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Abstract In [26,25], a PML formulation was proposed for the wave equation in
its standard second-order form. Here, energy decay and L2 stability bounds in two
and three space dimensions are rigorously proved both for continuous and discrete
formulations with constant damping coefficients. Numerical results validate the
theory.

1 Introduction

In the last two decades, the perfectly matched layer (PML) approach [13] has
proved a flexible and accurate method for the simulation of waves in unbounded
media. It consists in surrounding the region of interest by an absorbing layer,
which generates no reflections at its interface; hence, it is perfectly matched. As
the waves propagate through the layer, they decay exponentially until becoming
vanishingly small at the outer boundary of the computational domain, where any
stable boundary condition can be imposed. Due to its simplicity, versatility and
robust treatment of corners, Bérenger’s perfectly matched layer (PML) approach
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[13] for Maxwell’s equations quickly gained in popularity and was soon extended
to other first-order hyperbolic equations [28,2,19].

The original PML formulation [13,14] was based on splitting the electromag-
netic fields into two parts, the first containing the tangential derivatives and the
second containing the normal derivatives; damping was then enforced only upon
the normal component. Abarbanel and Gottlieb [1] showed that Bérenger’s ”split-
field” approach was only weakly well-posed. Several strongly well-posed ”unsplit”
formulations were then proposed, some of which were shown to be linearly equiv-
alent [3,36]. Well-posedness, however, does not prevent exponential growth of the
solution while even the stronger notion of stability generally allows for polynomial
growth in time. In fact, both split and unsplit PML formulations can generate
late-time linear growth [1,7], an undesirable behavior which was later removed
through an alternative complex frequency shifted (CFS) scaling function [12].

Although stable PML formulations existed for a variety of wave equations,
exponential growth was observed in various models involving anisotropy. In [6],
Bécache, Fauqueux and Joly derived a necessary condition for the stability of
PML for general hyperbolic systems based on the geometrical properties of the
dispersion relation. Related to the existence of backward propagating waves, this
condition explains in particular instabilities observed in anisotropic elasticity and
led to necessary and sufficient stability conditions for orthotropic elastic waves.
Appelö, Hagstrom and Kreiss [3] also derived necessary and sufficient stability con-
ditions for first order constant coefficient Cauchy problems; they require verifying
a number of algebraic inequalities in Fourier-Laplace domain, but also yield an en-
ergy in physical space that involves combinations of higher order derivatives of the
unknowns and decays with time – see also [27]. In recent years, stable PML formu-
lations were proposed for linearized Euler equations [29,34], anisotropic acoustics
[20], aeroacoustics [21], short water waves [5] and electromagnetic dispersive media
[9,10,11,8].

Even when the geometric stability condition [6] guarantees the temporal sta-
bility of the Cauchy problem, physical boundaries and interfaces that interact with
the PML can induce new instabilities. However, if the complex change of variables
in the Laplace domain is applied not only to the normal derivatives inside the
PML but also to the tangential derivatives at the physical boundary condition,
the initial-boundary value problem generally inherits the stability of the Cauchy
problem [23].

By using the Cagniard-De Hoop technique, Diaz and Joly [21] proved the expo-
nential accuracy of PMLs with respect to the damping coefficient and the layer’s
thickness. Convergence for two-dimensional scattering problems with an annular
PML was proved in [16]. Exponential decay of the energy both for a continuous
and a semi-discrete PML formulation for the one-dimensional wave equation was
proved in [24]. In two or more space dimensions, however, the derivation of sta-
bility estimates for the transmission problem associated with a PML using energy
techniques, well suited for any subsequent numerical analysis, still remains an open
question.

In the frequency domain, PML formulations essentially consist of a complex-
valued coordinate stretching across the damping layer [17]. The inverse Fourier
transformation back to the time domain, however, is more intricate and gen-
erally introduces additional unknowns. Moreover, initial PML formulations for
time-dependent wave equations in second-order form required first reformulat-
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ing them as first-order hyperbolic systems, thereby introducing many additional
unknowns. In [33,35,4], various PML formulations were derived for second-order
wave equations from acoustics, electromagnetics and elasticity. Still, the inverse
Fourier transformation of the PML system in the frequency domain typically led
to convolution integrals in the time domain [33].

In [26,25], Grote and Sim proposed an efficient PML formulation directly for
the wave equation in its second-order form, which avoids convolution integrals
while keeping minimal the number of auxiliary variables; in fact, it requires only
two auxiliary variables in two dimensions and four auxiliary variables in three di-
mensions inside the absorbing layer. As it avoids convolution integrals, it is also
local in time and easily coupled with standard finite difference or finite element
methods. Moreover, discontinuous absorption coefficients can be used without spe-
cial treatment of the transmission conditions (i.e. without introducing boundary
terms) as they are naturally taken into account into the variational formulation,
unlike in e.g. [20]. Kaltenbacher, Kaltenbacher and Sim [32] addressed the stabil-
ity of the PML formulation from [26,25] via an energy analysis and also applied it
to aeroacoustics. By ”omitting one critical term involving the mixed products of
the damping functions”, they were able to prove long-time stability of a reduced
(rPML) formulation which, however, ”will not achieve perfect matching” [32].

Here, we consider the original PML formulation from [26,25] for the wave
equation in its standard second-order form. In Section 2, as a first step towards
analyzing more general higher-dimensional transmission problems, we prove energy
decay both in two and three space dimensions for the PML system of [26,25] with
constant damping functions. The key distinguishing features of our analysis is that
it avoids Laplace/Fourier transforming the problem into the frequency domain and
thus explicitly yields a new (space-time) energy of the PML system including finite
thickness and corners. These results then imply boundedness of all the unknowns
in the L2-norm. Next, in Section 3, we derive similar estimates for the semi-discrete
and the fully discrete case. Finally, in Section 4, we present numerical results which
validate the theory.

2 Continuous formulation and energy estimates

We consider the wave equation in its standard second-order form with constant
unit wave speed inside a three dimensional rectangular region of interest, Ω0. To
avoid spurious reflections from the boundary of Ω0, we surround it by a perfectly
matched layer (PML), Ωpml, truncated by a rectangular outer boundary, B. Inside
the computational domain Ω, the interior of Ω0 ∪Ωpml, we consider the PML
formulation of [25,26]:


∂2t u+ trΓ1∂tu+ trΓ3u+ detΓ1ψ −∆u− divφ = 0, (2.1a)

∂tψ = u, (2.1b)

∂tφ+ Γ1φ = Γ2∇u+ Γ3∇ψ, (2.1c)



4 Daniel H. Baffet et al.

where, u, ψ : (0, T )×Ω → R and φ : (0, T )×Ω → R3. The matrices Γ1, Γ2 and Γ3
are defined as

Γ1 =

ξ1 0 0
0 ξ2 0
0 0 ξ3

 , Γ2 =

ξ2 + ξ3 − ξ1 0 0
0 ξ1 + ξ3 − ξ2 0
0 0 ξ1 + ξ2 − ξ3


and

Γ3 =

ξ2ξ3 0 0
0 ξ1ξ3 0
0 0 ξ2ξ1

 ,

where each damping function ξi only depends on the i-th spatial coordinate xi,
is non-negative throughout Ω and identically zero inside the (physical) region Ω0.
Note that Γ1 is defined here with the opposite sign with respect to the original
formulation in [25,26].

The PML system (2.1) must be completed with appropriate initial conditions
in Ω and boundary conditions on B. Inside Ωpml, all the initial conditions (and
source terms) are identically zero. On the outer boundary B, we impose either
homogeneous Dirichlet or Neumann conditions,

Dirichlet: u = 0 (D), Neumann: ∂νu+ φ · ν = 0 (N). (2.2)

We do not consider here Robin or absorbing boundary conditions (see for instance
[18] or [22]), however our analysis could be extended to include more general
boundary conditions.

When the PML is used only in a single direction, i.e. when ξi 6≡ 0 and ξj =
ξk ≡ 0, for i 6= j 6= k, both Γ3 and detΓ1 are zero and equations (2.1a) and (2.1c)
no longer involve ψ; then, the above PML formulation involves only the three
(scalar) auxiliary variables φi, i = 1, 2, 3. At a corner, however, where ξiξj 6≡ 0 for
some i 6= j, the above formulation requires the four auxiliary variables ψ and φi,
i = 1, 2, 3.

To derive energy estimates for (2.1), we assume that the damping functions
ξ1, ξ2, ξ3 are constant throughout Ω. We note that to the best of our knowledge
there is no energy-based proof of the stability of the PML system with non-constant
coefficients (and it seems that this question is highly non-trivial). The stability
analysis of the PML system with constant coefficients is justified by the fact that
when the damping profiles are piecewise constant, the PML system (2.1) can be
written as a transmission problem between (2.1) with ξ1 = ξ2 = ξ3 = 0 stated
in Ω0 and (2.1) with piecewise-constant ξ1, ξ2, ξ3 inside Ωpml, each of which can
also be split into multiple transmission problems with constant ξ1, ξ2, ξ3 and ap-
propriate transmission conditions – see [20]. Thus to analyze the stability of such
a transmission problem, it is natural to first analyze the stability of each of the
corresponding boundary value problems.

We introduce the following notations. Given u,v : Ω → Rn, n ≥ 1, we let

〈u, v〉 =

∫
Ω

n∑
k=1

uk(x)vk(x)dx, ‖u‖ = 〈u,u〉
1
2 .

More generally, for any given n× n symmetric positive semidefinite matrix M , we
let

〈u,v〉M =

∫
uT (x)Mv(x) dx , ‖u‖2M = 〈u,u〉M ;
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when M = m Id, with m > 0 scalar, we write 〈·, ·〉m instead of 〈·, ·〉m Id. Moreover,
given u,v : R+ →

(
L2(Ω)

)n
, we will use the notation

〈u, v〉 ≡ 〈u, v〉(t) ≡ 〈u(t), v(t)〉,

and similarly for 〈·, ·〉M .

2.1 Two-dimensional formulation

In two space dimensions, the PML formulation (2.1) reduces to:∂
2
t u+ tr(Γ1) ∂tu+ det(Γ1)u−∆u− divφ = 0,

∂tφ+ Γ1φ = Γ2∇u,

(2.3a)

(2.3b)

where the matrices Γ1 and Γ2 are given by

Γ1 =

(
ξ1 0
0 ξ2

)
, Γ2 =

(
ξ2 − ξ1 0

0 ξ1 − ξ2

)
.

Here, only two damping functions ξ1, ξ2 and two auxiliary variables φ1, φ2 are
needed.

With the above 2D PML system we associate the following energy functional:

E[u,φ] =
1

2

(
‖∂tu+ au‖2 + ‖∇u+ φ‖2 + ‖φ‖2a−1Γ1

+ ‖u‖2b
)
,

where

a = trΓ1, b = detΓ1. (2.4)

In [7], a similar energy was shown to decay for a single PML layer formulation with
positive constant damping coefficients for the 2D transverse electric (TE) Maxwell
equations. Since the PML formulation (2.3) for the second-order wave equation
differs from the first-order formulation in [7], we provide a proof of energy decay,
which also paves the way to the analysis in the 3D case.

Theorem 2.1 Let (u,φ) be a sufficiently regular solution of (2.3) with constant damp-

ing coefficients ξ1, ξ2. Then

d

dt
E[u,φ] = −

(
‖∇u+ φ‖2Γ1(Id+a−1Γ1)

+ ‖∇u‖2a−1b + ‖u‖2ab
)
. (2.5)

Hence, E[u,φ] is a nonincreasing function of t.

Proof We write (2.3a) as

∂2t u+ a ∂tu+ b u = divλ , (2.6a)

where a, b are defined in (2.4) and λ =∇u+φ. By adding ∇∂tu+ Γ1∇u to both
sides of (2.3b) we obtain

∂tλ+ Γ1λ =∇∂tu+ Γ̃2∇u , (2.6b)
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where

Γ̃2 = Γ2 + Γ1 =

(
ξ2 0
0 ξ1

)
.

Testing (2.6a) with ∂tu+ au yields

1

2

d

dt

(
‖∂tu+ au‖2 + b‖u‖2

)
+ ‖u‖2ab = −〈∇(∂tu+ au),λ〉 . (2.7)

Next we test (2.6b) with

g = (Id +a−1Γ1)λ− a−1Γ1∇u .

The inner product of g with the left hand side of (2.6b) then yields

〈g, ∂tλ+ Γ1λ〉 =
1

2

d

dt

(
‖λ‖2 + ‖λ‖2a−1Γ1

)
+ ‖λ‖2Γ1(Id+a−1Γ1)

− 〈a−1Γ1∇u, ∂tλ+ Γ1λ〉 .

The inner product of g with the right hand side of (2.6b) leads to

〈g,∇∂tu+ Γ̃2∇u〉 =
〈

(Id +a−1Γ1)λ,∇∂tu+ Γ̃2∇u
〉

− 1

2

d

dt
‖∇u‖2a−1Γ1

− ‖∇u‖2a−1b ,

since Γ1Γ̃2 = b Id.
Because of (2.6b), the right hand sides of the last two equations must be equal.

By rearranging terms, we thus obtain

1

2

d

dt

(
‖λ‖2 + ‖λ‖2a−1Γ1

+ ‖∇u‖2a−1Γ1

)
+ ‖λ‖2Γ1(Id+a−1Γ1)

+ ‖∇u‖2a−1b

= 〈a−1Γ1∇u, ∂tλ+ Γ1λ〉+
〈

(Id +a−1Γ1)λ,∇∂tu+ Γ̃2∇u
〉

=
d

dt
〈∇u,λ〉a−1Γ1

+ 〈∇∂tu,λ〉+
〈[
a−1Γ1(Γ1 + Γ̃2) + Γ̃2

]
∇u,λ

〉
. (2.8)

It remains to deal with the terms on the right hand side of (2.8). First, we note
that the term d

dt 〈∇u,λ〉a−1Γ1
can be expressed using the identity:

‖φ‖2a−1Γ1
= ‖λ‖2a−1Γ1

+ ‖∇u‖2a−1Γ1
− 2〈∇u,λ〉a−1Γ1

.

Next, we simplify the last term of the right hand side of (2.8) by using

a−1Γ1(Γ1 + Γ̃2) + Γ̃2 = Γ1 + Γ̃2 = a Id .

Substitution into (2.8) then yields

1

2

d

dt

(
‖λ‖2 + ‖φ‖2a−1Γ1

)
+ ‖λ‖2Γ1(Id+a−1Γ1)

+ ‖∇u‖2a−1b

=
〈
∇∂tu+ a∇u,λ

〉
(2.9)

Finally, we sum (2.7) and (2.9) to obtain (2.5), which concludes the proof. ut
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2.2 Three-dimensional formulation

We now return to the PML formulation (2.1) in its full three-dimensional setting.
First, we prove a result on energy decay, analogous to Theorem 2.1 for the 2D
case. To determine a judicious energy functional associated to (2.1), we study
the coercivity of the sesquilinear form associated with our PML formulation in
the Fourier-Laplace domain, following ideas from [31]; those calculations are not
repeated here and we simply use the resulting expression for the energy. Then, we
prove L2 bounds on all the unknowns involved in (2.1).

2.2.1 Energy Decay

First, we introduce two additional unknowns, which are not present in (2.1) but
are needed in our energy estimates below. For a solution (u, ψ,φ) of (2.1), let

Ψ(t) =

t∫
0

ψ(τ)dτ, Φ(t) =

t∫
0

φ(τ)dτ + Φ(0), (2.10)

where Φ(0) satisfies

Γ1

(
Γ1Φ(0) + φ(0)− Γ2∇ψ(0)

)
= 0. (2.11)

This condition is required in the proof of Theorem 2.2 and imposes no true re-
striction. Indeed for sufficiently regular ψ,φ, that is for Γ1 (φ(0) + Γ2∇ψ(0)) ∈(
L2(Ω)

)3
, we may always define Φ(0) as follows: for each i = 1, 2, 3, let j and k be

such that {i, j, k} = {1, 2, 3}, and set Φi(0) = 0, if ξi = 0, and

Φi(0) = −ξ−1
i φi(0) + ξ−1

i (ξj + ξk − ξi)∂xiψ(0)

otherwise. Next, we introduce the additional unknown q,

q := ∂tu+ trΓ1u+ trΓ3ψ + detΓ1Ψ, (2.12)

which also plays an important role in the energy identity.
Using the above definitions, we associate with the 3D PML system (2.1) the

energy functional

E[u, ψ,φ,Φ, Ψ ] =
1

2

(
‖q‖2 + ‖∇u+ φ‖2 + ‖Γ1(∇ψ +Φ)‖2

)
.

The following theorem summarizes the principal result of this section.

Theorem 2.2 Let (u, ψ,φ) be a sufficiently regular solution of (2.1) with constant

damping functions ξ1, ξ2, ξ3. Then, the energy satisfies

d

dt
E[u, ψ,φ,Φ, Ψ ] = −2‖∇u+ φ‖2Γ1

,

where Φ and Ψ are given by (2.10) and Φ(0) satisfies (2.11). Hence, E[u, ψ,φ,Φ, Ψ ]
is nonincreasing in time.

For the proof we will need the following two lemmas.
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Lemma 2.1 Let (u, ψ,φ) be a sufficiently regular solution of (2.1) with constant damp-

ing functions, Ψ and Φ be defined by (2.10) with Φ(0) satisfying (2.11). Then q, defined

in (2.12), satisfies

∇q = ∂2tΛ+ 2Γ1∂tΛ+ Γ 2
1Λ, (2.13)

where

Λ =∇ψ +Φ. (2.14)

Proof Since ξi = const, i = 1, 2, 3, we can interchange ∇ and multiplication by
traces and determinants of the matrices Γ1, Γ3 in (2.12):

∇q = ∂t∇u+ trΓ1∇u+ trΓ3∇ψ + detΓ1∇Ψ. (2.15)

We start by rewriting trΓ1∇u in (2.15) in a more convenient form. Since,

trΓ1 Id = Γ2 + 2Γ1 (2.16)

we have using (2.1c):

trΓ1∇u = Γ2∇u+ 2Γ1∇u = ∂tφ+ Γ1φ− Γ3∇ψ + 2Γ1∇u.

Inserting the above into (2.15) yields

∇q = ∂t(∇u+ φ) + Γ1φ− Γ3∇ψ + 2Γ1∇u+ trΓ3∇ψ + detΓ1∇Ψ
= ∂t(∇u+ φ) + 2Γ1(∇u+ φ)− Γ1φ+ (trΓ3 Id−Γ3)∇ψ + detΓ1∇Ψ.

Next, we use the two identities

trΓ3 Id−Γ3 = Γ1(Γ1 + Γ2), detΓ1 Id = Γ1Γ3, (2.17)

together with (2.14) to obtain

∇q = ∂2tΛ+ 2Γ1∂tΛ− Γ1φ+ Γ1(Γ1 + Γ2)∇ψ + Γ1Γ3∇Ψ,

or equivalently

∇q −
(
∂2tΛ+ 2Γ1∂tΛ+ Γ 2

1Λ
)

= Γ1

(
− Γ1Λ− φ+ (Γ1 + Γ2)∇ψ + Γ3∇Ψ

)
.

Thus, (2.13) holds true provided that

Γ1

(
− Γ1Φ− φ+ Γ2∇ψ + Γ3∇Ψ

)
= 0.

If ξi = 0, the ith component of the vector on the left hand side automatically
vanishes; otherwise, the result follows from Lemma 2.2, since Φ(0) satisfies (2.11).

ut

Remark 2.1 When ξi, i = 1, 2, 3 are not constant and belong to C1(Ω), it follows
that

∇q = ∂2tΛ+ 2Γ1∂tΛ+ Γ 2
1Λ+ u∇ trΓ1 + ψ∇ trΓ3 + Ψ∇detΓ1.
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Lemma 2.2 Let Ψ, Φ be defined by (2.10), with Φ(0) satisfying (2.11), and the indices

i, j, k ∈ {1, 2, 3} be all different. If ξi 6= 0, then

φi(t) + ξiΦi(t) = (ξj + ξk − ξi)∂xiψ(t) + ξjξk∂xiΨ(t), t ≥ 0. (2.18)

Proof Let ξi 6= 0. Integrating the i-th component of (2.1c), we obtain using (2.10)

φi(t)− φi(0) + ξi (Φi(t)− Φi(0)) = (ξj + ξk − ξi)∂xi(ψ(t)− ψ(0)) + ξjξk∂xiΨ(t).

Since (2.11) implies that φi(0)+ξiΦi(0) = (ξj+ξk−ξi)∂xiψ(0), the terms evaluated
at t = 0 cancel each other, which completes the proof. ut

Now we have all the necessary ingredients to prove Theorem 2.2.

Proof (Theorem 2.2) We test equation (2.1a) with q, defined in (2.12). Integration
by parts then yields

1

2

d

dt
‖q‖2 + 〈∇u+ φ,∇q〉 =

∫
B

(∇u+ φ) · ν q. (2.19)

If the Dirichlet boundary condition (2.2)(D) is imposed, by (2.12) it follows that
q = 0 on B and thus the right hand side of (2.20) vanishes. If the Neumann
boundary condition (2.2)(N) is used, the same conclusion holds. Therefore, in
either case we have

1

2

d

dt
‖q‖2 + 〈∇u+ φ,∇q〉 = 0. (2.20)

From (2.13) and (2.14), we thus obtain the statement of the theorem:

1

2

d

dt
‖q‖2 + 〈∂tΛ, ∂2tΛ+ 2Γ1∂tΛ+ Γ 2

1Λ〉 = 0, (2.21)

or equivalently

d

dt

(
1

2
‖q‖2 +

1

2
‖∂tΛ‖2 +

1

2
‖Γ1Λ‖2

)
= −2‖∂tΛ‖2Γ1

. (2.22)

ut

Remark 2.2 If ξ1 = ξ2 = ξ3 = 0, Theorem 2.2 implies the following bound for some
constant C ≥ 0, which depends only on the initial data:

‖∇u(t)‖2 + ‖∂tu(t)‖2 ≤ C, t ≥ 0. (2.23)

Indeed, in this particular case (2.1) reduces to

∂2t u−∆u− divφ = 0, ∂tφ = 0,

and the energy identity of Theorem 2.2 reduces to

d

dt

(
‖∂tu‖2 + ‖∇u+ φ‖2

)
= 0.

Since ‖φ(t)‖ = ‖φ(0)‖ for all t ≥ 0, we infer the bound in (2.23).
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In practice the damping parameters, ξ1, ξ2, ξ3 are not constant. The following
remarks address two more realistic cases where the damping parameters may vary.

Remark 2.3 In the case when ξi, i = 1, 2, 3, are non-constant, but sufficiently reg-
ular (for instance, C1(Ω)), it follows from Remark 2.1 and (2.20), that

d

dt
E[u, ψ,φ,Φ, Ψ ] = −2‖∂tΛ‖2Γ1

− 〈∂tΛ, u∇ trΓ1 + ψ∇ trΓ3 + Ψ∇detΓ1〉.

Using Gronwall’s inequality, one can derive an exponential bound on the energy
(which yields well-posedness).

Remark 2.4 If ξi, with i = 1, 2, 3, are piecewise constant, a similar analysis can
be carried out. For simplicity, consider the case of a PML applied only in the
direction of x1. Suppose Ω0 = (−1, 0)3, ΩPML = (0, 1)× (−1, 0)2, ξ2 = ξ3 = 0 and
ξ1(x1) = 0, for x1 < 0, and ξ1 > 0 constant, for x1 ≥ 0. Let Σ = {x1 = 0}× [−1, 0]2

be the interface between the physical domain Ω0 and the PML domain ΩPML. The
respective normal is then e1 = (1, 0, 0). For this formulation we have the identity

d

dt
E[u, ψ,φ,Φ, Ψ ] = −2‖∂tΛ‖2Γ1

−
∫
Σ

(∂tΛ · e1)u[ξ1]Σ , (2.24)

where [f ]Σ , given by

[f ]Σ = lim
ε→0+

(f(ε)− f(−ε)) ,

represents the jump of f on Σ. Since the last term of (2.24) is, in general, not
positive, we can not conclude energy decay from equation (2.24). We remark that
to obtain (2.24) we implicitly use the transmission conditions

[u]Σ = 0 and [(∇u+ φ) · e1]Σ = [∂tΛ · e1]Σ = 0,

which are a consequence of the requirement that the layer in ΩPML perfectly
matches the medium inside Ω0 (see [30] for the related discussion). Note also that
since φ(0) = 0 in Ω, there holds φ(t) = 0 in the physical domain Ω0, and therefore,
in general, [∇u · e1]Σ 6= 0.

2.2.2 Control of the unknowns

Theorem 2.2 does not immediately imply u, ψ and φ do not grow in time. We
clarify the behaviour of the unknowns solving (2.1) in the following theorem.

Assumption 1 The initial data for (2.1) satisfies

u(0), ψ(0) ∈ H1(Ω), ∂tu(0) ∈ L2(Ω), φ(0) ∈ (L2(Ω))3.

Theorem 2.3 Let (u,φ, ψ) solve (2.1) with initial data satisfying Assumption 1 and

ξ1, ξ2, ξ3 ≥ 0 constant. Then there exists a non-negative constant C, which depends

only on the initial data and ξj , j = 1, 2, 3, such that

– if ξi 6= 0 for some i ∈ {1, 2, 3}, then

‖u(t)‖H1 + ‖∂tu(t)‖+ ‖φ(t)‖ ≤ C, for all t ≥ 0;
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– if, additionally, ξj 6= 0 for some j 6= i, j ∈ {1, 2, 3}, then

‖ψ(t)‖H1 ≤ C for all t ≥ 0.

From these estimates, it appears that we control the L2-norms of all the unknowns
inside the PML. Indeed, when ξi 6= 0, ξj 6= 0 for some i 6= j, this precisely corre-
sponds to the statement of the theorem. Still, when only one ξi is nonzero, that is
for a PML in a single direction, the norm of ψ in fact is not necessarily bounded. In
that particular situation, however, (2.1a) and (2.1c) decouple from (2.1b) – see the
discussion below (2.1) – and hence ψ can be excluded from the PML formulation.

The proof of Theorem 2.3 relies on Lemmas 2.4, 2.5 below, whose proofs ex-
tensively use the Gronwall lemma stated below.

Lemma 2.3 Let v ∈ C1([0, ∞);L2(Ω)) and w be defined by

w = ∂tv + γv, γ > 0, (2.25)

and assume that for some constant Cw ≥ 0, ‖w(t)‖ ≤ Cw uniformly for all t ≥ 0.

Then,

‖v(t)‖ ≤ ‖v(0)‖+ γ−1Cw, ‖∂tv(t)‖ ≤ 2Cw + γ‖v(0)‖, for all t ≥ 0. (2.26)

The estimate of Theorem 2.2 controls the norm of q defined in (2.12). The following
lemma shows that whenever ξi > 0 for some i ∈ {1, 2, 3}, controlling ‖q(t)‖ amounts
to controlling ‖u(t)‖.

Lemma 2.4 Let (u, ψ, φ) solve (2.1) with initial data satisfying Assumption 1 and

ξ1, ξ2, ξ3 ≥ 0 constant. Then there exists a constant C > 0, which depends only on

the initial data and ξj , j = 1, 2, 3, such that

– if ξi 6= 0 for some i ∈ {1, 2, 3}, then for all t ≥ 0,

‖u(t)‖ ≤ C, (2.27a) ‖∂tu(t)‖ ≤ C. (2.27b)

– If, additionally, ξj 6= 0, j 6= i, then

‖ψ(t)‖ ≤ C, for all t ≥ 0. (2.28)

Proof In the following, we let C denote a generic constant that depends only on
the initial data and ξj , j = 1, 2, 3. From Theorem 2.2 it follows that q, defined in
(2.12), satisfies

‖q(t)‖ ≤ C for all t ≥ 0.

We now consider the following three distinct cases:

1. ξi 6= 0 and ξj = ξk = 0, i 6= j 6= k, k ∈ {1, 2, 3}. The bounds (2.27a, 2.27b)
follow from q ≡ ∂tu+ ξiu and a direct application of Lemma 2.3.
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2. ξi, ξj 6= 0 and ξk = 0. Due to ∂tψ = u, we have

q ≡ ∂tu+ (ξi + ξj)u+ ξiξjψ = (∂t + ξi)(∂t + ξj)ψ. (2.29)

By applying Lemma 2.3 with v = (∂t+ξj)ψ and γ = ξi, we get (using ∂tψ(0) =
u(0))

‖(∂t + ξj)ψ(t)‖ ≤ ‖∂tψ(0) + ξjψ(0)‖+ Cξ−1
i

≤ ‖u(0)‖+ ‖ξjψ(0)‖+ Cξ−1
i ,

‖∂t(∂t + ξj)ψ(t)‖ ≤ ξi (‖u(0)‖+ ‖ξjψ(0)‖) + 2C.

From Lemma 2.3 applied to the first expression above, we get (2.28). By apply-
ing Lemma 2.3 to the second expression and using ∂tψ = u, we deduce (2.27a)
and (2.27b).

3. ξ1, ξ2, ξ3 > 0. In this case one can verify that

q = (∂t + ξ1)(∂t + ξ2)(∂t + ξ3)Ψ.

The desired bounds are obtained like in the previous case by multiple appli-
cations of Lemma 2.3. The bounds in these expressions depend only on the
initial data for ψ, u, since Ψ(0) ≡ 0, and on ξj , j = 1, 2, 3.

ut

The next Lemma 2.5 shows that controlling ‖∇u+ φ‖ and ‖Γ1(∇ψ + Φ)‖ allows
to control φ and ∇u.

Lemma 2.5 Let (u,φ, ψ) satisfy (2.1) with initial data satisfying Assumption 1 and

ξ1, ξ2, ξ3 ≥ 0 constant. Then there exists a constant C > 0, which depends only on

the initial data and ξi, i = 1, 2, 3, such that

– if ξi 6= 0 for some i = 1, 2, 3, then fora all t ≥ 0,

‖∇u(t)‖ ≤ C, (2.30a) ‖φ(t)‖ ≤ C. (2.30b)

– If, additionally, ξj 6= 0, for some j ∈ {1, 2, 3}, j 6= i, then

‖∇ψ(t)‖ ≤ C for all t ≥ 0. (2.31)

Proof In the following, let C > 0 denote a generic non-negative constant, which
depends only on ξj , j = 1, 2, 3 and the initial data. Thanks to Theorem 2.2, we
have

‖∇u(t) + φ(t)‖ ≤ C, (2.32)

‖Γ1(∇ψ(t) +Φ(t))‖ ≤ C, (2.33)

uniformly for all t ≥ 0. We now consider four separate cases.

1. ξi = ξj = ξk = 0. Then (2.30a), (2.30b) follow directly from Theorem 2.2, see
Remark 2.2.

2. ξi 6= 0, and ξj = ξk = 0. Without loss of generality, let us assume that i = 1.
To prove (2.30a) and (2.30b), we proceed in two steps.
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– Uniform bounds on ‖∂x1u(t)‖, ‖φ1(t)‖. From Lemma 2.2, we have

φ1 = −ξ1Φ1 − ξ1∂x1ψ.

Then, (2.33) immediately implies ‖φ1(t)‖ ≤ C for all t ≥ 0, which together
with (2.32), yields ‖∂x1u(t)‖ ≤ C for all t ≥ 0.

– Uniform bounds on ‖∂x`u(t)‖, ‖φ`(t)‖, ` 6= 1. Without loss of generality,
we let ` = 2; the bound for ` = 3 can be shown similarly. Since ξ2 = ξ3 = 0,
the second component of (2.1c) reduces to

∂tφ2 = ξ1∂x2u.

Hence, w := (∂t + ξ1) ξ−1
1 φ2 = ∂x2u + φ2 is controlled by (2.32). From

Lemma 2.3, we thus conclude that

‖φ2(t)‖ ≤ C, for all t ≥ 0,

and, using (2.32), that a similar corresponding bound holds for ∂x2u(t).

3. ξi 6= 0, ξj 6= 0, ξk ≡ 0. Without loss of generality, we let i = 1, j = 2 and k = 3.
To prove the three bounds (2.30a), (2.30b), and (2.31), we again proceed in
two steps.
– Uniform bounds on ‖∂x`u(t)‖, ‖∂x`ψ(t)‖, ‖φ`(t)‖, ` = 1, 2. Without loss

of generality, we let ` = 1; for ` = 2, the argument is essentially identical.
By Lemma 2.2,

φ1 + ξ1Φ1 = (ξ2 − ξ1)∂x1ψ, (2.34)

or, adding to both sides of the above identity ∂x1u = ∂x1∂tψ,

φ1 + ∂x1u+ ξ1Φ1 + ξ1∂x1ψ = ∂t∂x1ψ + ξ2∂x1ψ.

The bounds (2.32) and (2.33) show that the L2-norm of the left hand side of
the above expression is uniformly bounded in t ≥ 0. Applying Lemma 2.3 to
w = ∂t∂x1ψ+ξ2∂x1ψ, we deduce that ‖∂x1ψ(t)‖ and ‖∂x1∂tψ(t)‖ = ‖∂x1u(t)‖
are uniformly bounded in time. From (2.32) a uniform bound on ‖φ1(t)‖
immediately follows.

– Uniform bounds on ‖∂x3u(t)‖, ‖∂x3ψ(t)‖, ‖φ3(t)‖. Note (2.18) cannot be
used here for i = 3. Thus, to obtain a similar expression, we integrate from
0 to t the third component of (2.1c). Using (2.10), we get

φ3(t)− φ3(0) = (ξ1 + ξ2)∂x3ψ(t)

− (ξ2 + ξ1)∂x3ψ(0) + ξ1ξ2∂x3Ψ(t).
(2.35)

We now add ∂x3u(t) to both sides of (2.35) and use ∂tψ = u to rewrite the
resulting expression as

φ3(t) + ∂x3u(t)− φ3(0) + (ξ2 + ξ1)∂x3ψ(0) = (∂t + ξ1)

× (∂t + ξ2)∂x3Ψ(t).

The L2-norm of the left hand side of the above is uniformly bounded in
time thanks to (2.32). By applying Lemma 2.3 twice to the right-hand side,
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we obtain uniform bounds on ‖∂x3u(t)‖ and ‖∂x3ψ(t)‖. The bound on φ3
follows immediately from the triangle inequality applied to (2.32).

4. ξ1, ξ2, ξ3 6= 0. To prove the three bounds (2.30a), (2.30b), and (2.31), we first
derive uniform bounds on ‖∂x1u(t)‖, ‖φ1(t)‖, ‖∂x1ψ(t)‖ (for the remaining com-
ponents the bounds can be derived similarly). By adding ∂x1u to both sides of
(2.18) with i = 1 and using (2.10), we obtain

φ1 + ∂x1u+ ξ1(Φ1 + ∂x1ψ) = (∂t + ξ2)(∂t + ξ3)∂x1Ψ.

The left-hand side of the above equation is uniformly bounded due to (2.32)
and (2.33). Then, we again apply twice Lemma 2.3 to the right-hand side,
which allows us to bound the L2-norms of ∂x1Ψ , ∂x1ψ and ∂x1u uniformly in
time. Because of (2.32), we also control ‖φ1(t)‖.

ut

Proof (Theorem 2.3) The bounds of the theorem follow directly from Lemma 2.4
and Lemma 2.5. ut

3 Discretization of the PML system and energy estimates

Here, we consider a discretization of the 3D PML system (2.1) and prove that
it is stable by energy arguments similar to the analysis for the continuous case
in Section 2. We start with a construction and analysis of an implicit scheme,
because the derivation of the explicit discretization (and its stability analysis) will
rely heavily on the respective results obtained for the implicit scheme. In fact,
the explicit scheme can be seen as a slight modification of the implicit one, which
allows us to prove that it retains the same stability properties under a standard
CFL condition, independent of the damping functions inside the PML.

3.1 Implicit scheme

We consider an implicit semi-discretization in time of (2.1), based on the classical
second-order θ-scheme (see [15] for a complete convergence analysis) with θ = 1

4 .

3.1.1 Notation

We denote by vn ≈ v(tn), where tn = n∆t. Given a sequence {vn}∞n=0, we define
for n ≥ 1,

[vn]∆t =
vn+1 − vn−1

2∆t
, [[vn]]∆t =

vn+1 − 2vn + vn−1

∆t2
,

{vn}1/4 =
vn+1 + 2vn + vn−1

4
, vn+1/2 =

vn + vn+1

2
.

(3.1)

The following lemmas provide some useful algebraic identities.
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Lemma 3.1 Let two sequences {an}∞n=0 and {bn}∞n=0 of elements in some vector space

satisfy

an+1 − an

∆t
=
bn+1 + bn

2
, n ≥ 0. (3.2)

Then, for each n ≥ 1, the following identities hold:

[an]∆t =
an+1/2 − an−1/2

∆t
= {bn}1/4, [[an]]∆t = [bn]∆t. (3.3)

The proof of Lemma 3.1 is straightforward and therefore omitted. In the sequel,
we shall employ Lemma 3.1 repeatedly without making explicit reference to it.

The following algebraic result is classical and corresponds to the discrete coun-
terpart of the continuous equalities: v∂tv = ∂tv

2/2 and ∂tv∂
2
t v = ∂t|∂tv|2/2.

Lemma 3.2 For any sequence {vn}∞n=0, the following identities hold for all n ≥ 1:

{vn}1/4 · [v
n]∆t =

1

2∆t

( ∣∣vn+1 + vn

2

∣∣2 − ∣∣vn + vn−1

2

∣∣2 ), (3.4)

[vn]∆t · [[vn]]∆t =
1

2∆t

( ∣∣vn+1 − vn

∆t

∣∣2 − ∣∣vn − vn−1

∆t

∣∣2 ). (3.5)

Below we shall also use the following generalization of Lemma 3.2.

Lemma 3.3 For any sequences {vn}∞n=0, {hn}∞n=0, the following identity holds for all

n ≥ 1:(
[vn]∆t + {hn}1/4

)
· ([[vn]]∆t + [hn]∆t) =

1

2∆t

( ∣∣rn+1/2
∣∣2 − ∣∣rn−1/2

∣∣2), (3.6)

where r`+
1
2 =

v`+1 − v`

∆t
+
h`+1 + h`

2
, ` ≥ 0.

The proofs of these two results are omitted here.

3.1.2 Implicit semi-discretization

We discretize (2.1a) with the implicit θ-scheme as follows:

– discretize terms v(tn) by {vn}1/4,
– discretize terms ∂tv(t

n) by [vn]∆t,
– discretize terms ∂2t v(t

n) by [[vn]]∆t.

Equations (2.1b) and (2.1c) are discretized using second-order finite differences
centered about time (n+ 1/2)∆t. Then the semi-discrete version of (2.1) reads:

[[un]]∆t + trΓ1[un]∆t + trΓ3{un}1/4 + detΓ1{ψn}1/4
−∆{un}1/4 − div{φn}1/4 = 0,

(3.7a)

ψn+1 − ψn

∆t
=
un+1 + un

2
, (3.7b)

φn+1 − φn

∆t
+ Γ1

φn+1 + φn

2
= Γ2∇

un+1 + un

2
+ Γ3∇

ψn+1 + ψn

2
, (3.7c)
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which is equipped with appropriate initial conditions for (u0, u1, ψ0, φ0). The last
two equations imply

[ψn]∆t = {un}1/4, (3.8)

[φn]∆t + Γ1{φn}1/4 = Γ2∇{un}1/4 + Γ3∇{ψn}1/4. (3.9)

Similarly to the setup of the continuous formulation, here we consider either of
the following boundary conditions

Dirichlet: un = 0 (D), Neumann: ∂νu
n + φn · ν = 0 (N), (3.10)

on the boundary B of Ω.

Next, we introduce two auxiliary unknowns, Φn and Ψn, in accordance with
(2.10), as well as an auxiliary ’velocity’ variable vn:

Ψn+1 − Ψn

∆t
=
ψn+1 + ψn

2
, (3.11)

Φn+1 −Φn

∆t
=
φn+1 + φn

2
, (3.12)

vn+1 + vn

2
=
un+1 − un

∆t
. (3.13)

Again, we remark that (3.11) and (3.12) imply

[Ψn]∆t = {ψn}1/4, (3.14)

[Φn]∆t = {φn}1/4. (3.15)

For these equations to be consistent with (2.10), we also need to define initial
conditions for Ψ and Φ – see (2.11) and the related discussion afterwards:

Ψ0 = 0, Γ1

(
Γ1Φ

0 + φ0 − Γ2∇ψ0
)

= 0. (3.16)

With this choice, the energy of the discrete system (3.7) corresponds to the energy
of the continuous setting defined in Theorem 2.2. In particular, as previously,

qn := vn + trΓ1u
n + trΓ3ψ

n + detΓ1Ψ
n, n ≥ 0. (3.17)

Using (3.1), we further introduce the notation:

E
n+ 1

2

k =
1

2

∥∥qn+ 1
2

∥∥2, (3.18)

E
n+ 1

2
p =

1

2

(
‖∇un+

1
2 + φn+

1
2 ‖2 +

∥∥Γ1 (∇ψn+ 1
2 +Φn+

1
2

)∥∥2) , (3.19)

E
n+ 1

2

impl = E
n+ 1

2

k + E
n+ 1

2
p . (3.20)

Here the subscript k stands for ’kinetic’, p for ’potential’ and impl for ’implicit’.

With these notations, the energy decay result for the semi-discrete system (3.7)
is summarized in the following theorem.
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Theorem 3.1 For any sufficiently regular solution (un, ψn, φn) of the initial-value

problem for (3.7) it holds for all n ≥ 1,

1

∆t

(
E
n+ 1

2

impl − E
n− 1

2

impl

)
= −2

∥∥{∇un + φn}1/4
∥∥2
Γ1
,

where En+
1
2 is defined in (3.20) and Φn in (3.12) and satisfies (3.16).

The proof is based on the following two lemmas.

Lemma 3.4 For any sufficiently regular solution (un, ψn, φn) of the initial-value

problem for (3.7), and Φn, Ψn defined in (3.11, 3.12) and satisfying (3.16), it holds

for n ≥ 1:

∇{qn}1/4=[[Λn]]∆t + 2Γ1[Λn]∆t + Γ 2
1 {Λn}1/4,

where

Λn =∇ψn +Φn. (3.21)

Proof The proof follows the derivation of Lemma 2.1. In particular, for n ≥ 1,

∇{qn}1/4 =∇{vn}1/4 + trΓ1∇{un}1/4 + trΓ3∇{ψn}1/4 + detΓ1 ∇{Ψn}1/4.

By Lemma 3.1, {vn}1/4 = [un]∆t. Thus, with (2.16), the above yields:

∇{qn}1/4 =∇[un]∆t + (Γ2 + 2Γ1)∇{un}1/4 + trΓ3∇{ψn}1/4 + detΓ1∇{Ψn}1/4
(3.9)
= ∇[un]∆t + [φn]∆t + Γ1{φn}1/4 − Γ3∇{ψ

n}1/4 + 2Γ1∇{un}1/4
+ trΓ3∇{ψn}1/4 + detΓ1∇{Ψn}1/4.

Using (2.17) to substitute in the above trΓ3 Id−Γ3 and detΓ1, we obtain

∇{qn}1/4 = [∇un + φn]∆t + 2Γ1{∇un + φn}1/4 − Γ1{φ
n}1/4

+ Γ1(Γ1 + Γ2)∇{ψn}1/4 + Γ1Γ3∇{Ψn}1/4. (3.22)

With Λn defined in the statement of the lemma and the observations (3.8) and
(3.15),

[Λn]∆t =∇[ψn]∆t + [Φn]∆t =∇{un}1/4 + {φn}1/4. (3.23)

Similarly, a direct computation, with the use of (3.7b) and (3.12) gives

[[Λn]]∆t =∇[un]∆t + [φn]∆t. (3.24)

By expressing the first two terms in (3.22) via Λn and replacing {φn}1/4 from
(3.15), we obtain:

∇{qn}1/4 = [[Λn]]∆t + 2Γ1[Λn]∆t − Γ1[Φn]∆t

+ Γ1(Γ1 + Γ2)∇{ψn}1/4 + Γ1Γ3∇{Ψn}1/4.

Or, alternatively,

∇{qn}1/4−
(

[[Λn]]∆t + 2Γ1[Λn]∆t + Γ 2
1 {Λn}1/4

)
= Γ1

(
−Γ1{Φn}1/4

+Γ3∇{Ψn}1/4 + Γ2∇{ψn}1/4 − [Φn]∆t
)
.

The left-hand side of the above vanishes because of Lemma 3.5, which concludes
the proof. ut
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Lemma 3.5 Let Ψn, Φn be defined by (3.11), (3.12), with Ψ0, Φ0 satisfying (3.16).

Then, Hn = H0 for all n ≥ 0, where

Hn = φn + Γ1Φ
n − Γ2∇ψn − Γ3∇Ψn. (3.25)

In particular, when ξi 6= 0 and {i, j, k} = {1, 2, 3}, we have

φni + ξiΦ
n
i = (ξj + ξk − ξi)∂xiψ

n + ξjξk∂xiΨ
n, (3.26)

for all n ≥ 0.

Proof Replacing the averages in (3.7c) by differences, using (3.12), (3.7b) and
(3.11), yields

φn+1 − φn

∆t
+ Γ1

Φn+1 −Φn

∆t
= Γ2∇

ψn+1 − ψn

∆t
+ Γ3∇

Ψn+1 − Ψn

∆t
. (3.27)

By multiplying (3.27) by ∆t and rearranging the terms we recover Hn+1 = Hn.
Since n ≥ 0 is arbitrary, it follows that Hn = H0, by induction. Owing to (3.16),
we have Γ1H

n = Γ1H
0 = 0, and hence the conclusion. ut

Now we have all the ingredients necessary to prove Theorem 3.1.

Proof (Theorem 3.1) We proceed as in the proof of Theorem 2.2. From (3.17), we
note that

[qn]∆t = [vn]∆t + trΓ1[un]∆t + trΓ3[ψn]∆t + detΓ1[Ψn]∆t

= [[un]]∆t + trΓ1[un]∆t + trΓ3{un}1/4 + detΓ1{ψn}1/4, (3.28)

because of (3.13), (3.8), (3.14). Thus, (3.7a) reads

[qn]∆t − div
(
∇{un}1/4 + {φn}1/4

)
= 0.

We test (3.7a) with {qn}1/4 and integrate by parts, noting that, similarly to the
continuous case, either of the boundary conditions (3.10) yields no boundary terms
(see discussion after (2.19)), and thus we get

E
n+1/2
k − En−1/2

k

∆t
+ 〈{∇un + φn}1/4,∇{q

n}1/4〉 = 0, (3.29)

with E
`+1/2
k given by (3.18). By Lemma 3.4 and (3.23), we have

〈{∇un + φn}1/4,∇{q
n}1/4〉 = 〈[Λn]∆t, [[Λ

n]]∆t + 2Γ1[Λn]∆t + Γ 2
1 {Λn}1/4〉

and thus by Lemma 3.2 we recover

〈{∇un + φn}1/4,∇{q
n}1/4〉 =

1

2∆t

(∥∥∥∥Λn+1 −Λn

∆t

∥∥∥∥2 + ‖Γ1Λn+
1
2 ‖2

−
∥∥∥∥Λn −Λn−1

∆t

∥∥∥∥2 − ‖Γ1Λn− 1
2 ‖2
)

+ 2‖[Λn]∆t‖2Γ1
.
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From (3.7b) and (3.12), we recall that

Λn+1 −Λn

∆t
=∇un+

1
2 + φn+

1
2 .

Thus, using (3.19) and (3.23), we obtain

〈{∇un + φn}1/4,∇{q
n}1/4〉 =

1

∆t

(
E
n+ 1

2
p − En−

1
2

p

)
+ 2‖{∇un + φn}1/4‖

2
Γ1
.

Substitution of the above into the energy identity (3.29) concludes the proof. ut
This result implies that the discretization (3.7) is unconditionally stable; moreover,
its energy mimics the energy of the continuous PML system (2.1).

3.2 Explicit scheme

In applications, explicit numerical methods are not only more convenient but also
often more efficient than implicit schemes. To derive an explicit method, we first
discretize (2.1) in space and then modify the previous implicit scheme (3.7).

3.2.1 Spatial semi-discretization

Starting from (2.1), we consider a Galerkin finite element (FE) discretization in
space: the semi-discrete approximations of u, ψ are denoted by uh, ψh, and that of
φ by φh. Hence, we seek uh, ψh in Uh = span{uj , j = 1, . . . , n} ⊂ H1(Ω) (or H1

0 (Ω))

and φh ∈ F h ⊂
(
L2(Ω)

)3
, F h = span{f j , j = 1, . . . ,m}. We denote by 〈·, ·.〉h an

(approximate) L2(Ω) scalar product on Uh defined using numerical quadratures,
and for vh,wh ∈ F h, we denote

〈vh,wh〉h :=
3∑
i=1

〈(vh)i, (wh)i〉h.

Next we introduce discrete operators on the finite-dimensional spaces Uh and F h,
defined by respective sesquilinear forms:

∇h : Uh → F h, 〈∇hqh, vh〉h := 〈∇qh,vh〉h, (qh,vh) ∈ Uh × F h,
divh : F h → Uh, 〈divh vh, qh〉h := −〈vh,∇hqh〉h, (qh,vh) ∈ Uh × F h,
∆h : Uh → Uh, 〈∆hqh, ph〉h := −〈∇hqh,∇hph〉h, (qh, ph) ∈ Uh × Uh.

Observe that by definition,
∆h = divh∇h. (3.30)

We emphasize that this property holds even if mass-lumping is used.
For the sake of simplicity we drop the subscript h in what follows and denote

by ‖ · ‖ the induced norm. The spatial semi-discretization of (2.1) for constant
{ξi}3i=1 then reads:

∂2t uh + trΓ1∂tuh + trΓ3uh + detΓ1ψh −∆huh − divh φh = 0,

∂tψh = uh,

∂tφh + Γ1φh = Γ2∇huh + Γ3∇hψh.

(3.31)

Note that we need to replace the multiplications with trΓ1, trΓ2, detΓ1, Γ1, Γ2,
Γ3 by more complicated expressions when ξi 6= const.
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3.2.2 Explicit discretization and energy estimates

To obtain a fully explicit scheme, we now replace in (3.7a)∆{un}1/4 and div{φn}1/4
by ∆un and divφn, respectively. Combined with the spatial semi-discretization
(3.31), this results in the following fully discrete system:

[[unh]]∆t + trΓ1[unh]∆t + trΓ3{unh}1/4 + detΓ1{ψnh}1/4
−∆hunh − divh φ

n
h = 0,

(3.32a)

ψn+1
h − ψnh
∆t

=
un+1
h + unh

2
, (3.32b)

φn+1
h − φnh
∆t

+ Γ1
φn+1
h + φnh

2
= Γ2∇h

un+1
h + unh

2
+ Γ3∇h

ψn+1
h + ψnh

2
. (3.32c)

Remark 3.1 In contrast to the time discretization used in [26,25], the zeroth order
term in (3.32a) involving Γ3 is not simply evaluated at the current time tn but
instead replaced by the weighted time average {unh}1/4. This small distinction leads
to a provably stable fully discrete numerical scheme for constant damping functions
ξi. Numerical results with varying ξi also suggest that the above formulation is
more stable in the presence of steep gradients or high contrasts in the damping
profiles.

To prove the stability of the above fully discrete explicit scheme under a certain
CFL condition to be determined, we require the following algebraic identity.

Lemma 3.6 For any sequence {vn}∞n=0, it holds that

vn = {vn}1/4 −
∆t2

4
[[vn]]∆t, n ≥ 1.

We define Φh, Ψh, vh as in (3.11)–(3.13), with all the unknowns replaced by their
discrete analogues, which therefore satisfy:

Ψ0
h = 0, Γ1

(
Γ1Φ

0
h + φ0

h − Γ2∇hψ
0
h

)
= 0. (3.33)

As in (3.17), (3.21), we let

qnh = vnh + trΓ1u
n
h + trΓ3ψ

n
h + detΓ1Ψ

n
h , (3.34)

Λnh =∇hψnh +Φnh, n ≥ 0. (3.35)

Due to the similarities between the semi-discrete implicit scheme of the previ-
ous section and the above explicit fully discrete scheme, some results obtained for
the former also hold true for the latter. Thus to adapt these results to the explicit
scheme, we need only add the subscript h to the appropriate variables and oper-
ators. We refrain from repeating these results for the explicit scheme and instead
simply refer to the previous results for the implicit scheme, with the understanding
that the semi-discrete variables and spatial operators should be replaced by their
appropriate discrete counterparts.
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With the above definitions, we introduce the following energy-related quantities
– see also (3.18-3.20):

E
n+ 1

2

k,h =
1

2

(∥∥∥qn+ 1
2

h

∥∥∥2 − ∆t2

4

∥∥∥∇hqn+ 1
2

h

∥∥∥2) , (3.36)

E
n+ 1

2

p,h =
1

2

(∥∥∥∇hun+ 1
2

h + φ
n+ 1

2

h

∥∥∥2 +
∥∥∥Γ1 (∇hψn+ 1

2

h +Φ
n+ 1

2

h

)∥∥∥2) , (3.37)

E
n+ 1

2

add,h =
(∆t)2

8

∥∥∥∥∥Γ1Λn+1
h −Λnh
∆t

∥∥∥∥∥
2

+

∥∥∥∥∥2Γ1
Λn+1
h −Λnh
∆t

+ Γ 2
1Λ

n+ 1
2

h

∥∥∥∥∥
2
 , (3.38)

E
n+ 1

2

expl = E
n+ 1

2

k,h + E
n+ 1

2

p,h + E
n+ 1

2

add,h, (3.39)

where the subscript expl stands for ’explicit’ whereas add stands for ’additional’
to underline that this term does not appear in the expression for the energy of the

implicit scheme. Note that E
n+ 1

2

expl corresponds to a true (positive definite) energy

provided that E
n+ 1

2

k,h ≥ 0, that is under the (classical) CFL condition CCFL ≤ 1,
where

CCFL :=
∆t

2
max
vh∈Uh

‖∇hvh‖
‖vh‖

. (3.40)

With the above definitions, we can now formulate the following energy identity.

Theorem 3.2 For any solution (unh, ψ
n
h ,φ

n
h) of the initial value problem for (3.32),

and Φnh, Ψnh satisfying (3.33), it holds: for n ≥ 1,

1

∆t

(
E
n+ 1

2

expl − E
n− 1

2

expl

)
= −∆t

2

2
‖[∇hunh + φnh]∆t‖2Γ1

− 2‖{∇hunh + φnh}1/4‖
2
Γ1
.

(3.41)

For the proof, we need the following two auxiliary lemmas.

Lemma 3.7 For all n ≥ 1,

[∇hqnh ]∆t = [[∇hunh + φnh]]∆t + 2Γ1[[Λnh]]∆t + Γ 2
1 [Λnh]∆t.

Proof The proof follows the derivation of Lemma 3.4. First, we note that

[∇hqnh ]∆t = [[∇hunh]]∆t + trΓ1[∇hunh]∆t + trΓ3[ψnh ]∆t + detΓ1[∇hΨnh ]∆t.

By using (2.16),we rewrite the above as

[∇hqnh ]∆t = [[∇hunh]]∆t + (Γ2 + 2Γ1)[∇hunh]∆t

+ trΓ3[ψnh ]∆t + detΓ1[∇hΨnh ]∆t. (3.42)

From (3.32c), we infer that

[[φnh]]∆t + Γ1[φnh]∆t − Γ3[∇hψnh ]∆t = Γ2[∇hunh]∆t,

which we use to replace Γ2[∇hunh]∆t in (3.42). This yields

[∇hqnh ]∆t = [[∇hunh + φnh]]∆t + Γ1[φnh]∆t − Γ3[∇hψnh ]∆t

+ 2Γ1[∇hunh]∆t + trΓ3[ψnh ]∆t + detΓ1[∇hΨnh ]∆t.
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As in the proof of Lemma 3.4, we now substitute in the above trΓ3 Id−Γ3 and
detΓ1 from (2.17):

[∇hqnh ]∆t = [[∇hunh + φnh]]∆t + 2Γ1[∇hunh + φnh]∆t − Γ1[φnh]∆t

+ Γ1(Γ1 + Γ2)[∇hψnh ]∆t + Γ1Γ3[∇hΨnh ]∆t.

Using (3.9) for discretized fields (which follows from (3.32c)), as well as (3.15),

[∇hqnh ]∆t = [[∇hunh + φnh]]∆t + 2Γ1[∇hunh + φnh]∆t + Γ 2
1 {∇hunh + φnh}1/4.

The statement of the lemma follows from the above combined with (3.24) and
(3.23) rewritten for the discrete case. ut

Lemma 3.8 For all n ≥ 1, it holds

〈[[∇hunh + φnh]]∆t, {∇hqnh}1/4〉 =
1

2∆t

(
‖∇hq

n+ 1
2

h ‖2 − ‖∇hq
n− 1

2

h ‖2
)

− 2‖[∇hunh + φnh]∆t‖2Γ1
− 4

(∆t)3

(
E
n+ 1

2

add,h − E
n− 1

2

add,h

)
.

Proof From Lemma 3.7, we have

[[∇hunh + φnh]]∆t = [∇hqnh ]∆t − 2Γ1[[Λnh]]∆t − Γ 2
1 [Λnh]∆t.

Using (3.4) we thus obtain

〈[[∇hunh + φnh]]∆t,∇h{qn}1/4〉 = 〈[∇hqnh ]∆t − 2Γ1[[Λnh]]∆t − Γ 2
1 [Λnh]∆t, {∇hqnh}1/4〉

=
1

2∆t

(
‖∇hq

n+ 1
2

h ‖2 − ‖∇hq
n− 1

2

h ‖2
)

− 〈2Γ1[[Λnh]]∆t + Γ 2
1 [Λnh]∆t, {∇hqnh}1/4〉. (3.43)

We now focus on the very last term in (3.43) and use Lemma 3.4 to express
{∇hqnh}1/4 via Λh to obtain:

〈2Γ1[[Λnh]]∆t + Γ 2
1 [Λnh]∆t, {∇hqnh}1/4〉 = 〈2Γ1[[Λnh]]∆t + Γ 2

1 [Λnh]∆t, [[Λ
n
h]]∆t〉

+ 〈2Γ1[[Λnh]]∆t + Γ 2
1 [Λnh]∆t, 2Γ1[Λnh]∆t + Γ 2

1 {Λnh}1/4〉.

From (3.5) it follows that

〈2Γ1[[Λnh]]∆t + Γ 2
1 [Λnh]∆t, {∇hqnh}1/4〉 = 2Γ1‖[[Λnh]]∆t‖2

+
1

2∆t

∥∥∥∥∥Γ1Λn+1
h −Λnh
∆t

∥∥∥∥∥
2

−

∥∥∥∥∥Γ1Λnh −Λn−1
h

∆t

∥∥∥∥∥
2


+ 〈2Γ1[[Λnh]]∆t + Γ 2
1 [Λnh]∆t, 2Γ1[Λnh]∆t + Γ 2

1 {Λnh}1/4〉.

Finally, with (3.6), we obtain

〈2Γ1[[Λnh]]∆t + Γ 2
1 [Λnh]∆t, {∇hqnh}1/4〉 = 2‖[[Λnh]]∆t‖2Γ1

+
1

2∆t

∥∥∥∥∥Γ1Λn+1
h −Λnh
∆t

∥∥∥∥∥
2

+

∥∥∥∥∥2Γ1
Λn+1
h −Λnh
∆t

+ Γ 2
1

Λn+1
h +Λnh

2

∥∥∥∥∥
2

−

∥∥∥∥∥Γ1Λnh −Λn−1
h

∆t

∥∥∥∥∥
2

−

∥∥∥∥∥2Γ1
Λnh −Λ

n−1
h

∆t
+ Γ 2

1

Λnh +Λn−1
h

2

∥∥∥∥∥
2
 .
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To conclude the proof, we combine the above expression with (3.43) and recall
that [[Λnh]]∆t = [∇hunh + φnh]∆t (see (3.24) ). ut

Now we can prove the principal result of this section, namely Theorem 3.2.

Proof (Theorem 3.2) By proceeding as in the proof of Theorem 3.1 and using (3.30),
we obtain the following identity:

‖qn+
1
2

h ‖2 − ‖qn−
1
2

h ‖2

2∆t
+ 〈∇hunh + φnh,∇h{q

n
h}1/4〉 = 0.

Let us remark that to obtain the above, we use the fact that due to either of
boundary conditions (3.10), integration by parts yields no boundary terms (see
discussion after (2.19)). On applying Lemma 3.6 to ∇hunh + φnh, the above trans-
forms into

‖qn+
1
2

h ‖2 − ‖qn−
1
2

h ‖2

2∆t
+ 〈{∇hunh + φnh}1/4,∇h{q

n
h}1/4〉

− ∆t2

4
〈[[∇hunh + φnh]]∆t,∇h{qnh}1/4〉 = 0.

(3.44)

By proceeding as in the proof of Theorem 3.1 and using (3.36) to express the first

two terms in the above via E
n± 1

2

k,h , we rewrite (3.44) as follows:

1

∆t

(
E
n+ 1

2

k,h − En−
1
2

k,h

)
+
∆t

8

(∥∥∥∇hqn+ 1
2

h

∥∥∥2 − ∥∥∥∇hqn− 1
2

h

∥∥∥2)
+

1

∆t

(
E
n+ 1

2

p,h − En−
1
2

p,h

)
+ 2

∥∥∥{∇hunh + φnh
}
1/4

∥∥∥2
Γ1

− ∆t2

4
〈[[∇hunh + φnh]]∆t,∇h{qnh}1/4〉 = 0.

Substitution of the last term using Lemma 3.8 finally yields (3.41). ut

3.3 Control of unknowns

Here, we demonstrate that the norms of the unknown discrete fields do not grow
in time when the explicit time discretization (3.32) is used, which corresponds to
the discrete counterpart of Theorem 2.3.

Theorem 3.3 Let (unh,φ
n
h, ψ

n
h) solve the initial-value problem for (3.32) with ξ1, ξ2,

ξ3 ≥ 0 and CCFL < 1, where the CFL constant CCFL is given by (3.40). Then there

exists a constant C > 0, which depends only on the initial data, the damping functions

ξj , j = 1, 2, 3 and CCFL, such that

– if ξi 6= 0 for some i ∈ {1, 2, 3}, then

‖unh‖+
∥∥∥∇hun+ 1

2

h

∥∥∥+

∥∥∥∥∥un+1
h − unh
∆t

∥∥∥∥∥+ ‖φnh‖ ≤ C, for all n ≥ 0.

– if, additionally, ξj 6= 0 for some j 6= i ∈ {1, 2, 3}, then

‖ψnh‖+ ‖∇hψnh‖ ≤ C, for all n ≥ 0.
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Again the proof relies on several auxiliary lemmas. The following result mimics
Lemma 2.3.

Lemma 3.9 Let vnh ∈ Uh, n ≥ 0, and let the sequence wn+
1
2 be defined by

wn+
1
2 =

vn+1 − vn

∆t
+ γ

vn+1 + vn

2
, γ > 0, ∆t > 0. (3.45)

If there exists a constant Cw > 0, s.t. ‖wk+1/2‖ ≤ Cw uniformly for all k ≥ 0, then

the following bounds hold uniformly for all n ≥ 0:

‖vn‖ ≤ ‖v0‖+ Cv,

∥∥∥∥vn+1 − vn

∆t

∥∥∥∥ ≤ γ‖v0‖+ C′v. (3.46)

Here the constants Cv, C
′
v > 0 only depend on Cw and γ.

Proof From (3.45), we have

vn+1 =

(
1

∆t
+
γ

2

)−1

wn+
1
2 + vnν, ν =

(
1− γ∆t

2

)(
1 +

γ∆t

2

)−1

.

Hence,

vn+1 = v0νn+1 +
n∑
`=0

wn−`+1/2ν`
(

1

∆t
+
γ

2

)−1

.

Since |ν| < 1, the above implies the uniform bound (3.46) for ‖vn‖. By applying

the triangle inequality to (3.45) and using the uniform bound for wn+
1
2 , we get:∥∥∥∥vn+1 − vn

∆t

∥∥∥∥ ≤ Cw + γ

∥∥∥∥vn+1 + vn

2

∥∥∥∥ ,
which, together with ‖vn‖ ≤ ‖v0‖+Cv, results in the second bound in (3.46). Note
that all constants are also uniformly bounded in ∆t. ut

Next, we need the discrete counterpart of Lemma 2.4.

Lemma 3.10 Let (unh, ψ
n
h , φ

n
h) solve the initial-value problem for (3.32) with ξ1, ξ2,

ξ3 ≥ 0, and CCFL < 1 with CCFL given by (3.40). Then there exists a constant C > 0,

which depends only on the initial data and ξj , j = 1, 2, 3, such that

– if ξi 6= 0, then for all n ≥ 0,

‖unh‖ ≤ C, (3.47a)

∥∥∥∥∥un+1
h − unh
∆t

∥∥∥∥∥ ≤ C. (3.47b)

– if, additionally, ξj 6= 0, for j 6= i, then

‖ψnh‖ ≤ C, n ≥ 0. (3.48)

Proof Again, we let C denote a generic constant that depends on the initial data,
damping functions and the CFL only. Theorem 3.2, combined with the assumption
CCFL < 1, implies the following uniform bound in `:

‖q`+
1
2

h ‖ ≤ C, ` ≥ 0.

Next, we consider the following three separate cases:
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– ξi 6= 0 and ξj = ξk = 0, i 6= j 6= k. The bounds (3.47a, 3.47b) follow from

q
n+ 1

2

h = v
n+ 1

2

h + ξiu
n+ 1

2

h =
un+1
h − unh
∆t

+ ξiu
n+ 1

2

h

(see (3.13) for the definition of vnh) and Lemma 3.9.
– ξi, ξj 6= 0 and ξk = 0. Here we need to show (3.47a), (3.47b) and (3.48) following

similar ideas as previously. First, we recall that

q
n+ 1

2

h =
un+1
h − unh
∆t

+ (ξi + ξj)u
n+ 1

2

h + ξiξjψ
n+ 1

2

h . (3.49)

Next, we define the auxiliary unknown,

gnh = unh + ξiψ
n
h , (3.50)

which yields

g
n+ 1

2

h = u
n+ 1

2

h + ξiψ
n+ 1

2

h =
ψn+1
h − ψnh
∆t

+ ξiψ
n+ 1

2

h , (3.51)

where the last identity follows from (3.32b). We also have

gn+1
h − gnh
∆t

=
un+1
h − unh
∆t

+ ξiu
n+ 1

2

h . (3.52)

Therefore, we can rewrite (3.49) as

q
n+ 1

2

h =
gn+1
h − gnh
∆t

+ ξjg
n+ 1

2

h .

By applying Lemma 3.9, we deduce that for all n ≥ 0,

‖gnh‖ ≤ C, (3.53)

∥∥∥∥∥gn+1
h − gnh
∆t

∥∥∥∥∥ ≤ C. (3.54)

With (3.53), Lemma 3.9 applied to (3.51) yields the bound (3.48). The uniform
bound (3.47a) follows from the triangle inequality applied to (3.50), and the
bound (3.47b) follows from (3.54) and the triangle inequality applied to (3.52)
using (3.47a).

– ξ1, ξ2, ξ3 6= 0. We will only sketch the proof, since it is very similar to the previous
case, and consists in multiple applications of Lemma 2.3. Let us first define an
auxiliary unknown wnh :

wnh = unh + (ξ2 + ξ1)ψnh + ξ1ξ2Ψ
n
h . (3.55)

Then, with (3.32b) and (3.11), we have

wn+1
h − wnh
∆t

+ ξ3w
n+ 1

2

h =
un+1
h − unh
∆t

+ (ξ2 + ξ1)u
n+ 1

2

h + ξ1ξ2ψ
n+ 1

2

h

+ξ3u
n+ 1

2

h + ξ3(ξ2 + ξ1)ψ
n+ 1

2

h + ξ1ξ2ξ3Ψ
n+ 1

2

h .

(3.56)

Upon comparison with (3.34), we obtain

q
n+ 1

2

h =
wn+1
h − wnh
∆t

+ ξ3w
n+ 1

2

h . (3.57)
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Next, we let

Gnh = ψnh + ξ2Ψ
n
h , (3.58)

and verify that

Gn+1
h −Gnh
∆t

+ ξ1G
n+ 1

2

h = w
n+ 1

2

h , (3.59)

and

Gn+1
h −Gnh
∆t

=
ψn+1
h − ψnh
∆t

+ ξ2ψ
n+ 1

2

h , (3.60)

Then the desired result follows by multiple applications of Lemma 2.3, first

to (3.57) (to bound ‖wnh‖ and
∥∥∥wn+1

h −wn
h

∆t

∥∥∥), next to (3.59) (to bound ‖Gnh‖ and∥∥∥Gn+1
h −Gn

h

∆t

∥∥∥), and finally to (3.60) (which permits to bound ‖ψnh‖, thus obtaining

(3.48)). Applying the triangle inequality to (3.58), we obtain a uniform bound
on ‖Ψnh ‖; next, the triangle inequality with (3.55) gives us the uniform bound
(3.47a) on ‖unh‖. Finally, to get (3.47b), it suffices to apply the triangle inequality
to (3.56).

ut

The following lemma shows that we also control the discrete norms of the deriva-
tives. For conciseness, we shall henceforth use the following notation:

∇huh =
(
∂hx1

uh, ∂
h
x2
uh, ∂

h
x3
uh

)
.

Lemma 3.11 Let (unh,φ
n
h, ψ

n
h) solve the initial-value problem for (3.32) with ξ1 , ξ2,

ξ3 ≥ 0 and CCFL < 1 with CCFL as in (3.40). Then there exists a constant C > 0,

which depends only on the initial data, ξj , j = 1, 2, 3, and CCFL, such that

– we have ∥∥∥∇hun+ 1
2

h

∥∥∥ ≤ C, for all n ≥ 0; (3.61)

– if, additionally, for some i ∈ {1, 2, 3}, ξi 6= 0, then

‖φnh‖ ≤ C, n ≥ 0. (3.62)

– if, additionally, ξj 6= 0, for some j 6= i, then

‖∇hψnh‖ ≤ C, n ≥ 0. (3.63)

Proof Again, we let C > 0 denote a generic constant that depends only on the
initial data, CCFL and ξj , j = 1, 2, 3. Due to the assumptions of the lemma together
with Theorem 3.2, the following uniform bounds hold:∥∥∥Γ1 (∇hψn+ 1

2

h +Φ
n+ 1

2

h

)∥∥∥ ≤ C, (3.64)∥∥∥∇hun+ 1
2

h + φ
n+ 1

2

h

∥∥∥ ≤ C, n ≥ 0. (3.65)

Let us consider the following four separate cases.



Stability Analysis of a PML for the Second-order Wave Equation 27

– ξ1 = ξ2 = ξ3 = 0. Then (3.61) is a direct consequence of Theorem 3.2, see
Remark 2.2.

– ξi 6= 0, and ξj = ξk = 0, i 6= j 6= k, i, j, k ∈ {1, 2, 3}. Without loss of generality,
let us assume i = 1. We can split the proof into two cases:

1. Uniform bounds for ‖∂hx1
u
n+ 1

2

h ‖ and ‖φnh,1‖. Let us consider (3.26) in its
fully discrete form written for i = 1; it clearly yields

φ
n+ 1

2

h,1 + ξ1Φ
n+ 1

2

h,1 = −ξ1∂hx1
ψ
n+ 1

2

h .

From the above expression and (3.64), we deduce that ‖φn+
1
2

h,1 ‖ is bounded

uniformly in n, which together with (3.65) implies the bound on ∂hx1
u
n+ 1

2

h .
To bound ‖φnh,1‖, we use (3.32c) written for φh,1, namely,

φn+1
h,1 − φ

n
h,1

∆t
+ ξ1φ

n+ 1
2

h,1 = −ξ1∂hx1
u
n+ 1

2

h ,

and apply to it Lemma 3.9, as the right hand side is bounded uniformly in
n.

2. Uniform bounds for ‖∂hx`
u
n+ 1

2

h ‖ and ‖φnh,`‖, ` 6= 1. First, note that (3.32c)
written for φh,2 reads:

φn+1
h,2 − φ

n
h,2

∆t
= ξ1∂

h
x2
u
n+ 1

2

h . (3.66)

Adding to both sides of the above expression ξ1φ
n+ 1

2

h,2 , we obtain

φn+1
h,2 − φ

n
h,2

∆t
+ ξ1φ

n+ 1
2

h,2 = ξ1∂
h
x2
u
n+ 1

2

h + ξ1φ
n+ 1

2

h,2 .

The right-hand side of this equation is bounded uniformly in n due to (3.65).
With Lemma 3.9, we obtain the uniform bound (3.62) on ‖φnh,2‖, as well

as the uniform bound on

∥∥∥∥φn+1
h,2 −φ

n
h,2

∆t

∥∥∥∥. The latter, combined with (3.66),

immediately implies the uniform bound (3.61) for ‖∂hx2
u
n+ 1

2

h ‖.
– ξiξj 6= 0, ξk ≡ 0, for i 6= j 6= k. In this case we will demonstrate (3.61), (3.62)

and (3.63). Without loss of generality, let i = 1, j = 2 and k = 3.

1. Uniform bounds for ‖∂hx`
u
n+ 1

2

h ‖, ‖φnh,`‖, ‖∂
h
x`
ψnh‖, ` = 1, 2. Without loss

of generality, we show the bounds for ` = 1, as the proofs are essentially
identical for ` = 2.
From (3.26) with i = 1, we have

φ
n+ 1

2

h,1 + ξ1Φ
n+ 1

2

h,1 = (ξ2 − ξ1)∂hx1
ψ
n+ 1

2

h .

Adding to both sides of the above ∂hx1
u
n+ 1

2

h results in

φ
n+ 1

2

h,1 + ∂hx1
un+

1
2 + ξ1Φ

n+ 1
2

h,1 + ξ1∂
h
x1
ψ
n+ 1

2

h = ξ2∂
h
x1
ψ
n+ 1

2

h + ∂hx1
u
n+ 1

2

h
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By using (3.32b), we can rewrite the above as

φ
n+ 1

2

h,1 + ∂hx1
un+

1
2 + ξ1Φ

n+ 1
2

h,1 + ξ1∂
h
x1
ψ
n+ 1

2

h =
∂hx1

ψn+1
h − ∂hx1

ψnh
∆t

+ ξ2∂
h
x1
ψ
n+ 1

2

h .

By (3.64) and (3.65), the left-hand side is bounded uniformly in n. The
application of Lemma 3.9 then implies for all n ≥ 0 that

‖∂hx1
ψnh‖ ≤ C,

∥∥∥∥∥∂hx1

ψn+1
h − ψnh
∆t

∥∥∥∥∥ ≡ ‖∂hx1
u
n+ 1

2

h ‖ ≤ C.

Finally, to get a uniform bound on ‖φnh,1‖, it suffices to apply Lemma 3.9 to
(3.32c) written for φh,1:

φn+1
h,1 − φ

n
h,1

∆t
+ ξ1φ

n+ 1
2

h,1 = (ξ2 − ξ1)∂hx1
u
n+ 1

2

h .

2. Uniform bounds for ‖∂hx3
u
n+ 1

2

h ‖, ‖φnh,3‖ and ‖∂hx3
ψnh‖. Since ξ3 = 0, we may

not use (3.26) here, though we can use the first part of Lemma 3.5, which
yields the following identity:

φn+1
h,3 − φ

0
h,3 = (ξ1 + ξ2)∂hx3

ψn+1
h − (ξ1 + ξ2)∂hx3

ψ0
h + ξ1ξ2∂

h
x3
Ψn+1
h , (3.67)

which, in its turn, yields

φ
n+ 1

2

h,3 − φ
0
h,3 + (ξ1 + ξ2)∂hx3

ψ0
h = (ξ1 + ξ2)∂hx3

ψ
n+ 1

2

h + ξ1ξ2∂
h
x3
Ψ
n+ 1

2

h .

Next, we add to both sides of the above ∂hx3
u
n+ 1

2

h to obtain

φ
n+ 1

2

h,3 + ∂hx3
u
n+ 1

2

h − φ0h,3 + (ξ1 + ξ2)∂hx3
ψ0
h = ∂hx3

u
n+ 1

2

h

+(ξ1 + ξ2)∂hx3
ψ
n+ 1

2

h + ξ1ξ2∂
h
x3
Ψ
n+ 1

2

h .

(3.68)

The left hand side of the above is bounded because of (3.65). As for the
right-hand side, one can easily verify that it can be rewritten as follows:

∂hx3
u
n+ 1

2

h + (ξ1 + ξ2)∂hx3
ψ
n+ 1

2

h + ξ1ξ2∂
h
x3
Ψ
n+ 1

2

h =
Gn+1
h −Gnh
∆t

+ ξ1G
n+ 1

2

h ,

(3.69)

where

Gnh = ∂x3ψ
n
h + ξ2∂x3Ψ

n
h , (3.70)

as in the proof of Lemma 3.10, case ξi, ξj 6= 0 and ξk = 0, for instance.
By applying Lemma 3.9 to (3.69), we now deduce that the following two
bounds hold uniformly in n:

‖Gnh‖ ≤ C,

∥∥∥∥∥Gn+1
h −Gnh
∆t

∥∥∥∥∥ ≤ C.
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Again by applying Lemma 3.9 to (3.70) rewritten as

G
n+1/2
h = ∂x3

Ψn+1
h − Ψnh
∆t

+ ξ2∂x3Ψ
n+1/2
h ,

we deduce that ∥∥∂x3Ψ
n
h

∥∥ ≤ C, for all n ≥ 0. (3.71)

Next, Lemma 3.9 applied to

Gn+1
h −Gnh
∆t

= ∂x3

ψn+1
h − ψnh
∆t

+ ξ2∂x3ψ
n+ 1

2

h ,

yields the following bounds, for some constant C > 0:

‖∂x3ψ
n
h‖ ≤ C,

∥∥∥∥∥∂x3

ψn+1
h − ψnh
∆t

∥∥∥∥∥ ≡ ‖∂x3u
n+ 1

2

h ‖ ≤ C, for all n ≥ 0. (3.72)

Finally, to get the bound on ‖φnh,3‖, we use the triangle inequality in (3.67),
combined with the above uniform bound on ‖∂x3ψ

n
h‖ and (3.71).

– Finally, it remains to consider the case ξ1, ξ2, ξ3 > 0. Let us first obtain the

bounds on ‖∂hx1
u
n+ 1

2

h ‖, ‖∂hx1
ψnh‖ and ‖φnh,1‖, as the bounds for the remaining

terms are similar. Here, we shall only sketch the proof, since it is very similar
to previously used arguments.
From (3.26) for i = 1, we have

φ
n+ 1

2

h,1 + ξ1Φ
n+ 1

2

h,1 = (ξ2 + ξ3 − ξ1)∂hx1
ψ
n+ 1

2

h + ξ2ξ3∂
h
x1
Ψ
n+ 1

2

h ,

or, after adding to both sides of the above ∂hx1
u
n+ 1

2

h + ξ1∂
h
x1
ψ
n+ 1

2

h ,(
φ
n+ 1

2

h,1 + ∂hx1
u
n+ 1

2

h

)
+ ξ1

(
Φ
n+ 1

2

h,1 + ∂hx1
ψ
n+ 1

2

h

)
= ∂hx1

u
n+ 1

2

h

+(ξ2 + ξ3)∂hx1
ψ
n+ 1

2

h + ξ2ξ3∂
h
x1
Ψ
n+ 1

2

h .

With

Gnh = ∂hx1
ψnh + ξ3∂

h
x1
Ψnh , (3.73)

it is not difficult to verify (see the proof of Lemma 3.10, case ξi, ξj 6= 0 and
ξk = 0) that(

φ
n+ 1

2

h,1 + ∂hx1
u
n+ 1

2

h

)
+ ξ1

(
Φ
n+ 1

2

h,1 + ∂hx1
ψ
n+ 1

2

h

)
=
Gn+1
h −Gnh
∆t

+ ξ2G
n+ 1

2

h . (3.74)

Thanks to (3.64), (3.65) and Lemma 3.9, we obtain

‖Gnh‖ ≤ C,

∥∥∥∥∥Gn+1
h −Gnh
∆t

∥∥∥∥∥ ≤ C, for all n ≥ 0.

Hence, the desired bounds for ‖∂hx1
u
n+ 1

2

h ‖ and ‖∂hx1
ψnh‖ can be obtained similarly

to those in (3.72). Finally, to get a uniform bound on ‖φnh,1‖, we apply Lemma
3.9 to the left-hand side of (3.32c) written for φnh,1.

ut

Proof (Theorem 3.3) The proof is a direct corollary of Lemmas 3.10 and 3.11. ut
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4 Numerical results

Here we perform a series of numerical experiments where we compute the solution
of the 3D PML system (2.1) in the unit cube Ω = [0, 1]3 using the explicit scheme
described in Section 3.2. First, we consider damping functions ξi that are constant
throughout Ω to validate the theory. Next, we consider the realistic situation of
piecewise constant damping functions that identically vanish inside the region of
interest, Ω0.

For the spatial discretization, we use standard sixth-order hexahedral Q6-finite
elements, which leads to approximately 1.4 ·107 degrees of freedom. The time step
is set to ∆t ≈ 0.001, which corresponds to approximately 95% of the allowed
maximal time step. We set the initial conditions to zero and consider either Neu-
mann or Dirichlet conditions at the outer boundary B of the PML for the sake of
completeness.

To initiate an outward propagating spherical wave, we include in (2.1) the
essentially compactly supported Gaussian source centered about x0,

f(t,x) = f0e−σx‖x−x0‖2 d
dt

(
e−σt(t−t0)2

)
,

σx = 2 · 103, σt = 5 · 104, x0 =

(
1

2
,
1

2
,
1

2

)
, t0 = 0.02, f0 = 102.

(4.1)

The source f(t,x) only acts during the very short time interval [0, 0.04] while its
amplitude lies below machine precision past t = 0.08. In the simulations below, all
quantities of interest are therefore computed after those first 80 time steps, that is
for tn > 0.08 when f is essentially zero and our theory is valid. The discrete energy

E
n+ 1

2

expl defined in (3.39), in particular, then satisfies the identity in Theorem 3.2
for n ≥ 80.

4.1 Constant damping coefficients

We consider the situation of constant damping functions, where ξ1, ξ2 and ξ3
are constant throughout Ω; hence, the PML occupies the entire computational
domain. We perform two sets of experiments:

– PML in a single direction, either with Dirichlet or Neumann conditions, with
ξ1 = 40, ξ2 = ξ3 = 0.

– PML in all three directions, corresponding to a corner situation, either with
Dirichlet or Neumann conditions, with ξ1 = 40, ξ2 = 45, ξ3 = 50.

In Fig. 4.1, we observe that the decay rate of the energy is only algebraic for
the PML in a single direction, while for the PML in all three directions (corner)
the energy decays exponentially fast. To further validate Theorem 3.2, we evaluate
the relative error

εn =

(
1

∆t

(
E
n+ 1

2

expl − E
n− 1

2

expl

)

+
(∆t)2

2
‖[∇hunh + φnh]∆t‖2Γ1

+ 2‖{∇unh + φnh}1/4‖
2
Γ1

) /
E
n+ 1

2

expl . (4.2)
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Fig. 4.1 Constant damping functions. Left: the energy E
n+ 1

2
expl defined in (3.39) for the

PML in a single direction, computed either with Dirichlet or Neumann conditions. Right: the

energy E
n+ 1

2
expl for the PML in all three directions, computed either with Dirichlet or Neumann

boundary conditions.

In all our computations, εn never exceeded 10−12 thereby demonstrating the va-
lidity of Theorem 3.2 down to machine precision.

4.2 Variable damping coefficients

We consider the realistic situation of varying damping functions, when our theory
is in fact not valid. More precisely, we choose ξi piecewise-constant as

ξi(xi) =

{
40, xi ≤ 0.1 or xi > 0.9,
0 otherwise,

i = 1, 2, 3.

Hence Ω0 = [0.1, 0.9]3 and the PML has width 0.1 in each direction, while the
FE mesh is aligned with the boundary B of the perfectly matched layer to avoid
spurious reflections due to the discretization. In Fig. 4.2, snapshots of the numerical
solution with a Dirichlet boundary condition are shown at different times. We
recall that at t = 0.2, the source is essentially zero. The spherical wave front
enters the PML around t ≈ 0.4 and is fully absorbed by time t = 0.8 without any
noticeable reflections. In contrast to similar experiments performed elsewhere, we
did not observe any instabilities or spurious reflections when using discontinuous
damping profiles. Indeed, as shown in the left frame of Fig. 4.3, we observe no
spurious oscillations as the solution enters the PML. At later times, however, we
observe in the right frame of Fig. 4.3 a thousandfold smaller back propagating
reflection caused by the outer boundary of the PML. The absence of any spurious
oscillations at the interface is probably due to the use of a very high 6-th order
FE discretization.

In the left frame of Fig. 4.4, we display the time evolution of the discrete energy

E
n+ 1

2

expl for piecewise constant damping functions that identically vanish inside Ω0,
using either Dirichlet or Neumann boundary conditions. In the right frame, we
show the discrete rate of change of the energy,

δnh =
E
n+ 1

2

expl − E
n− 1

2

expl

∆t
. (4.3)
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t ≈ 0.2 t ≈ 0.4

t ≈ 0.6 t ≈ 0.8

Fig. 4.2 Piecewise constant damping functions. Snapshots of the numerical solution at
times t ' 0.2, 0.4, 0.6, 0.8.
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t ≈ 0.6 t ≈ 0.8

Fig. 4.3 Piecewise constant damping functions. Snapshots of u(t, x, 1
2
, 1
2

) for x ∈ (0, 1).
Left: t ' 0.2, 0.4, right: t ' 0.6, 0.8. Notice the difference in figure scales.

Clearly, we no longer expect εn defined in (4.2) to vanish identically. Still, we

wish to investigate whether the energy E
n+ 1

2

expl defined in (3.39) nonetheless decays

in a situation of varying damping functions, that is whether δnh in (4.3) remains
negative.
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Fig. 4.4 Piecewise constant damping functions, short time. Left: the energy E
n+ 1

2
expl ,

defined in (3.39), computed either with Dirichlet or Neumann conditions. Right: the discrete
rate of change in the energy δnh , defined in (4.3), computed either with Dirichlet or Neumann
conditions.
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Fig. 4.5 Piecewise constant damping functions, a closer look. The discrete rate of
change of the energy δnh computed either with Dirichlet or Neumann conditions. Zoom on the
right frame of Fig. 4.4.

In Fig. 4.4, it appears at first that the energy still decays even in a situation
of varying damping profiles. However, as we take a closer look in Fig. 4.5 at the
time evolution of the discrete rate of change of the energy, we observe that in fact
the energy no longer monotonically decreases. Indeed at time t ≈ 0.4, that is when
the wave front first penetrates the PML, δnh exhibits an albeit small but positive
maximum, though it remains strictly negative at all later times.

Finally, we demonstrate the long-time stability of our perfectly matched layer
by performing a much longer simulation until time t = 36. All parameters remain
identical, except that we choose a FE mesh twice as coarse with about 1.8 · 106

degrees of freedom and a time-step about twice as large, ∆t ≈ 0.002. In Fig. 4.6,
we observe that the energy (3.39) remains bounded and essentially decays during
the entire simulation, be it with Dirichlet or Neumann conditions. Note that the
energy essentially vanishes beyond time t = 0.8, once the spherical wave has left
the physical domain Ω0.
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Fig. 4.6 Piecewise constant damping functions, long time. The discrete energy (3.39)
computed either with Dirichlet or Neumann conditions.

5 Concluding remarks

Starting from the PML formulation from [26,25] for the wave equation in its stan-
dard second-order form, we have proved energy decay first in two and then in
three space dimensions for a judicious space-time energy functional. Our energy
estimates apply in the full 3D setting including corners and imply boundedness
of all the unknowns in the L2-norm. Although we assume constant damping func-
tions inside the PML for our analysis, our estimates pave the way for establishing
stability in more general situations with variable damping functions or nonlinear
dispersive terms.

We have also proposed a fully explicit discrete formulation which is provably
stable for constant damping functions. The time-stepping scheme is based on the
well-known leapfrog method and is stable under a CFL stability condition which
is independent of the damping parameters inside the PML. The present time dis-
cretization slightly differs from that used in [26,25] and appears more stable in
numerical computations – see Remark 3.1.

Our numerical results for constant damping coefficients validate the theory to
machine precision. The energy decays algebraically in the PML single layer for-
mulation and exponentially in the PML corner formulation. We have also tested
numerically the scheme for PMLs with piecewise constant damping functions. The
implementation of the present formulation for this case is rather straightforward
since it does not require transmission conditions to be treated explicitly. Although
the conclusions of the theory are no longer valid for piecewise constant damp-
ing functions, our numerical results show that the energy still essentially decays
even for very long times. They also illustrate that smooth or even just continuous
damping functions are not necessary to achieve perfect matching at the discrete
level.
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