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This letter extends our recently introduced method which was designed to estimate instantaneous frequency and chirp rate of linearly modulated signals. Indeed, we derive several new estimators related to our previous ones which provide in the time-frequency plane all the signal parameters of the investigated model: amplitude, frequency, and their local modulations (AM/FM). Our estimators are first introduced and compared in terms of statistical efficiency with theoretical bounds and with other state-of-the-art estimators. Then, they are used to improve spectral analysis applied to audio sinusoidal modeling. Finally, they lead to a new source separation technique based on coherent amplitude and frequency modulation that is evaluated on real-world music signals.

I. INTRODUCTION

A NALYSIS and transformation of non-stationary signals is an underlying task in audio processing with many applications in Music Information Retrieval (MIR) and source separation [START_REF] Comon | Handbook of Blind Source Separation: Independent component analysis and applications[END_REF]. To this end, time-frequency and time-scale analysis [START_REF] Flandrin | Time-Frequency/Time-Scale analysis[END_REF] provide efficient frameworks for disentangling timevarying multicomponent signals such as audio signals [START_REF] Fourer | The astres toolbox for mode extraction of nonstationary multicomponent signals[END_REF]- [START_REF] Czarnecki | A fast timefrequency multi-window analysis using a tuning directional kernel[END_REF]. The well-known Short-Time Fourier Transform (STFT) [START_REF] Allen | Short term spectral analysis, synthesis, and modification by discrete Fourier transform[END_REF] is an interesting tool, but is however limited, due to the uncertainly principle and the resulting blurry Time-Frequency (TF) representations [START_REF] Flandrin | Time-Frequency/Time-Scale analysis[END_REF], [START_REF] Cohen | Time-Frequency Analysis: Theory and Applications[END_REF], [START_REF] Hlawatsch | Time-Frequency Analysis: Concepts and Methods[END_REF]. Reassignment [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF] provides an efficient solution which improves the readability of a nonreversible Time-Frequency Representation (TFR). Another solution is offered by the synchrosqueezing method [START_REF] Daubechies | A nonlinear squeezing of the continuous wavelet transform[END_REF], [START_REF] Behera | Theoretical analysis of the second-order synchrosqueezing transform[END_REF], a variant of the reassignment technique [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF], [START_REF] Fourer | Recursive versions of the Levenberg-Marquardt reassigned spectrogram and of the synchrosqueezed STFT[END_REF], which admits a signal reconstruction formula. A complementary approach, sinusoidal modeling [START_REF] Mcaulay | Speech analysis/synthesis based on a sinusoidal representation[END_REF], [START_REF] Smith | PARSHL an analysis/synthesis program for nonharmonic sounds based on a sinusoidal representation[END_REF] focuses on local estimation of signal spectral parameters to allow transformations, signal reconstruction and denoising. Several works [START_REF] Marchand | Generalization of the derivative analysis method to non-stationary sinusoidal modeling[END_REF]- [START_REF] Hamilton | A unified view of non-stationary sinusoidal parameter estimation methods using signal derivatives[END_REF] have improved the efficiency of parameters estimation to allow applications such as audio synthesis [START_REF] Zölzer | DAFX: digital audio effects[END_REF], audio coding [START_REF] Purnhagen | HILN -the MPEG-4 parametric audio coding tools[END_REF], [START_REF] Schuijers | Advances in parametric coding for high-quality audio[END_REF] or blind- [START_REF] Comon | Handbook of Blind Source Separation: Independent component analysis and applications[END_REF], [START_REF] Virtanen | Separation of harmonic sound sources using sinusoidal modeling[END_REF] and informed-source separation [START_REF] Fourer | Informed spectral analysis: audio signal parameters estimation using side information[END_REF]. This paper extends our previous work [START_REF] Fourer | Chirp rate and instantaneous frequency estimation: Application to recursive vertical synchrosqueezing[END_REF] where we proposed several new Instantaneous Frequency (IF) and Chirp Rate (CR) estimators applied to synchrosqueezing. As we promised in future work perspectives, we now extend this approach for spectral analysis to develop a new sinusoidal modeling frame-This research was supported by the European H2020 ABC-DJ (688122) and the French ANR ASTRES project (ANR-13-BS03-0002-01).

work applied to audio processing and blind source separation. Our contributions are threefold:

• We derive new spectral parameter estimators for all the parameters of a non-stationary signal model (Section II). These estimators generalize our previous results presented in [START_REF] Fourer | Chirp rate and instantaneous frequency estimation: Application to recursive vertical synchrosqueezing[END_REF]. • We propose an application of our new estimators to spectral analysis, which leads to an enhanced signal sinusoidal modeling method (Section III). • We propose a new blind source separation method based on our estimators, that is evaluated by numerical simulations on real-world audio signals (Section IV).

II. LOCAL SIGNAL PARAMETERS ESTIMATION

A. Signal Model and Properties

We aim at estimating at every point of a TFR the signal parameters of an amplitude-and frequency-modulated signal. Thus, we consider the following second-order model and we recall its properties [START_REF] Fourer | Chirp rate and instantaneous frequency estimation: Application to recursive vertical synchrosqueezing[END_REF]:

x(t) = e λx(t)+jφx(t) (1) 
with

λ x (t) = l x + µ x t + ν x t 2 2 (2) 
and

φ x (t) = ϕ x + ω x t + α x t 2 2 ( 3 
)
where j is the imaginary unit such that j 2 = -1. λ x (t) and φ x (t) are respectively the log-amplitude and the phase, both depending on the time instant t. This signal satisfies:

dx dt (t) = dλ x dt (t) + j dφ x dt (t) x(t) = (q x t + p x )x(t) (4) 
with q x = ν x + jα x and p x = µ x + jω x . We define the STFT of this signal using a differentiable analysis window h as:

F h x (t, ω) = R x(u)h(t -u) * e -jωu du (5) = e -jωt R x(t -u)h(u) * e jωu du. (6) 
with z * the complex conjugate of z. Differentiating F h x (t, ω) with respect to t leads to:

∂F h x ∂t (t, ω) = R x(u) dh dt (t -u) * e -jωu du (7) = -jωF h x (t, ω) + e -jωt R dx dt (t -u)h(u) * e jωu du. (8) 
Replacing dx dt (t-u) by (q x (t-u) + p x ) x(t -u) leads to F Dh x (t, ω) = -q x F T h x (t, ω) + (q x t + p x -jω)F h x (t, ω) (9) where F Dh x (t, ω) and F T h x (t, ω) are two STFTs using the analysis windows Dh(t) = dh dt (t) and T h(t) = t h(t). A second-order derivative with respect to t leads to:

F D 2 h x (t, ω) = -q x F T Dh x (t, ω) + (q x t + p x -jω)F Dh x (t, ω) (10 
) and more generally for n ≥ 1 [START_REF] Fourer | Chirp rate and instantaneous frequency estimation: Application to recursive vertical synchrosqueezing[END_REF]:

F D n h x (t, ω) = -q x F T D n-1 h x (t, ω)+(q x t+p x -jω)F D n-1 h x (t, ω) (11)
On the other hand, differentiating Eq. ( 9) n -1 times (for n ≥ 2) with respect to ω leads to:

F T n-1 Dh x (t, ω) + (n -1) F T n-2 h x (t, ω) = -q x F T n h x (t, ω) + (q x t + p x -jω) F T n-1 h x (t, ω). (12)

B. Overall parameters estimation

In order to recover the signal parameters estimators, we build linear systems of equations thanks to the previously introduced properties. Thus, combining Eqs. ( 9) and [START_REF] Behera | Theoretical analysis of the second-order synchrosqueezing transform[END_REF] for n ≥ 2, leads to a linear system where q x and Ψ x = q x t + p x are unknown ((t,ω) was omitted for the sake of clarity):

F D n-1 h x -F T D n-1 h x F h x -F T h x Ψ x q x = F D n h x + jωF D n-1 h x F Dh x + jωF h x . (13 
) When ( 13) is reversible (i.e. |F h x (t, ω)| 2 > 0), we obtain the following equality:

Ψ x q x = F D n-1 h x -F T D n-1 h x F h x -F T h x -1 F D n h x + jωF D n-1 h x F Dh x + jωF h
x which leads to the estimator called (tn) since it implies norder derivatives with respect to t:

q(tn) x (t, ω) = F Dh x F D n-1 h x -F h x F D n h x F h x F T D n-1 h x -F T h x F D n-1 h x (14) 
Ψ(tn) x (t, ω) = jω + F Dh x F T D n-1 h x -F T h x F D n h x F h x F T D n-1 h x -F T h x F D n-1 h x . (15) 
Eq. ( 15) can be reworded as a function of q(tn)

x as follows:

Ψ(tn) x (t, ω) =jω + F Dh x F h x - F Dh x F h x + F Dh x F T D n-1 h x -F T h x F D n h x F h x F T D n-1 h x -F T h x F D n-1 h x =jω + F Dh x F h x + q(tn) x F T h x F h x =ω(t, ω) + q(tn) x (t, ω)(t -t(t, ω)) (16) 
where t and ω are the complex reassignment operators, from which the reassignment operators t and ω can be deduced as in [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF], [START_REF] Behera | Theoretical analysis of the second-order synchrosqueezing transform[END_REF], [START_REF] Auger | Time-frequency reassignment and synchrosqueezing: An overview[END_REF]:

t(t,ω) = Re t(t,ω) , with t(t,ω) =t - F T h x (t,ω) F h x (t,ω) (17) 
ω(t,ω) = Im (ω(t,ω)) , with ω(t,ω)=jω + F Dh x (t,ω) F h x (t,ω)
.

Thus, the signal definition in Eq. ( 1) allows to express the instantaneous log-amplitude derivative and frequency as λx (t) = dλx dt (t) = µ x + ν x t and φx (t) = dφx dt (t) = ω x + α x t. These parameters can be estimated using Ψ x (t) = λx (t) + j φx (t) = q x t + p x , which can be estimated through Eq. ( 16). This expression can be generalized by replacing q(tn)

x by any modulation estimator q as proposed in [START_REF] Behera | Theoretical analysis of the second-order synchrosqueezing transform[END_REF], [START_REF] Fourer | Chirp rate and instantaneous frequency estimation: Application to recursive vertical synchrosqueezing[END_REF] as:

Ψx (t, ω) = ω(t, ω) + qx (t, ω)(t -t(t, ω)). (19) 
Finally, we can derive the following estimators for the signal model provided by Eq. ( 1) as:

νx (t, ω) = Re qx (t, ω) , αx (t, ω)=Im qx (t, ω) (20) λx (t, ω) = Re Ψx (t, ω) , φx (t, ω) =Im Ψx (t, ω) (21) 
and the log-amplitude and the phase of x at t = 0, can be estimated by:

lx (t, ω) = log F h x (t,ω) G h (t, ω, Ψx (t,ω), qx (t,ω)) (22) φx (t, ω) = arg F h x (t,ω) G h (t, ω, Ψx (t,ω), qx (t,ω)) (23) 
with:

G h (t,ω,Ψ,q) = R h(t -u) * e (Ψ-jω)u-q u 2 2 du ( 24 
)
since we have F h x (t, ω) = e lx+jϕx G h (t, ω, Ψ x , q x ). New estimators can be deduced from Eqs. ( 20)-( 23) when an arbitrary local modulation estimator qx is used in Eq. [START_REF] Purnhagen | HILN -the MPEG-4 parametric audio coding tools[END_REF]. For example, n-order derivatives of F h x (t, ω) with respect to ω lead to a new family of estimators involving q(ωn)

x , which is obtained from Eqs. ( 9) and [START_REF] Fourer | Recursive versions of the Levenberg-Marquardt reassigned spectrogram and of the synchrosqueezed STFT[END_REF] with n ≥ 2 [START_REF] Fourer | Chirp rate and instantaneous frequency estimation: Application to recursive vertical synchrosqueezing[END_REF]:

q(ωn) x (t,ω) = (F T n-1 Dh x + (n-1)F T n-2 h x )F h x -F T n-1 h x F Dh x F T n-1 h x F T h x -F T n h x F h x .
(25) III. SINUSOIDAL MODELING Sinusoidal modeling [START_REF] Mcaulay | Speech analysis/synthesis based on a sinusoidal representation[END_REF], [START_REF] Smith | PARSHL an analysis/synthesis program for nonharmonic sounds based on a sinusoidal representation[END_REF] provides a parametric representation of a signal which allows to apply transformations or signal synthesis [START_REF] Zölzer | DAFX: digital audio effects[END_REF]. We present here a description of our analysis-synthesis algorithm, before completing a comparative evaluation of the proposed estimators when they are applied to synthetic signals in the presence of noise.

A. Proposed algorithm

We consider here a noisy multicomponent signal expressed as:

x(t) = i∈I x i (t) + (t) = i∈I e λi(t)+jφi(t) + (t) (26) 
(t) being an additive noise signal. The discretization process leads to

F h x [k, m] = F h x (kT s , 2πm M Ts ), with T s = 1 Fs the sampling period, k ∈ Z and m = 0, 1, • • • , M -1.
We consider an analysis window h of length L with a step ∆k = (1-ρ)L (where ρ ∈ [0, 1[ corresponds to the overlap ratio between two adjacent analyzed signal frames). The discrete-time versions of the analysis windows involving signal derivatives (i.e. D n h, T D n h) are directly computed from their continuous-time expressions. Our analysis-synthesis algorithm assumes that the noise can be neglected when the signal is detected (located at a local maximum) and that there is no more than one sinusoidal component active at each time-frequency point. 

h x [k,m]| > |F h x [k,m+1]| and |F h x [k,m]| > |F h x [k,m-1]|).
2) For each local maximum m, we estimate the vector

P m [k] = (l x [m], ϕ x [m], λx [m], ν x [m], φx [m], α x [m]) T . 3)
In descending order of l x [m], each component associated to m is reconstructed from P m using Eq. ( 1) considering that t = 0 is located at the center of the current frame.

If the residual energy increases when a component is subtracted from the analyzed signal, it is ignored. Otherwise, P m is kept and the residual signal is considered for processing other detected components. 4) We increase time index by k ← k + ∆k and we iterate from step 1, while kT s is lower than the length of the entire signal. b) Synthesis: We synthesize using the overlap-add method [START_REF] George | Speech analysis/synthesis and modification using an analysis-by-synthesis/overlap-add sinusoidal model[END_REF] each frame of signal x centered at time instant k moving by step ∆k, using the estimated P m [k] and Eq. ( 26).

B. Application to synthesized signals

To further assess the efficiency of our proposed estimators, we compare them with (SM08) [START_REF] Marchand | Generalization of the derivative analysis method to non-stationary sinusoidal modeling[END_REF] and (SM12) [START_REF] Marchand | The simplest analysis method for non-stationary sinusoidal modeling[END_REF], and with the Cramér-Rao Bounds (CRB) which were derived by Zhou et al. in [START_REF] Zhou | On polynomial phase signal with time-varying amplitudes[END_REF]. We consider an about 23 ms-long signal sampled at F s = 44.1 kHz (1023 samples), which contains one sinusoid synthesized from Eq. ( 1) using uniformly distributed parameters except for the amplitude which is constant. The log-amplitude is fixed at l x = 0.18 and other parameters are chosen as ϕ x ∈ [-π, +π], µ x ∈ [-100, 100], ω x ∈ [0, 2π Fs 2 ] rad.s -1 and α x ∈ [-10 4 , 10 4 ] rad.s -2 ensuring that 0 ≤ ω x + α x t ≤ 2π Fs 2 . This signal is merged with an additional white Gaussian noise with Signal-to-Noise Ratio (SNR) values going from -10 dB to +60 dB. In Fig. 1 (a)-(e), we compute the Mean Squared Error (MSE) expressed in dB for each estimated parameter, except for ν x . In Fig. 1 (f), we compute the Reconstruction Quality Factor (RQF) given by [START_REF] Fourer | Recursive versions of the Levenberg-Marquardt reassigned spectrogram and of the synchrosqueezed STFT[END_REF]: RQF(x, x) = 10 log 10 ||x|| 2 ||x-x|| 2 measured between the reference signal x and the synthesized one x using all the estimated parameters. Thus, for each SNR value, 10,000 random signals are analyzed using a Hann window of length L = 1023. According to Fig. 1, our results show that estimators with higher orders (n ≥ 2) have a negligible effect on the accuracy estimation for (tn). For (ωn), higher orders obtain poorer results than (w2) which provides the overall best results. (tn) estimators also obtain good performances and significantly outperform the state-of-the art methods (SM08) and (SM12), as evidenced at high SNR values.

C. Application to real-world signals

Table I shows the RQFs obtained on real-world audio signals using the proposed estimators (t2), (ω2), (ω6), and two state-of-the-art methods respectively called (SM08) [START_REF] Marchand | Generalization of the derivative analysis method to non-stationary sinusoidal modeling[END_REF] and (SM12) [START_REF] Marchand | The simplest analysis method for non-stationary sinusoidal modeling[END_REF]. Each analyzed signal has a duration of about 5 seconds and is sampled at F s = 22.05 kHz. Analysis uses Hann windows with a length of about 46 ms except for the drums signal (containing more transients) which is analyzed with a window of 23 ms. Our results show that the (ω2) and (t2) (only for the drums) methods obtain the best results when they are compared to the state-of-the-art methods. The audio samples used for this experiment can be found in [START_REF] Fourer | Local AM/FM modulations estimation: application to audio sinusoidal modeling and blind source separation[END_REF].

IV. APPLICATION TO SOURCE SEPARATION

Now, we consider the blind source separation problem [START_REF] Comon | Handbook of Blind Source Separation: Independent component analysis and applications[END_REF] in the single-channel case, where the observed mixture contains C ≥ 2 sources. Thus, we aim at recovering the sources s c using the observed mixture expressed as:

x(t) = C c=1 s c (t) = C c=1 ic∈Ic e λi c (t)+jφi c (t) . (27) 
We propose to solve this problem under the assumption that each sinusoidal component i is assigned to only one source c, characterized by the set I c . Hence, blind source separation consists here in a clustering problem which should be solved using the component parameters directly estimated from x(t).

A. Proposed method

Computational Auditory Scene Analysis (CASA) [START_REF] Bregman | Auditory scene analysis[END_REF] suggests that a set of components whose parameters evolve in a coherent way tend to be perceived as one source. Thus, we propose to group the components of each source through the Coherent Frequency Modulation (CFM) [START_REF] Creager | Nonnegative tensor factorization with frequency modulation cues for blind audio source separation[END_REF] and the new proposed Coherent Amplitude Modulation (CAM) descriptors which can be computed for a signal x as:

CFM x (t, ω) = αx (t, ω) φx (t, ω) , CAM x (t, ω) = λx (t, ω) lx (t, ω) . (28) 
These descriptors measure the linear modulation factor in frequency and in amplitude. They are assumed to be almost identical at each instant for the components of the same source [START_REF] Bregman | Auditory scene analysis[END_REF]. This idea has already been investigated in several stateof-the-art methods such as [START_REF] Creager | Nonnegative tensor factorization with frequency modulation cues for blind audio source separation[END_REF], [START_REF] Stöter | Common fate model for unison source separation[END_REF]. Our proposed blind source separation algorithm can be formulated as follows: 1) Computation of parameters P i [k] from the mixture x as 

P i [k] = (l i , ϕ i , ν i , λi , φi , α i ) T associated
[k] = i∈Ic l 2 i CFMi[k] i∈Ic l 2 i , i∈Ic l 2 i φi i∈Ic l 2 i T . 5) If k > 1, we affect each cluster c to the source c through arg min c ||v c [k] -v c [k -1]||.
6) We synthesize each estimated source ŝc from parameters P i [k] for i ∈ I c using Eq. ( 26).

B. Numerical experiments on real-world musical signals

We analyze an excerpt of 3 seconds of a musical mixture sampled at F s = 44.1 kHz, made of 2 sources (voice/guitar) from MedleyDb [START_REF] Bittner | MedleyDB: A multitrack dataset for annotation-intensive MIR research[END_REF]. Estimator (ω2) is compared to (SM12) using a 23 ms-long Hann window with an overlap between adjacent frames equal to ρ = 11 12 (this configuration empirically provides the best RQF for the sinusoidal modeling for both methods). Table II shows the source separation scores: RQF [START_REF] Fourer | Fast and adaptive blind audio source separation using recursive Levenberg-Marquardt synchrosqueezing[END_REF], Signal-to-Interference Ratio (SIR), Signal-to-Distortion Ratio (SDR) and Signal-to-Artifact Ratio (SAR) [START_REF] Vincent | Performance measurement in blind audio source separation[END_REF] for each approach. The Oracle method provides the optimal clustering results obtained by matching each component to the closest one estimated from the reference source signals assumed known. In the blind case, our results show a clear advantage of method (ω2) over (SM12), particularly when using the solely CFM descriptor, which provides the best balanced results. The novel descriptor CAM can also be of interest since it can lead to the best source isolation for source 2 (best SIR), but unfortunately with poorer RQF and SDR results. Examples on more audio excerpts from the MedleyDb dataset can be found online at [START_REF] Fourer | Local AM/FM modulations estimation: application to audio sinusoidal modeling and blind source separation[END_REF]. V. CONCLUSION AND FUTURE WORKS We proposed several new estimators which were applied to audio sinusoidal modeling and to blind source separation. Our new proposed estimators have a significantly better accuracy than other state-of-the-art methods when they are used for spectral analysis in both simulations and real-world application scenarios. Our future works will further investigate the source separation method for a better understanding of how the proposed local modulation estimator can be optimally exploited. Moreover, the poorer results in comparaison to (ω2) provided by higher-order estimators of (ωn) with n > 2 should be investigated from a theoretical point of view.
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 1 Fig. 1. MSE (a)-(e) and RQFs comparison between (SM08), (SM12), (tn) and (ωn) at n ∈ {2, 4, 6}, for estimating signal parameters of a AM/FM-modulated sinusoid merged with an additive white Gaussian noise.

TABLE I RQFS

 I EXPRESSED IN DB OBTAINED BY THE PROPOSED ALGORITHM APPLIED ON REAL-WORLD AUDIO SIGNALS.

		SM08 SM12 t2	ω2	ω6
	speech	8.08	7.52	7.82	8.21	6.89
	singing voice 14.40	14.02	15.05	15.13	13.62
	saxophone	28.56	27.89	27.15	29.90	23.71
	drums	6.54	6.52	6.72	6.63	4.29

  to the component i (detected by a local maximum of |F h x [k,m]|), estimated at time instant t = kT s (cf. Section III-A). 2) Computation of CFM i [k] and CAM i [k] for each component using Eq. (28). 3) At each time instant k, we compute the sets I c associated to a sound source, by applying the k-means algorithm [31] on the components i, represented by the couple (CFM i , CAM i ), for a maximal number of clusters equal to C. 4) Modeling of each source c at each time instant by a representing vector computed as v c