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6

Numerical Method for Control of
Piecewise-Deterministic Markov
Processes

The aim of this chapter is to present the computational method developed in
[DES 10] for the control of a Piecewise-Deterministic Markov Process (PDMP)
(X¢)e>0 and to explain how similar ideas can be used for statistical inference. Most
technical details are omitted to focus on the practical application of the procedure:
we state in details the class of PDMPs it can be applied to and give all the algorithms
necessary to its implementation. The main material of this chapter was originally
published as [DES 10] and [BRA 12b]. Additional details and examples can also be
found in [DES 15].

6.1. Introduction

Roughly speaking, a control problem is an optimization problem where a
controller acts on a process, either continuously on the flow ® or jump rate A or
punctually at jump times on the jump kernel () or even by creating new jumps and
selecting new post-jump locations, in order to maximize a gain or minimize a cost. In
this chapter, we deal with the most simple form of control, namely optimal stopping.
The controller only chooses an admissible time to stop the process in order to
maximize a reward and the dynamics of the process before stopping is not controlled.

We are interested in the optimal stopping problem with random horizon T, where
N > 0is a nonnegative integer and 7'y the N-th jumps time of the PDMP. The family
My of admissible times are the stopping times with respect to the natural filtration
(Ft)e>0 of the PDMP (X);>¢ that are bounded by T'y. The reward is the expectation
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176  Statistical Inference for Piecewise-Deterministic Markov Processes

of some function g of the process at the chosen stopping time. The value function v is
the best possible performance. It depends on the deterministic starting point o of the
process

v(wo) = sup Egy[g(X7)]. [6.1]
TEMN

An optimal stopping time is a stopping time 7* € My reaching this supremum:
v(xg) = Ego[g(Xs+)]. In general, optimal stopping times do not exist and the next
best thing is a so-called e-optimal stopping time 77 € M y satisfying

(o) — € < Eap [9(Xrs)] < 0(20).

Our objective is to propose a numerically tractable approximation of the value function
v, and to construct a simulatable e-optimal stopping time.

Optimal stopping problems for PDMPs have been extensively studied in the
literature from the theoretical point of view, see e.g.
[COS 88, COS 00, DAV 93, GAT 91, GUG 86, LEN 85]. In [GUG 86] the author
defines a dynamic programming operator related to the first jump time of the process,
and shows that the value function of the optimal stopping problem is a fixed point for
this operator. The basic assumption in this case is that the final cost function is
continuous along trajectories, and it is shown that the value function will also have
the same property. In [GAT 91, LEN 85] the authors adopt some stronger continuity
assumptions and boundary conditions to show that the value function of the optimal
stopping problem satisfies some variational inequalities, related to
integro-differential equations. In [DAV 93], M.H.A. Davis assumes that the value
function is bounded and locally Lipschitz along trajectories to show that the
variational inequalities are necessary and sufficient to characterize the value function
of the optimal stopping problem. In [COS 00], the authors weakened the continuity
assumptions of [DAV 93, GAT 91, LEN 85]. To the best of our knowledge, the only
paper addressing computational issues for optimal stopping of PDMPs is [COS 88].
The numerical approach uses a fixed discretization of the state space based on the
kernel (). The authors derive a convergence result for the approximation scheme but
no estimation of the rate of convergence is provided. They also provide e-optimal
stopping times based on the level sets of the approximate value function, but they
require a continuous-time minimization and are not fully numerically tractable,
except for simple special cases.

Although the literature on numerical methods for PDMPs is still quite scarce, that
for diffusion processes is especially rich. We focused our attention on the optimal
quantization approach developed for numerical probability in the series of papers
[PAG 98, BAL 03, PAG 04b, PAG 04a, BAL 05]. Optimal quantization consists in
replacing a continuous state-space random variable by the best discrete one in the
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sense that the Lo-norm of the difference is minimum. The difference is given by
Zador theorem [ZAD 82] and goes to zero as the number of points K in the support
of the discrete distribution goes to infinity, at a speed proportional to K ~/¢ where d
is the dimension of the original random variable. In reasonably small dimension, this
result is especially appealing as it can lead to explicit error bounds for approximation
schemes based on quantization. In addition, there exist simulation-based algorithms
providing the discrete quantized variable.

Our approach is the following. We start form the dynamic programming operator
defined by [GUG 86], and rewrite it as an expectation of a functional of the PDMP.
Then, we use the key property that all the randomness of the PDMP is contained in
its pots-jump locations and inter-jump times Markov chain (Z,,Sy)n>0, see
Subsection 1.2.1 in Chapter 1. The dynamic programming operator can thus be
rewritten as a conditional expectation involving this Markov chain. The next step is
to replace the continuous state space chain (Z,,Sp)n>0 by its quantized
approximation, thus turning conditional expectations into finite weighted sums. The
discretized operator can now be iterated numerically, and we estimate the difference
between the original value function and this approximation. A by-product of the
discretization is a numerically tractable stopping rule that is an e-optimal stopping
time for the original PDMP.

The main idea of this approach is first to rewrite the quantity to be computed as
an expression of the embedded Markov chain (Z,,, S,,)n>0 and second to replace it
by its quantized approximation. It is our belief that many problems related to
PDMPs, including statistical estimation problems, can be numerically approximated
this way. In particular, this idea was successfully used in other control problems, such
as optimal stopping problems under partial observation [BRA 13], impulse control
problems [DES 12a] or more recently change-point detection problems [CLE 17],
but also to approximate expectations of functionals of PDMPs [BRA 12a] or the
distribution of exit times [BRA 12b]. We detail the latter problem here to emphasize
the versatility of the approach that we propose.

This chapter is organized as follows. As our approach is simulation based, we start
by recalling how to simulate a PDMP in Section 6.2. In Section 6.3, we build the
numerical approximation of our optimal stopping problem, as well as the proposed
e-optimal stopping time. In Section 6.4, we explain how similar ideas can be used to
estimate the distribution of an exit time. Finally, in Section 6.5, both problems are
illustrated on an industrial example of corrosion provided by Astrium.

6.2. Simulation of Piecewise-Deterministic Markov Processes

We will assume in the sequel that the flow can be computed analytically,
otherwise, one can use any suitably precise differential equation solver. Still, it is
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worth noting that very few results in the literature study the additional error caused
by the use of a numerical differential equation solver into the global simulation. The
only source of randomness in a PDMP comes from the jumps. In order to simulate a
PDMP, one must thus be able to simulate its jump times and its post-jump locations.
As in most examples simulating post-jump locations is straightforward, we
concentrate on simulating the inter jump-times, which boils down to simulating a
random variable with time-dependent intensity, as seen from Eq. [1.2] in Chapter 1.

As always, if the cumulative distribution function of the inter-jump time can be
inverted analytically, it is preferable to simulate the inter-jump time by direct
inversion. This can be done for instance when the intensity is fixed (exponential
distribution), or for the Weibull distribution.

If the cumulative distribution function cannot be inverted analytically, one can use
the thinning algorithm 6.1 based on the Poisson distribution that simulates a random
variable with time dependent intensity. It is especially suitable when one just wants to
simulate the embedded Markov chain (Z,,, S,,)»>0 instead of the whole continuous-
time trajectory of the PDMP. It only requires a local maximum of the intensity. If the
flow must be solved numerically, Gillespie-type algorithms are usually more efficient,
see e.g. [LEM 17].

6.3. Optimal Stopping

We start with stating the main regularity assumptions that we require in
Subsection 6.3.1, then in Subsection 6.3.2 we give the exact form of the dynamic
programming operators. In Subsection 6.3.3 we introduce the quantized
approximation of the value function as well as an e-optimal stopping time.

6.3.1. Assumptions and Notation

In order to fully use the properties of optimal quantization, we make the main
assumption that the driving parameters of the PDMP as well as the reward function of
the optimal stopping problem are bounded and Lipschitz continuous.

Let £ be the subset of C;, of Lipschitz-continuous functions, and for any function
w € L, denote by C,, its upper bound and by L,, its Lipschitz constant

w(z) — w(x’
Cw = sup |w(1’)|’ L, = sup M
TzeX r#z' €X |$ - |

Denote by L4 the set of functions that are Lipschitz continuous along the flow i.e.
the real-valued, bounded, measurable functions w defined on & and satisfying the
following conditions:
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Algorithm 6.1: Thinning algorithm to simulate a time dependent intensity

input : Intensity function A(¢), positive real number A
output: One realization of the random variable with intensity A(t)

1 begin
2 a0
3| S« 0
4 while S # () do
5 select L > sup,<;<,44 A(t)
6 draw n from a Poisson distribution of parameter L x A
7 if n 7 0 then
8 for1 <k <ndo
9 draw wuy, from a uniform distribution on [a; a + A]
10 draw vy, from a uniform distribution on [0; L]
1 if v, < A(uy) then
12 | S=5U{ux}
13 end
14 end
15 end
16 a+—a+ A
17 end
return: min S

18 end

—for all z € X, the map w(®(z,-)): [0,t+(z)) — R is continuous, the limit
limg 4+ () w(®(, t)) exists and is denoted by w(®(x, t(x))),

— there exists [w]; € Ry such that for z,y € X and ¢t € [0, (z) A tT(y)], one
has

[w(®(z, 1)) — w(®(y, )| < [whlz —yl;

— there exists [w]y € R4 such that for all z € X and ¢,¢' € [0,¢T(z)], one has
w(®(x,1) — w(®(z, )] < [wlat —t'];

— there exists [w], € R, such that for all z,y € F, one has

w(®(z, " (2))) = w(@(y, t*(y)))] < [w]7]z —y|.

x = ®(z,0). Conversely, if the flow ® and the exit time ¢ are bounded and Lipschitz

Note that any function w in Lg is also in £ with L,, < [w]; as for all x € X,
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continuous: ® € L(X x Ry ) and t+ € L then any function w € L is in Lo with
[w]l S Lqu>, [’LU]2 S LwLQ and [U]]* S LwL@(Lt‘F + 1)

We can now state the main assumptions that will be in force throughout this
chapter.

ASSUMPTION 6.1.— Assume that:

— the deterministic time to reach the boundary of the state space is bounded and
Lipschitz-continuous: ¢* is in £;

— the jump intensity X is bounded by C and there exists [A]; € R such that for
allz,y € X andt € [0,t1(z) AtT(y)], one has

IAM(@(, 1)) = A(@(y, 1)) < Aalz —yl;

— the Markov kernel @ is Lipschitz in the following sense: there exists [Q] € R
such that for all functions w € L,

1)forallz,y € X and t € [0,¢(x) AtT(y)), one has

[Qu(®(z, 1)) — Qu(®(y, 1)) < [Q[w]i]x —yl,

2) for all z,y € X, one has
|Qu(®(z,t () — Qu(®(y, t*(y)))| < [Qw].]z — yl;
— the reward function g is in L.

In most practical applications, the physical properties of the system ensure that
either t* is bounded, or the problem has a natural deterministic time horizon 7. In
the latter case, there is no loss of generality in considering that ¢* is bounded by this
deterministic time horizon. The other assumptions are technical and easy to check on
most applications.

We finish this section with some generic notation. For a,b € R, a Vb = max(a, b)
is maximum of @ and b. For a Markov kernel P on (&X', B(X)) and functions w and w’
in Cy, set

Pu(z) = /X w(y)Pe,dy),  (wPw)(x) = w(z) / W' (y) P, dy),

X

forany x € X.
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6.3.2. Dynamic Programming

We now recall the dynamic programming equations derived in [GUG 86]. They
were originally given in an analytical form depending on the local characteristics P,
A and @ of the PDMP, but we give their form as expectations as it is the suitable form
for our intended discretization. Forall z € X, w € L and t > 0, one defines

Huw(z,t) = w(®(z,t AtT(2)))P(Sns1 2 t AT (Z0)| 20 = 2),
Tw(z,t) = IE[w(ZnH)IL{SH+1<t,\t+(Zn)}|Zn = x],
Jw(z,t) = Hg(x,t) + Tw(x,t),
) = E[w(Znt1)|Zy = 2],
)

= sup Jw(z,u)V Kw(z).

u<tt(z)
As (Z,,Sn)n>0 is a time-homogeneous Markov chain, the quantities above do not
depend on n. Roughly speaking, operator L selects the best compromise between
waiting for the next jump (operator K') or stopping at the best position along the flow
(sup J). The value function v can be recursively constructed by iterating operator L
as follows. Set, for 0 < n < N,

UN =, Un=L(Uny1,9).

The last term vg of this recurrence is then exactly the value function v. In order to
obtain a numerical approximation of v, it is thus sufficient to be able to discretize and
iterate operator L. This is not straightforward as L involves a continuous supremum as
well as conditional expectations. Our first step is to replace the recursion on functions
v, by a recursion on random variables. Set Viy = v,,(Z,) = g(Z,) and, for 0 < n <
N,

Vn = Un(Zn) = SE(p ) {E[Vn+1ﬂ{sn+1<u} + g((I?'(Z", u))1{5n+12u}|2n} }
u<tt(Z,

V E[Vas1|Za]-

It is a highly remarkable property of this problem that the dynamic programming
equation involving a sequence of functions (v,,) can simply be rewritten as a self-
contained dynamic programming equation involving only the random variables (V,,).
As random variables are much more tractable numerically than functions, this is a
crucial step towards a numerical approximation of the value function.

6.3.3. Quantized Approximation

The next step is to replace the Markov chain (Z,,S,)n,>0 by its optimal
quadratic quantization. This can be done for instance by using the Competitive
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Learning Vector Quantization (CLVQ) algorithm described in Algorithm 6.2, see e.g.
[BAL 03, Section 3.3] for details. Let (I';,)o<n<n be the optimal quantization grids
for (Z,, Sn)o<n<n, and pr, the nearest-neighbor projection from X x onto I',,. One
thus defines the quantized approximation (Zn, gn)OSnSN of (Zy,, Sn)o<n<n by

~

(Z'ru §n) =pr, (Zn7 Sn)

We also denote by T'Z the projection of T',, onto X

For z € X, set A(z) € (0,t1(z)). Define n(z) = LZ((ZZ))J — 1, where |z ] denotes
the greatest integer smaller than or equal to z. The set of points (ti)Ogign(z)} witht; =

iA(2) is denoted by G(z). This is the grid associated to the time interval [0, ¢+ (z)].

The process (Zn, S’n)ogng N is not a Markov chain and especially not
time-homogeneous. Therefore we define a sequence of approximate operators. For
ne{l,...,N},we L(IT?),2€TZ_,,ands € Ry, set

n—1>

~
1

jn(w,g)(z, s) = I['Z[w(Z7 )ﬂ{§,l<s} + g(<I>(z7 S))H{E”\,LZS}’Z“l = 2]7
K, (w)(2) = E[w(Z)| Zn-1 = 2],

Lifw.0)(2) = max {Tu(w.)(z5)} ¥ Ro(w)(2).

From these operators, we define a new sequence of random variables 17n = ﬁ,L(Z,L)
where Dy (z) = g(z) for z € T'% and

Bn1(2) = LL(Tn, 9)(2), (6.2]

forl1 <n < Nandz € I‘,Zlfl. Note that the random variables I7n are discrete and
can be recursively computed as finite weighted sums. The last term of the recurrence
V0 is our chosen approximation for the value function v at the starting point xq of the
PDMP. It is detailed in Algorithm 6.3. It also contains additional information related
to which operator won the maximization at each step that will be useful to construct
an e-optimal stopping time.

Under our regularity assumptions, we have the following convergence result. Its
proof can be found in [DES 10] or [DES 15, Chapter 7].

THEOREM 6.1.— The difference || Vo — V; || goes to zero as the number of points in the
quantization and time discretization grids go to infinity.
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Algorithm 6.2: CLVQ algorithm to quantize a Markov chain
input : Number of points K in each grid, Number of runs N R, Horizon N,
Initial grids (T )o<n<n with K points each, Sequence (7;,)
Simulator of trajectories of target Markov chain
output: Optimized grids (I'%) and weights (W,,) 0 < n < N, Transition

probabilities P,, 1 <n < N

1 begin

2 w < 0 (size K x N +1)

3 p+ 0(size K x K x N)

4 form < 0to NR —1do

5 simulate trajectory (xo, 1, . ..,z x) according to law of Markov chain

6 for n < 0 to N do

7 competitive phase: select i, in {1,..., K} such that y" is the

closest neighbor of z,, in I'}!

8 learning phase: yfj“ Syl = Y1 (U — )

9 for j # i, do

10 ‘ y;n+1 « y]m

11 end

12 Il {1 <i < K}

13 updating weights: w;,, n < W;, n +1

14 if n > 0 then

15 | Dinrsinm ¢ Pin_ryinm + 1

16 end

17 end

18 end

19 normalizing weights

20 for 0 <n < N do

21 for1 <i:< K do

2 ‘ (Wp)i < win/NR

23 end

24 end

25 for1 <n < N do

26 forl1 <i< K do

27 for1 <j < Kdo

28 ‘ (Pn)i,j <— pi,j,n/NR

29 end

30 end

31 end

return: (Ff:’R), W,, 0<n<N,P,,1<i<N.
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Algorithm 6.3: Approximation of the value function v(xg)

input : Quantization grids (FS)Ogng ~, Transition matrices (P,,)1<n<n, COst
function g, time discretization step A
output : vy, indices for e-optimal stopping time: s, i,, 1 <n < N

1 begin
2 | forzeT% do
3 | On(z) < g(2)
4 end
5 forn < N —1to0Odo
6 for z € TZ do
, Roun(x) < Y Puni(a (2 8))vnn(2)
(2/,8")ET 41
8 for u < 0 to t*(z) — A by step: A
9 do
10 Tons1(z,u) & > Paya(z, (2, 8) (0ns1 ()L ggrcuy +
(#/,8") €l n i1
g(qJ(Z’u))l{s’zu})
11 end
12 Un(2) mgx{jﬁnﬂ(z, W)}V Kby (2)
13 55 41(2) « min {u*; TOpi1(z,u*) = mgx{f§n+1(z, u)}}
14 it K011(2) > max,{J0p11(z,u)} then
15 | inga(z) 1
16 else
17 ‘ int1(z) <0
18 end
19 end
20 end
return : 7
21 end

We can also obtain an upper bound for the error in terms of the regularity constants
and the quantization error.

More importantly for applications, from this procedure one can also construct an e-
optimal stopping time, see Algorithm 6.4. Its rigorous construction and the proof that
it is a stopping time for the original PDMP and e-optimal can be found in [DES 10].
An example of application of this procedure is given in Section 6.5, other examples
can be found in [DES 15, Chapter 9].
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Algorithm 6.4: Computation of an e-optimal stopping time

input : Quantization grids (I',)o<n<n, Outputs of Algorithm 6.3: s}, iy,
1 < n < N, positive real number 3, simulator of trajectories of the
PDMP, projection operators pr,, onto the quantization grids
output: Stopping date T

1 begin
2 n<+0
3 7 < NaN
4 while n < N do
5 simulate (Z,,, Sn, Sn+1)
6 (2,8) < pr,,(Zn, Sn)
7 ifin,4+1(2) = 1 then
8 | t*(Zy)
9 else
10 ‘ 4 Sn+1(z):ﬂ-{sn+1(z)<t*(Zn)} + (t"(Zn) — 6)1{sn,+1(Z)Zt*(Zn)}
11 end
12 if r < .S, 11 then
13 T T, +r
14 n<+ N
15 else
16 | nen+1
17 end
18 end
19 if n = N and ™ = NaN then
20 | T+ Ty
21 end
return: 7
22 end
6.4. Exit Time

Our approach to approximate the optimal stopping problem can be summarized
as follows. First, we obtain a recursive construction of the quantity of interest,
namely the dynamic programming equations for the value function. Hopefully, this
can generically be done using the Markov property. Second, we rewrite the recursion
operator in terms of the embedded Markov chain (Z,,, Sy,)n>0. Again, this can be
generically done as this chain is the only source of randomness in a PDMP. Third,
we replace the continuous state space chain (Z,,S,)n>0 by its quantized
approximation (2,1, §n)n20 leading to finite weighted sums. This way, one obtains a
fully computable approximation, and one can hope to obtain error bounds and even
convergence rates providing the underlying functional are Lipschitz-continuous. It is
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our belief that this program can be successfully applied to other problems related to
PDMPs, and in particular to statistical estimation problems.

To illustrate this potential, we present in this section the exit time distribution
estimation procedure detailed in [BRA 12b] or [DES 15, Chapter 5]. Our aim is not to
provide all the technical details, but only to detail the class of PDMPs it can be applied
to and the algorithms. We define the exit time problem in Subsection 6.4.1, then we
give the recursive formulation of the problem in Subsection 6.4.2.

6.4.1. Problem Setting and Assumptions

Let (X¢)i>0 = (Y, My)i>0 be a PDMP on the state space X = {(y,m),m €
M,y € Y., } with mode set M. For all mode m € M, let U, be an open subset of
Ym andset U = {(y,m),m € M,y € U,,}. We deal with the exit time 7 of (X;);>0
from U

T=inf{s >0: X, £ U}.

Denote by p the distribution of the initial state of the process Xo = Zj. To make our
exit problem relevant, we assume that the process starts in U and eventually leaves it
almost surely i.e. the support of y is included in U and P, (7 < +o00) = 1. The aim
of this chapter is to provide an approximation scheme for the survival function of 7.

As our approach is based on a recursive computation using the underlying discrete-
time Markov chain of the PDMP, we actually use a computation horizon that equals a
jump time of the process: we will study 7 A Ty rather than 7 itself. We assume that
the PDMP is non explosive, i.e. lim,, o, 15, = +00, so that as [N goes to infinity, one
gets

TATN — T.
We assume that N is chosen such that P, (7 > Ty ) is small enough.

Let us define w*(z) for all z € U as the time for the flow starting from the point x
to exit from U

uw*(z) =inf{s > 0: ®(x,s) € U},

where u* will play a similar role as t* in the previous section. We make the following
assumptions.

ASSUMPTION 6.2.— Assume that:

— the function »* is in £ with upper bound C',~ and Lipschitz constant L,,~;
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— for all m € M, the set U, is convex;

—for o > 0, set
U*={z e X :min{|lz—y|:ycdU} <a}.

There exist Ciy > 0 and 3 > 0 such that forall 0 < n < N, P, (Z, € U%) < CyaP.

The last two assumptions are tgchnical and ensure that the difference between Z,,
and its quantized approximation Z,, can be controlled even though they are close to
the boundary of U. Finally, we assume that once the process has exited U, it cannot
get back in U. If it is not the case naturally, one may just kill the process as it exits U.

6.4.2. Recursive Formulation

On can obtain a recursive construction of the survival function of the truncated
exit time as follows. For all s > 0, define the sequences (p,,(s))nen, (¢n)nen and

(rn(8))nen by
pn(s) =Pu(r > S’T <T),
dn = ]P)p,(T < Tn)7
ro(s) =P, ({7 > s} N{T, <7 <Thi1}).
The conditional probability py,(s) does not exist when g, = 0. We then choose to
extend the sequence by setting p,(s) = 0 in this case. Our objective is to
approximate py (s). The following proposition provides a recursion for the sequence

(Pn)n<n, pointing out that py may be computed as soon as the sequences (¢, )n<n
and (ry,)p<n—1 are known.

PROPOSITION 6.1.— For all n € N, s > 0, one has pg(s) = 0 and

Pn(S)qn +1n(s
Pn+1(s) = Pn(2)dn +7n(s) )ﬂ{qnmﬁo}-
qn+1
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Proof of Proposition 6.1.— First, recall that T; = 0 so that one has py = 0 since the
process starts in U. Then, let n € N such that ¢,,+1 # 0 and note that {7 < T},11} =
{r <T,}U{T,, <7 < T,41}. Thus, one has

P.({r > s}n{r < Tht1})

Prt1(s) = P (1 < Tt
P.({r>s}n{r <T,}) +P.({7 > s} N{T0, < 7 < Tpy1})
- n+1
_ Pn(8)an +7n(s)
n+1
showing the result. (]

It remains to express the above quantities in term of the embedded Markov chain. We
work with the post-jump locations and jump times chain (Z,,, T}, ) nen rather than the
post-jump locations and inter-jump times chain (Z,,, Sy, )nen. They play similar roles
as S, = T,, — T,,—1 for all n. > 1 and our recursions already involve (7},), therefore
it is natural to keep using this sequence.

First, note that
(T, <7)=(Z,€l), (r<T,)=(Z,¢0U),

as the process cannot go back to U once it exited U. Moreover, on the event (Z,, €
U, Zn+1 € U), one has

7= (T +u"(Zn)) N Thya,
as u™ is the deterministic exit time from U. Thus, one obtains

qn = EN[HUC (Zn)]a

T (8) = Eull{(T, tur (2))ATwsr >} LU (Zn) Lue(Zny1))-

6.4.3. Numerical Approximation

‘We now naturally define the quantized approximations of the previous sequences.
For all s > 0, define (¢, )n<n and (7 )n<n—1 by

G = Eu[Lye(Zy)),

’l/“\n(S) = E”[]l{(?nJru*(/Z\n))Ai"\n,+1>s}]lU(Zn)]lUC (Zn+1)].
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Algorithm 6.5: Approximation of (g, ) and (r,(s))

input : Quantization gridsI',,, 0 <n < N,
Weight vectors W,,, 0 < n < N, Transition matrices P,, 1 <n < N
output: (g,) and (7,,(s))

1 begin
2 Zj\o ~—0
3 forn < 0to N —1do
4 anJrl «— Z Wn+1(zat)
(z,t) €T 41
z¢U
5 Pu(s) < DY Mg parssy Walz ) Pal(2,8), (2, ))
(z,t)€Ty (2/,t')ET 41
zeU 2'¢U

6 end
return: (g, ), (Tn.(s))

7 end

It is important to note that both sequences (g,,) and (7,,(s)) may be computed easily
from the output of the quantization algorithm as shown in Algorithm 6.5. The
approximation of p,, is then readily obtained by plug-in. For all s > 0 and for all
n< N —1,letpy(s) =0and

) Pule)i £ 7al)

ﬁnJrl (S —~
An+1

{qns17£0}"

We can prove that this approximation scheme converges, see [BRA 12b] or [DES 15,
Chapter 5] for the proof.

THEOREM 6.2.— For all n < N and for almost every s > 0, one has
f)\n(s) — Pn(s)7

when the quantization error goes to zero.

6.5. Numerical Example

We study the evolution of the thickness of an aluminum metallic structure subject
to corrosion. This model was provided by Astrium and is fully described in
[DES 12b]. It concerns a small homogeneous structure within a strategic ballistic
missile. The missile is stored successively in three different environments, the
workshop, the submarine in operation and the submarine in dry-dock. Then it goes
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back to the workshop and so on. The missile stays in each environment during a
random duration with exponential distribution. Its parameter depends on the
environment. At the beginning of its service time, the structure is treated against
corrosion. The period of effectiveness of this protection is also random, with a
Weibull distribution. The thickness loss only begins when this initial protection is
gone. The degradation law for the thickness loss then depends on the environment
through two parameters, a deterministic transition period and a random corrosion rate
uniformly distributed within a given range. Typically, the workshop and dry-dock are
the more corrosive environments. The randomness of the corrosion rate accounts for
small variations and uncertainties in the corrosiveness of each environment.

6.5.1. Piecewise-Deterministic Markov Model

The dynamics of the thickness loss for the structure can be described by a PDMP.
The finite set of modes is

M ={1,2,3} x {0,1},

where the first coordinate corresponds to the environment: 1 for the workshop, 2
for the submarine in operation and 3 for the dry-dock, and the second coordinate
states whether the corrosion has started (1) or not (0). The state space in modes m &€
{1,2,3} x {0} is

Ym = (0’+OO) xRy,

with boundary 9, = {0} x R, and the Euclidean variables are Y; = (y;, a;) the
remaining time of effectivity of the protection, and the time since the last change of
mode. The state space in modes m = (i, 1) € {1,2,3} x {1} is

ym:RJrX[pi_vpj_]XRJm

with empty boundary and the Euclidean variables are Y; = (dq, pt, a;) the thickness
loss, the corrosion rate of the given environment, and time since the last change of
mode.

Originally at time 0, the mode is My = (1,0) and Yy = (70,0), where ~q is
drawn according to a Weibull distribution with parameters & = 2.5 and § = 11800
hours—!. In other words, the process starts in the workshop environment with a
random protection that will be effective during ~9 hours. The flow in modes
m € {1,2,3} x {0} is

Pp((v,a),8) = (v = s,a+ ),



Numerical Method for Control of PDMPs 191

with ¢+ (m, v, a) = -, meaning that the boundary is reached when the the protection
is gone. In modes m = (i,1) € {1,2,3} x {1}, the flow is

q)m((d,p, a)75) = (d+di(p7a+ S) - di(pv a)vp»a"_ 5)7

where

di(p,s) = p(s +mi(e™/" 1)),

is the dynamics of the thickness loss in environment ¢. The parameters are given in
Table 6.1. All the parameters come from expert opinion. The boundary is empty in
this case, so that tT(m, d, p,a) = +o0o. We will discuss in the next section how to
change the value of ¢* so that our boundedness assumption may hold true.

The jump intensity in environment ¢ is a constant \;, which value is given in
Table 6.1. The jump kernel is as follows:

—ifm=(4,0),y = (v,a) withy > 0,
Q((yanl)a {(710)} X {m/}) = IL{(O,m’:(i+1[3])}a

with i+ 1[3] =i + 1if i < 2and 3+ 1[3] = 1;
—ifm=(4,0),y = (0,a), and Aisin B(R,)

1 Pi
QU m) 0} x A {0} 5 fm'}) = Ly e [ (o),
i — Pi Jp;
where the parameters p;’-t are given in Table 6.1;
—ifm=(i,1),y = (d, p,a), and Aisin B(R;)
. G
Q((y.m), {d} x Ax {0} x{(j,1)}) = ]l{j:z‘+1[3]}p+i /_ La(s)ds.
J J 7P

Figure 6.1 shows some simulated trajectories of the thickness loss along time. The
slope changes correspond to changes of environment. The observed dispersion is
characteristic of the random nature of the phenomenon, and illustrates the poorness
of an average rule to monitor such a process. One needs to make decisions adapted to
each specific trajectory. The structure is considered unusable if the loss of thickness
reaches 0.2 mm.
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Table 6.1: Numerical values of the parameters of the corrosion model.

environment 1 environment 2 environment 3

A (7D (17520)~%  (131400)~* (8760) 1
n; (h) 30000 200000 40000
p; (mmh™ 1) 10-6 1077 10-6
p; (mmh™T) 10~° 10-6 10~°

(a) One trajectory (b) 100 trajectories
Figure 6.1: Simulated trajectories of the thickness loss along time for the corrosion
process.
6.5.2. Deterministic Time to Reach the Boundary

Because the deterministic exit time is unbounded in modes m € {1,2,3} x {1},
the PDMP model described above does not fit our framework. There are two main
ways to overcome this difficulty.

The first one consists in killing the process when the thickness lost by corrosion
reaches the prescribed level of 0.2 mm. The state space in modes
m = (i,1) € {1,2,3} x {1} thus becomes

ym = [0702) X [p;,mﬂ X R+v
with boundary 0Y,, = {0.2} x [p; , pj'] x R, and deterministic time to boundary is

t*((i,1),d, p,a) = inf{t > 0:d +d;(p,a +1t) — di(p,a) = 0.2}.

Thus, t* is uniformly bounded on Y, for m € {1,2,3} x {1}. Rigorously, this does
not hold true for all points in Y, with m € {1,2,3} x {0} as the support of the
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Weibull law is unbounded. However, the initial protection is drawn only once and for
a given initial protection time +, the quantities ¢ (X;) are bounded uniformly for all
t, which is actually all that is required in our proofs.

The second way to bound the deterministic time to the boundary is by considering

the time-augmented process (X;);>0 = (Xi,t):>0 with a finite fixed horizon T for
the trajectories. Thus, the state space becomes

Vm = (0,+00) x Ry x [0,T),
in modes m € {1,2,3} x {0}, with boundary
OVm ={0} xRy x[0,T)U (0,400) x Ry x {T}U{0} x Ry x {T},
and deterministic time to reach the boundary
tt(m,v,a,t) =y A (T —t).
The state space in modes m = (4, 1) € {1,2,3} x {1} becomes
Vi =Ry x [p7,pf] % [0,T) x [0,T),
with boundary
OV =Ry x [p;,pf] % [0,T) x {T},
and deterministic time to reach the boundary
tt(m,d, p,a,t) = (T —t),

as a < t by construction, the boundary may not be reached by a. Thus, ¢* is bounded
by T uniformly in all the modes and state variables.

6.5.3. Quantization

In this example, the main difficulty to implement the CLVQ quantization algorithm
lies in the fact that the variables of interest have very different scales: from about
1076 for the corrosion rate p to 10° for the average time spent in environment 2. This
poses a problem as searching for the nearest neighbor and gradient calculations are
done in Euclidean norm, regardless of the magnitudes of the components. This defect
is corrected by a renormalization of the variables. Therefore a weighted Euclidean
norm is used to quantify the Markov chain associated with the corrosion process to
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& ¢
’
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00 2 4 6 8 10 12 14 16 18 10 12 14
<10 10
(a) Environment 2, Jump 2 (b) Environment 3, Jump 3

(c) Environment 1, Jump 16 (d) Environment 2, Jump 26

Figure 6.2: Quantization grids (2000 points) for the corrosion process: inter-arrival
times (abscissa) and thickness loss at the jump times (ordinate).

rescale the variables. Projections of the quantization grids obtained for 2000 points
on the variables inter-arrival times S,, (abscissa) and thickness loss at the jump times
dr, (ordinate) are given in Figure 6.2. Notice how different the grids are from one
jump time to the other. Note also that the Markov chain does not seem to follow any
well-known probability distribution, and that if we had used a cartesian grid on the
rectangle, a huge number of points would have been useless. Thus, the quantization
approach is especially suitable as it allows for dynamically changing grids along time
instead of a single fixed grid.

6.5.4. Optimal Stopping

The reward function ¢ is given in Figure 6.3. It depends only on the thickness
loss, and reflects the fact that on the one hand, one should not perform a maintenance
too early, when the thickness loss is low (low gain) but on the other hand one should
not cross the security threshold of 0.2 mm (zero gain). It also satisfies our Lipschitz



Numerical Method for Control of PDMPs 195

i i |
0 0.05 0.1 0.15 0.2 0.25

Figure 6.3: Reward function for the maintenance of the corrosion process.

continuity requirements. The reward function g is maximum (value 4) at abscissa 0.18
and the thickness loss is continuous and non-decreasing. Thus, it is easy to see that
the true value function at our starting point is 4, which is the maximum of the reward
function g, and an optimal stopping time is the first moment when the loss reaches
0.18 mm thick.

Our numerical procedure is valid for any sufficiently regular reward function, and
the knowledge of the true value function or optimal stopping time shall not be used in
the numerical procedure. Besides, recall that the thickness loss is not measured
continuously. However, this exact optimal stopping time will serve us as a benchmark
to evaluate the performance of our approximation. Figure 6.4 shows two examples of
computation of the quasi optimal maintenance time on two specific simulated
trajectories. The thick vertical line represents the moment provided by the algorithm
to perform maintenance. The other vertical lines materialize the moments of change
of environment, the horizontal dotted line the theoretical optimum. In both examples,
we stop at a value very close to the optimum value. In addition, the intervention did
take place before the critical threshold of 0.2 mm.

An approximate value function v was calculated in two ways. The first one is the
direct method obtained by the algorithm described above. The second one is obtained
by Monte Carlo simulation using the quasi-optimal stopping time provided by our
procedure. The numerical results obtained are summarized in Table 6.2. As expected,
the greater the number of points in the quantization grid, the better our approximation
becomes. Furthermore, the specific form of the function g indicates that at the
threshold of 1, the intervention takes place between 0.15 and 0.21 mm and when the
threshold increases, this range is narrowed. Our approximation is therefore good even
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(a) Stop after Jump 3 (b) Stop after Jump 7

Figure 6.4: Examples of stopped trajectories for the corrosion process.

Table 6.2: Numerical results for the calculation of the value function for the
corrosion process.

Number of points Approximation of the =~ Approximation of the value
in the quantization value function by the function by Monte Carlo with the

grids direct algorithm quasi-optimal stopping time
10 2.48 0.94
50 2.70 1.84

100 2.94 2.10

200 3.09 2.63

500 3.39 3.15

1000 3.56 3.43

2000 3.70 3.60

5000 3.82 3.73

8000 3.86 3.75

for low numbers of grid points. The last column of the table also shows the validity
of our stopping rule. It should be noted here that this rule does not use the optimal
stopping time stop at the first moment when the thickness loss reaches 0.18 mm. The
method that we propose is general, and implementable even when the optimal
stopping time is unknown or does not exist, as will be illustrated in the following
sections.

Moreover, one can also construct a histogram of the values of our stopping time,
that is to say, a histogram of the values of effective moments of maintenance and
compare it with the exact optimal stopping time. Figure 6.5 shows the results for 10°
Monte Carlo simulations. Image (a) is obtained by our approximation procedure and
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(a) Approximate stopping time (b) Optimal stopping time

Figure 6.5: Histograms of approximate and optimal stopping times for the corrosion
process (10° Monte Carlo simulations).

Table 6.3: Approximation results for the distribution of the exit time.

Number of points Approximation
in the quantization grids max; [py(s) — pn ()]
20 0.145
50 0.119
100 0.040
200 0.039
500 0.020

image (b) is the exact one. Both figures appear very similar, which is a strong point in
favor of our approximation.

6.5.5. Exit Time

Considering the approximation scheme for the exit time distribution, one may
note that the quantized value py(s) is not necessary smaller than 1. Therefore, it
appears natural to replace py (s) by pn(s) A 1. This does not change the convergence
theorem and can only improve the approximation error. Figure 6.6 presents the
survival function of 7 obtained through Monte Carlo simulations (the dashed line),
through our approximation scheme (the solid line) and the error. Table 6.3 contains
the empirical error for different numbers of points in the quantization grids.
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Figure 6.6: Survival function of the service time of the corrosion process obtained
through Monte Carlo simulations (dashed), quantized approximation (solid) and the
error with 2000 points in the quantization grids.

6.6. Conclusion

We have presented a general framework for obtaining numerical approximations of
quantities related to PDMPs. First, one obtains a recursive formulation of the quantity
to be computed, thanks to the Markov property. Second, one rewrites the expression
using the embedded Markov chain (Z,,, S,,). Third, one replaces this Markov chain
by its quantized approximation in order to obtain fully computable quantities. This
approach has been successfully conducted on an optimal stopping problem as well as
on an exit time estimation problem.

Computing the quantization grids may be very time consuming, and will lead to
poor results in high dimension. However, in small enough dimension, this
computation can be done off-line in advance. The same grids can also be reused to
compute different quantities. Thankfully, they require only a simulator of the process
to be computed. On could also imagine to use observation data to construct such
grids, as in [CHA 15], if enough data is available. This approach can also be used in
other statistical inference problems.
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