m, s.t. {(Y},", Zp, X™(m')) € A;"(Q)} N

{0z me) Wy ) e i@} )] <2 @29

For each block b € {1,...,B — 1}, for all n > n, there exists a code ¢* € C(n) such
that sequences (U}, Sy, Z)', X" (my,), W3 (mp, mpy1), Y, V') € A(Q) are jointly typical for the
probability distribution Py, (u, s, 2) @ Q(x) ® Q(wa|u, s, z) T (y|z, s) @ Q(v]y, z, x, ws) with probability
more than 1 — 3e.

The remaining of the proof is very similar to the achievability part of Theorem VI.1. Lemma 2 also
proves that equation (222) implies equation (225). The cardinality bound is stated in Lemma 6 in the

Appendix. This concludes the achievability proof of Theorem VIII.1.

April 22, 2015 DRAFT



60

B. Converse Proof

We consider the joint probability distribution Q(u, s, z, x,y,v) and we introduce the random event of

error E € {0,1} defined as follows:

E:{ol lQn—-9Ql|, <e <« (U"8" 2" X" Y", V") € A™(Q), 226

1 if HQ” — QHtV >e < (U",S™,Z", X" Y" V") ¢ A(Q).
Consider a sequence of code ¢(n) € C that achieves the probability distribution Q(u, s, z, x, y, v), i.e. for

which the probability of error Pe(c) = P(E = 1) goes to zero. The converse is based on the following

equations:
0 = ZH:I(Ui_175i_1§EaZz'! it ?+1)—2n:f(1€-11 n UL S| UTE, s (227)
i=1 ]
< iI(Ui‘l,Si‘l, L2 Y Z) ZI (U, ST YR 28 UL S)) (228)
— Zn:I(Ui—l,si—l, 20 X Y, 7)) ZI Ul sitlyn, zr X Ui S (229)
< i[(Ui—l,si—l, 2R XY, Z) ZI UL ST YR 2 UL Si X)) (230)
< ZH:I(Xi,Wz,i;Yi,Zi)—XH:I(WM;Ui,SﬂXi)- (231)

=1 =1
Equation (227) comes from Csiszar Sum Identity stated pp. 25 in [9].
Equation (228) comes from the i.i.d. property of the information source (U,S) that implies
(U 8L U;, S;) =0 forall i € {1,...,n}.
Equation (229) comes from the strictly causal encoding function X; = f;(U~!,8"~1) that implies
I(X; Y, Z| U S v, 20 ) = I(X; U, S| UL, Sy Zzi ) =0 forall i € {1,...,n}.
Equation (230) comes from the properties of the mutual information.
Equation (236) comes from the introduction of the auxiliary random variable Wj; =
Uit Si_l,Yij_l, Z,). For all i € {1,...,n}, auxiliary random variable W5 ; satisfies the properties

corresponding to the set of probability distributions Qsge:

(U;, S;) are independent of X, (232)
Y o (X;,S:) - (Ui, Zi, Wa;), (233)
Zi - (U, Si) = (X4, Y3, Wa,), (234)
Vi (Y3, Z;, Xi, Wa ;) - (U3, S;). (235)
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e Equation (232) comes from the strictly causal encoding property that implies X; is independent of
(Ui, Si).

e Equation (233) comes from the memoryless property of the channel and the fact that Y; is not included
in Wa;.

e Equation (234) comes from the i.i.d. property of the source and states (U;, S;, Z;) and the fact that Z;
is not included in W5 ;.

e Equation (235) comes from the strictly causal encoding and the non-causal decoding as stated in Lemma

4.

Equation (230) gives:
n n
0 < Y I(Xi,Wous Vi, Zi) = > I(Wais Us, Sil Xi)
i=1 i=1

= n- <I(XT, Wo.r; Y, Zp|T) — I(Wor; Ur, ST]XT,T)> (236)
< n- (I(XT, Wor,T;Yr, Zr) — I(Wa r; Urp, ST|XT,T)> (237)
= n- <I(XT, Wor, T;Yr, Zr) — I(War, X7, T, UT,ST)> (238)
< n- (I(XT, Wor,T;Yr, Zr) — I(War,T; Ur, ST|XT)> (239)
< n-max <I(XT, Wa; Yy, Zr) — I(Wa; Ur, ST|XT)> (240)
< n- ggg <I(XT, Wo; Yr, Zp|E = 0) — I(Wo; U, S7| X1, E =0) + E) (241)
= nrélé% <I(X,W2;Y,Z)—I(Wg;U,S|X)—|—25—:>. (242)
Equation (236) comes from the introduction of the uniform random variable 7" over {1,...,n} and the

introduction of the corresponding mean random variables Ur, St, Zr, Wi, Wor, X1, Y7, V7.
Equation (237) comes from the properties of the mutual information.

Equation (238) comes from the independence between (Ur,Sr) and (Xp,7) that implies
I(X7,T;Ur,Sr) =0 as stated in Lemma 5.

Equation (239) comes from the properties of the mutual information.

Equation (240) comes from identifying W5 with (Ws 7, T') and taking the maximum over the probability
distributions that belong to the set Q.. This is possible since the pair of random variables (W7, T')

satisfies the properties of the set of probability distributions QQse as stated in Lemma 7 in the Appendix.
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Equation (241) comes from the empirical coordination requirement as stated in Lemma 8 in the Appendix.
Sequences are not jointly typical with small error probability P(E = 1).

Equation (242) comes from Lemma 9 that states that the probability distribution induced by the coding
scheme P((UT, St, Zr, X7, Yr,Vr) = (u,s,z,x,vy, v)‘E = O) is closed to the target probability
distribution Q(u, s, z, x,y,v). The continuity of the entropy function stated pp. 33 in [10] concludes.

This concludes the proof of Theorem VIII.1.
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Lemma 4 Markov chain V; -~ (Y;, Z;, X;, W ;) - (U;, S;) is satisfied for all i € {1,...,n}.

Proof VIII.4 (Lemma 4) We evaluate the following probability:
P(‘/Z|le Yria Zi7 WQ,ia Ui7 SZ)
= PVilXi,Y;, 2, U™ ST LY, 20, U, S5)

= Z P(‘/iuXi_17Yi_17Zi_l‘Xi7}/;72i7Ui_l7Si_l7 iﬁ-h 7,+17U175) (243)
Xi=1yi=1 zi-1

E 1—1 i—1 qi—1 yn
= P(Z ’Xi,YZ',ZZ',U 75 » L4 z+17U27Sz)
Xi*l7Yi717Zi—l

X P(Xi_1|Xi7YYiaZi7Ui_17Si_17 iil) 2+17Ulaslvzl 1)
X P(Yi_1|Xi7}/i7ZiyUi_lasi_lv i?—l’ z+17UZ’SZ’ZZ 1XZ 1)

X P(V;‘Xh}/:iuZ’i7Ui_175i_17}/i117 7,+17UZ7S7,7ZZ 1XZ ! YZ 1) (244)

We can remove (U;,.S;) in the four probability distributions:

P(ZNX, Y, 2, U ST YL 20U S = PETTXG, Y, 2, U ST YT L 2T ), (45)
i—1 1 1 i—1 i—1 1 1 i—1
PXTNX, Y, 2, U ST Y 20 0 8, 2T = P XG, g, 2, U ST Y L 2, 2, (246)
P Yi—l X.. Y. Z Ui—l Sz—l Yn Z U. S Zi—l Xi—l _ i—1 i—1 i—1 i—1 i—1
( ‘ iy Yis 44 ) s M1 i1 Vi Ris ) ) - ’P(Y ‘Xivyiv ZivU , S ay1'+1v Z'L+1’Z , X )y (247)

P(VilX;, s, 2, U 87y 20,0, 8, 20T XL YR P(VilX,, Y, 23, U ST vz, 27 x0T vy s

Equation (245) comes from the i.i.d. property of the information source: Z*~!' only depends on
(Ui—l Si—l).

Equation (246) comes from the strictly causal encoding: X*~! is a deterministic function of (U*~2, §1~2)
included in (U1, S,

Equation (247) comes from the memoryless property of the channel: Y*~! only depends only on
( X1 Si—l)'

Equation (248) comes from the non-causal decoding: V; is a deterministic function of (Y",Z") =
(Yi_l’Yiv z-i-lvzZ ! s Zis H—l)

Hence we have:

P(‘/Z|le Yria Zi7 WQ,ia Ui7 SZ)

= > PVLXTLYTL 2K Y Z, U ST YL 2 (249)
Xi—17Yi—l7Zi—1

= P(VilXi, Y, 2, U S Y, 20 (250)

= P(Vil X, Y;, Zi, Way). (251)
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The above equation corresponds to the Markov chain V; -e- (Y;, Z;, X;, Wa ;) -e- (U;, S;) and it concludes

the proof of Lemma 4.

Lemma 5 Independence of random variable (X1, T) with (Up, St) induces the following equation:

(X7, T;Ur, St) = 0. (252)

Proof VIIL5 (Lemma 5) The i.i.d. property of the source (U, S) implies that for all i € {1,...,n}, we

have:
P(Ur5r) = (ua)T =i Xr =) = P(UnS)=(ws)T =i Xi=x) @53
= P((W:8) = (u.9)) (254)
_ P((UT,ST):(U,S)). (255)

Equation (253) comes from the definition of the mean random variables (Ur, S7, X7) and of T.
Equation (254) comes from the i.i.d. property of the information source and the strictly causal encoding
that induces the independence between (U;, S;) and (7, X;).

Equation (255) comes from the definition of the mean random variables (Ur, St).

This implies directly: I(Xp,T;Up, St) = 0.
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APPENDIX

Lemma 6 (Cardinality Bound) We denote by B the discrete set B=U XS X Zx X x Y x V. We

consider the following information constraint with one auxiliary random variable W = (W1, Wy):

max <I(W; Y, Z)—-I(W;U, S)> > 0.
QeQ

The cardinality of the support |W| of the auxiliary random variable W is bounded by
(W) < |B|+ 1.

This result is based on the Lemma of Fenchel-Eggleston-Carathéodory. More details are provided pp.
631 in [9]. Considering the case of two auxiliary random variables W) and W5, the cardinality of the

supports |[W;| and |[Ws| can be bounded by:

max([Wal, Wal) < (1B + 1) - (B[ + 2).

Proof A.1 Lemma 6
We denote by d = |B| + 1, the cardinality of the family {h;}¢_, of continuous functions defined from
A(B) into R as follows:

,Puszxyv\w(i)v for i € {1’ Bl = 1}’
hi (,Puszxyv\w) = H(K Z|W = w), for ¢ = |B|,
HU,S\W =w), fori=|B|+1.

Support Lemma stated pp. 631 in [9], implies that there exists an auxiliary random variable W’/ ~ P,
defined on a set W' with finite cardinality |[WW'| < d + 1 such that for all 7 € {1,...,d} we have:
| 1 (Prssonin)dF @) = 3 hi((Paszur) P
w wew’
This implies that the probability Pysyy is preserved and H (Y, Z|W) and H (U, S|W) are equal to
H(Y,Z|W') and H(U, S|W'):

,Puszxyv(i) = /W ,Puszxyv|w(i)dF(w) = Z Puszxyv|w’(i) : P(w/)7 for i € {17 EERE) ’B’ - 1}
w' eWw’
H(Y,Z|W) = /W H(Y, Z|W = w)dF(w) = Z H(Y,Z|W' =u')-P(w') = H(Y, Z]W'),
w ew’
H(U,S|W) = /W H(U,S|W = w)dF(w) = 3 HU,SW =w')-Pu) = H(U,SW').
w ew’
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Hence the information constraint remains equal with [W'| < d = |B| + 1.

I(W,Y, Z) — I(W;U,S)
H(Y,Z)— H(Y,Z|W) — H(U,S) + H(U, S|W)
H(Y,Z) - H(Y,Z|W') — HU,S) + H{U, S|W)

WY, Z)—I(W'U,S),

This concludes the proof of the bound on the cardinality of the support of the auxiliary random variable.
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Lemma 7 The random variables Wi = (Wi, T) and Wo = Wy r satisfy the properties of the set of

probability distributions Q corresponding to Theorem I.1.

This result extends to Theorem II.1, III.1, IV.1, V.1 and VI.1.

Proof A.2 (Lemma 7) The Markov chains stated in equations (13) - (15) are valid for all ¢ € {1,...,n}.
The definition of the mean random variables Ur, St, Zr, W1 7, Wor, X1, Y7, V7, the ii.d. property
of the source and the memoryless property of the channel implies directly the result of Lemma 7. The

details are provided below.

YT - (XT7 ST) —©- (UT7 ZT7 WI,T7 T7 WZ,T)7 (256)
Zr -~ (Ur, St) = (X7, Y, Wi g, T, Wo 1), (257)
Vr - (Yp, Zp Wi, T,Wor) - (Ur, ST, X71). (258)

e Equation (256) comes the memoryless property of the channel and the fact that Y7 is not included in

(Wi, T,Wa ) for all realization T' =i € {1,...,n}:
P(YT = y|XT = ZL',ST =S, UT =u, ZT =z, Wl,T — 'UJl,T = Z.7W2,T = ?,UQ)
= P(YT = y]XT =, ST = S). (259)

e Equation (257) comes from the i.i.d. property of the source and the fact that Z is not included in

(Wi, Wa,r) for all realization T' =i € {1,...,n}:
P Zr =zlUr=u,Sr=s,Xr=x,Yr =y Wir=w,T =i, Wor = ws)
= P(Zpr =z|Up =u,Sp = s). (260)
e Equation (258) comes from the following equations:
PVr=vYr =y, Zyr =2, Wi =w,T =i, Wor =w,Ur =u,Sr = s, Xy =1x)
= PVi=vlYi=y,Zi=2,Wi,;=w,T=i,Wy; =w, Ui =u,5; =s,X; =x) (261)
= PVi=vlYi=y,Zi=2Wi;=w,T =1i,Ws,; = ws) (262)
= PVr=v|Yr=y,Zy =2, Wip =w,T =i, Wor = wa). (263)
Equation (261) comes from the definition of the mean random variables Ur, St, Zr, W1 1, War, X7,

Yr, V1.
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Equation (262) comes from the Markov chain property V; e (Y;, Z;, W1 ;, Wa ;) - (U;, S;, X;) that is
valid for all 7 € {1,...,n}.
Equation (263) comes from the definition of the mean random variables Ur, St, Zr, Wi 1, War, X7,

Yr, V1.

This concludes the proof of Lemma 7.

Regarding the extension to Theorem VI.1, the Markov chains stated in equations (168) - (169)

are valid for all i € {1,... ,n}.

(Ur, St) are independent of (W1 1, T), (264)
X7 - (U, S7, Wi ) o War. (265)
e Equation (264) comes from the following equations:
PUr=u,Sr=siWir=w,T=1i) = PU=u0S;=sWi;=wu,T =1) (266)
= PU;=u,5S;=5s) (267)
= PUr =u,Sr =3s). (268)

Equation (266) comes from the definition of the mean random variables Ur, S, Z7, W1 1, Wa r, X7,
Yr, V.
Equation (267) comes from the independence of the source (U;, S;) with respect to 7" and W7 ;.

Equation (268) comes from the i.i.d. property of the source.

e Equation (265) comes from the following equations:

P(Xr =z|Ur =u,S7 = s, Wi =w, T =i, Wor = wy)

= P(XZ = I"UZ = u, Sz =S, Wl,i = wl,T = i, WQ’i = wg) (269)
= P(XZ :w\UZ :u,Si :37W1,i :wl,T:i) (270)
= P(XT:x]UT:u,ST:s,Wl,T:wl,T:z’). (271)

Equation (269) comes from the definition of the mean random variables Ur, St, Zr, Wi 1, War, X7,

Y7, V.
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Equation (270) comes from the Markov chain property X; -e- (U;, S;, W1 ;) -- Wy ; that is valid for all
ie{l,...,n}
Equation (271) comes from the definition of the mean random variables Ur, St, Zr, W1 1, War, X7,

Yr, V1.
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Lemma 8 Fix a probability distribution Q € Q and suppose that the error probability P(E = 1) is
small enough such that P(E = 1) -logy |V X Z| +2- hy (P(E = 1)) < e. Then we have:

I(Wl;YT,ZTWVg) —I(WQ;UT,ST|W1) (272)
< I(Wy;Yp, Zp|We, E =0) — [(Wa; Up, Sp|Wh, E =0) +e. (273)

The proof of Lemma 8 extends to the following equations that intervene in the proof of Theorems V.1,

VL1, VII.I and VIII.I.

Proof A.3 Lemma 8 comes from the properties of the mutual information.
I(W1; Yr, Zp|Wa) — I(Wa; Ur, ST|Wh) (274)
= I(Wy;Yp, Zp|Wa, E) — I(Wp; Ur, Sp[Wh, E) (275)
+ I(E;Yp, Zp|Wa) — I(E; Yy, Zr Wi, Wa) — I(E; Ur, Sp|Wh) + I1(E; Ur, Sp|Wi, W) (276)
< I(Wh;Yp, Zp|Wa, E) — I(Wa; Ur, Sp|Wh, E) + 2H(E) 277)

— P(E=0)- (I(Wl; Yr, Zp|Wa, E = 0) — I(Wa; U, Sp|Wh, E = 0))

+ P(E =1)- (I(Wi: Yy, Zr|Wa, E = 1) = I(Was Ur, Sr[Wi, E = 1)) + 2H(E)  (278)
< I(Wi; Yy, Zr|Wa, E = 0) — [(Wa; Up, S|Wi, E = 0)

v P(E=1)logy |V X Z|+2-hy (P(E - 1)) (279)
< I(Wi; Yy, Zp|Wa, E = 0) — I(Wa; Up, S|Wi, E = 0) + <. (280)

This concludes the proof of Lemma 8.
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Lemma 9 Probability distribution P((ST,UT, Zr, X7, Y, Vi) = (s,u,z,x,y,v)‘E = O) is closed to
the target probability distribution Q(s,u,z,x,y,v):
‘P((ST, Ur, Zp, Xy, Yy, Vp) = (S,u,z,:n,y,v)‘E = 0) — Q(s,u,z,z,y,v)| <e. (281)

Proof A.4 (Proof of Lemma 9) We evaluate the probability P(St = s|E = 0) and we show it is closed
to the desired probability Ps(s):

P(Sr=slE=0) = > » P(S"=s"T=iSr=sE=0) (282)
sreAL i=1
= Y Y P(S"=s"|E=0)
sneEA =1

x P(T=iS"=s"E=0)-P(Sp=s["=s"T=i,E=0) (283)

- X YR =sE=0)

smeAr i=1
x P(T=i) -P(Sp=s|"=s"T=iFE=0) (284)
= D> Y P =s"E=0)-P(T=i) L—y (285)
snEAM =1
- n
snEALm =1
snEALm n

Equation (284) comes from the independence of event {T' = i} with events {S™ = s"} and {F = 0}.

Equation (287) comes from the definition of the number of occurrence N (s[s™) = > 1" | Lo ).

Since the sequences s € AX™ are typical, we have the following equation:

Pu(s) —e < NI < p(s) +e. (288)

n
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This provides an upper bound and a lower bound on P(Sy = s|E = 0):

Pis)—e = > P(S"=s"[E=0)-(Pfs)—¢) (289)
< P(E;T: S|E=0) (290)

< Y P =s"E=0)- (Puls) +e) (291)

= 776(2) +e, (292)

— ‘P(ST = s|E =0) —Ps(s)| <e. (293)

Using the same arguments, we prove that P((ST,UT,ZT,XT,YT,VT) = (s,u,z,w,y,fu)‘E = O) is

closed to the target probability distribution Q(s,u, z,z,y,v):

‘P<(ST7UT7ZT7XT7YT7VT) = (S,’LL,Z,!L',y,’U)‘E = 0) - Q(S,u,z,:n,y,v) <e. (294)

This concludes the proof of Lemma 9.
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Lemma 10 The i.i.d. property of the information source and state informations (U, S, Z) induces the
following equation:
n .
> I(SsUTSEG|ULE=0) < n-e. (295)
i=1

Remark A.5 The proof of Lemma 10 extends to the following equations that intervene in the proofs of

Theorems II.1, III.1 and IV.1:

ZI( G S U, SilE=0) < n-e, (296)
=1

n n
STH(ZIX", 27U, S0, U, S5 E = 0) = Y H(Zi|U;, S, E = 0)
i=1 =1

N
3
o

(297)

> H(Z|U;, S;,E=0)—H(Z"|U",S", E=0) < n-e, (298)
=1

ZI(Ui;Z_i,Ui_1|ZZ-,E:0) < n-e. (299)
i=1

In the proof of Theorem IV.1, the random variables U and S are independent. Hence this gives the

following equation:

Y I(SU™ SiIE=0) < n-c (300)
i=1
Proof A.6 (Proof of Lemma 10)

Y I(SsUTL SiULE=0) = Y H(S|Ui, E=0)-> H(S;|U" S}, E=0) (301)
=1 =1 =1
= Y H(S)|U;,E=0) - HS"|U", E = 0). (302)
=1

Equations (301) and (302) come from the properties of the mutual information.

H(S"|U" E =0) — ﬁ . [H(S“\U”, E)—P(E=1)-HS"U"E=1)| (303)
> H(S"|U",E)— P(E =1)- H(S"|U", E = 1) (304)
> H(S"|U™) — I(E; S"|U™) — P(E = 1) - n - logy |S| (305)
> H(S"U™) — H(E) — P(E=1) -n-log, |S| (306)
> H(S"U™) —1-P(E=1) n-log,|S| (307)
~ . (H(S\U) - % _P(E = 1) - log, m). (308)
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Equation (303) comes from the definition of the entropy. Note that P(E = 0) # 0, since error probability

P(E=1)<1is low.

Equation (304) comes from P(E = 0) < 1 that implies > 1.

1
P(E=0)

Equations (305), (306), (307) come from the properties of the mutual information.

Equation (308) comes from the i.i.d. property of the sequences of source U" and states S™.

H(S;|U, E=0) = m - |H(S;|\U, E) —P(E=1)-H(S;|U;, E=1) (309)
< P(El— 0) H(S;|U;, E) (310)
_ H(S,-\Ui,EH%.H(SJU,,E) 311)
< H(SHU@,)‘F% -log, |S] (312)
- H(S|U)+%-log2 1S|. (313)

Equations (309), (310), (311), (312) come from the properties of the entropy.

Equation (313) comes from the i.i.d. property of the source U; and states S;, for all i € {1,...,n}.

ZI (S;; U™, 87, |U;, E = 0)

= ZH(SZ-|UZ-,E =0)— H(S™"|U™ E = 0)
=1

P(E=1)

IN

B P(E =1)
- ”'(1—7?(E:1)

< n-e.

1
1 2
og |S| + n>

Equation (315) comes from equations (308) and (313).

Equation (318) comes from the hypothesis of small error probability P(E =

codewords n € N, hence ¢ > % logy |S| + £

This concludes the proof of Lemma 10.
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Lemma 11 Independence of random variable T with (Ur, St) induces the following equation:
I(T; Sy, Ur|E = 0) = 0. (319)
This implies: 1(T; Sp|Ur, E =0) = I[(T;St|E =0) = I[(T;Ur|E =0) = 0.
Proof A.7 (Proof of Lemma 11) The i.i.d. property of the source (U,S) implies that for all i,j €
{1,...,n}, we have:
P((Ur, Sr) = (u,5)IT =i, E = 0) = P((Ur, 51) = (uw,5)|T = j, E =0) (320)
— P((UT,ST) = (u,8)|T =i, E = 0) - P((UT,ST) = (u,8)|E = 0>,v1 e {1,...,n)321)

— I(T;S7p,Up|E = 0) =0. (322)
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