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Parallel Bayesian Search with no Coordination ∗

Pierre Fraigniaud† Amos Korman ‡ Yoav Rodeh §

Abstract

Coordinating the actions of agents (e.g., volunteers analyzing radio signals in SETI@home) yields
efficient search algorithms. However, such an efficiency is often at the cost of implementing complex
coordination mechanisms which may be expensive in term of communication and/or computation
overheads. Instead, non-coordinating algorithms, in which each agent operates independently from
the others, are typically very simple, and easy to implement. They are also inherently robust to slight
misbehaviors, or even crashes of agents. In this paper, we investigate the “price of non-coordinating”,
in term of search performance, and we show that this price is actually quite small. Specifically, we
consider a parallel version of a classical Bayesian search problem, where set of k ≥ 1 searchers are
looking for a treasure placed in one of the boxes indexed by positive integers, according to some
distribution p. Each searcher can open a random box at each step, and the objective is to find
the treasure in a minimum number of steps. We show that there is a very simple non-coordinating
algorithm which has expected running time at most 4(1− 1

k+1 )2 OPT + 10, where OPT is the expected
running time of the best fully coordinated algorithm. Our algorithm does not even use the precise
description of the distribution p, but only the relative likelihood of the boxes. We prove that, under
this restriction, our algorithm has the best possible competitive ratio with respect to OPT. For the
case where a complete description of the distribution p is given to the search algorithm, we describe
an optimal non-coordinating algorithm for Bayesian search. This latter algorithm can be twice as
fast as our former algorithm in practical scenarios such as uniform distributions. All these results
provide a complete characterization of non-coordinating Bayesian search. The take-away message
is that, for their simplicity and robustness, non-coordinating algorithms are viable alternatives to
complex coordinating mechanisms subject to significant overheads. Most of these results apply as
well to linear search, in which the indices of the boxes reflect their relative importance, and where
important boxes must be visited first.
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1 Introduction

BOINC [22] (Berkeley Open Infrastructure for Network Computing) is a platform for volunteer computing
supporting dozens of projects including the famous SETI@home analyzing radio signals for identifying
signs of extra terrestrial intelligence. Most projects maintained at BOINC use parallel search mechanisms
where a central server controls, and distributes the work to volunteers. The framework in this paper is an
abstraction for projects operated at platforms similar to BOINC with hundreds of thousands distributed
searchers. We address the following question: how to distribute the work among the searchers with
respect to the amount of coordination between them provided by the central server? This paper drives to
the conclusion that no coordination might actually be a quite viable strategy, both efficient and robust.

Specifically, we consider a parallel variant of the classical Bayesian search problem, typically attributed
to Blackwell [6]. A treasure is placed according to some distribution p in one of infinitely many boxes,
indexed by the positive integers. The search for the treasure is performed in parallel by k ≥ 1 agents,
also called searchers, which means that at each time step each searcher can “peek” into a box to check
whether the treasure is present there. The goal is to minimize the expected time until the first searcher
finds the treasure. We assume that the number k of searchers is known to the algorithm. We will
consider two cases, whether p is given to the algorithm, or not. However, in the latter case, we assume
that the algorithm is aware of the relative likelihood of the boxes. In both cases, we can assume, w.l.o.g.,
that the boxes Bx, x ≥ 1, are ordered so that p is non-increasing, i.e., p(x+ 1) ≤ p(x) for every x ≥ 1.

Let s1, . . . , sk be the k searchers at hand. If coordination is allowed, let Acoord be the algorithm that
lets searcher si peek into box B(t−1)k+i at time t. A simple application of the rearrangement inequality
shows that Acoord is an optimal algorithm, that is, it minimizes the expected time until one searcher
finds the treasure. This time is

∑
x≥1 p(x)dx/ke since the box Bx is opened at time dx/ke in Acoord , and

this box has probability p(x) to contain the treasure. In particular, the optimal expected time to find
the treasure with a single searcher is

∑
x≥1 x p(x). Therefore, if coordination is allowed, k searchers

essentially allow to find the treasure k times faster than one searcher alone, in expectation. (Specifically,
the speedup resulting from using k searchers approaches k when the expectation of the distribution p
grows to infinity). However, as simple as this algorithm is, Acoord is very sensitive to faults of all sorts. For
example, if one searcher crashes at some point during the execution then the searchers may completely
miss the treasure, unless the protocol employs some mechanism for detecting such faults. Indeed, in
Acoord , each box is eventually opened by just one searcher. Namely, box B(t−1)k+i is opened only by
searcher si, for every t ≥ 1 and 1 ≤ i ≤ k.

In this paper, we highlight the usefulness of a class of search algorithms, called non-coordinating,
which is inherently robust. In such algorithms, all searchers operate independently, executing the same
protocol, differing only in the outcome of the flips of their private random coins. A canonical example is
the case of multiple random walkers that search a graph [1]. Although many search problems cannot be
efficiently parallelized without coordination, when such parallelization can be achieved, the benefit can
potentially be high, not only in terms of saving in communication and overhead in computation, but also
in terms of robustness. To get some intuition, observe that when executing a non-coordinating algorithm,
the correct operation as well as the running time can only improve if more searchers than planned are
actually being used. Suppose for instance that an oblivious adversary is allowed to crash at most k′

out of the k searchers at arbitrary times during the execution. To overcome the presence of k′ faults,
one can simply run the non-coordinating algorithm that is designed for the case of k − k′ searchers. If
the running time of the non-coordinating algorithm for x searchers without crashes is T (x), then the
running time of the new robust (non-coordinating) algorithm would be at most T (k − k′). Note that
even when coordination is allowed, one cannot expect to obtain robustness at a cost less than T̂ (k − k′)
in the worst case, where T̂ (x) denotes the cost of an optimal coordinating algorithm for x searchers
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without crashes, since the number of searchers that remain alive is in the worst case k − k′. Hence, if
T (·) and T̂ (·) are close, we get robustness almost for free by using a non-coordinating algorithm.

In this paper, we are interested in computing how much we lose in term of performance when using
non-coordinating algorithms. Specifically, let k ≥ 1, and let us denote by Tk(A, x) the expected time for
an algorithm A to find the treasure with k searchers running in parallel if this treasure is placed at box
x. Further, given a distribution p over the placement of the treasure in the boxes, let Tp,k(A) denote the
expected time for A to find the treasure when it is placed in one of the boxes according to p. We have

Tp,k(A) =
∑
x≥1

p(x)Tk(A, x). (1)

With this notation, the expected running time of the optimal coordinating algorithm is Tp,k(Acoord ) =∑
x≥1 p(x)dx/ke. We are interested in comparing these two terms, i.e., Tp,k(A) for a non-coordinating

algorithm A versus Tp,k(Acoord ), the complexity of the best search algorithm with full coordination. For
this purpose, we use competitive analysis, and say that an algorithm A is c-competitive for k searchers
looking for a treasure placed according to p if there is a constant b such that

Tp,k(A) ≤ cTp,k(Acoord ) + b.

We show that there is a non-coordinating algorithm with small competitive ratio, hence establishing
that indeed one does not lose much in using non-coordinating algorithms.

Before going into the details of our results, let us observe that although the random placement of the
treasure is the common setting in Bayesian search problems, yielding Eq. (1) for defining the complexity
of a search algorithm, there is another abstract search setting which deserves to be investigated, that we
call linear search. Indeed, searching for a proper divisor of a given number n, the typical approach to
solve the problem consists of enumerating the candidate divisors in increasing order, from 2 to

√
n, and

checking them one by one. This is because the probability that a random number is divisible by a given
prime is inversely proportional to this prime. Similarly, in cryptography, an attack is better proceeded
by systematically checking smaller keys than longer ones, because the time to check a key is typically
exponential in its size. There are thus several contexts in which the search space can be ordered in a
way such that, given that the previous trials were not successful, the next candidate according to the
order is either the most preferable, or most likely to be valid, or the easiest to check. This led us to
consider another measure of complexity, comparing the search time of an algorithm A to the search time
of the algorithm with one searcher opening the boxes sequentially in order of their indices, namely

Tk(A) = max
x≥1

Tk(A, x)/x. (2)

Again, we say that a search algorithm A is c-competitive for k searchers looking for a treasure arbitrarily
placed in one box if there is a constant b such that

Tk(A) ≤ cTk(Acoord ) + b.

In the linear search setting, the aforementioned algorithm Acoord is also optimal. We show that, as for
Bayesian search, one does not lose much in using non-coordinating algorithms in linear search.

1.1 Our Results

First, we design and analyze an optimal non-coordinating algorithm for Bayesian search, where p is given.
Our algorithm, called A?, has optimal expected running time among all non-coordinating algorithms.
Specifically, for every distribution p, every k ≥ 1, and every non-coordinating algorithm A,

Tp,k(A?) ≤ Tp,k(A).
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A remarkable property satisfied by our non-coordinating algorithm A? is that, at any time t > 1 during
its execution, all boxes that received a positive probability to be checked at some time t′ < t, are now
going to be checked at time t with equal probability. The design of A? is complex. However, when
p is the uniform distribution over a finite domain, A? becomes simple to describe: at each step, each
searcher running A? chooses a box uniformly among those it did not check at previous step. This natural
algorithm for the uniform setting is optimal among all non-coordinating algorithms, and is shown to be
at most 2 times slower than Acoord .

Next, we focus on the notion of order-invariant algorithms, that is, algorithms assuming only the
knowledge of the relative likelihood of the boxes (and not knowing the exact probability of finding the
treasure in each box). Such algorithms are appealing because they are “universal”, in the sense that,
once the boxes have been reordered such that Bx is not less likely to contain the treasure than Bx+1, any
order-invariant algorithm acts the same for all distributions. We present a very simple yet highly efficient
non-coordinating order-invariant algorithm, called Aorder . In this algorithm, at step t, each searcher
checks a box uniformly chosen among those it did not check yet in {1, . . . , d t2e(k+ 1)}. The performance
of Aorder is essentially at most 4 times the expected running time of the best fully coordinated algorithm
Acoord . Precisely, for every distribution p, and every k ≥ 1,

Tp,k(Aorder ) ≤ 4

(
1− 1

k + 1

)2

Tp,k(Acoord ) + 10. (3)

Ignoring the constant additive term, the aforementioned upper bound implies that the cost paid for
not coordinating is just at most 16/9 for two searchers, 9/4 for three searchers, and approaches 4 as the
number of searchers goes to infinity. In fact we show that these costs are tight in a very strong sense, as,
for any given number of searchers, there is no non-coordinating order-invariant algorithm that achieves a
better competitive ratio. Specifically, for every distribution p, every k ≥ 1, and every order-invariant
non-coordinating algorithm A, if there exist b and c such that Tp,k(A) ≤ cTp,k(Acoord ) + b, then

c ≥ 4

(
1− 1

k + 1

)2

. (4)

Algorithm Aorder remembers all the boxes it checked, and so each searcher needs memory linear in the
running time of the algorithm. We also consider Aobliv which at step t chooses one box uniformly at
random in {1, . . . , kd t2e}, hence potentially choosing many times the same box at different time steps.
This algorithm uses memory that is just logarithmic in its running time, but performs almost as well as
Aorder for large number of searchers. Precisely, for every distribution p, and every k ≥ 1,

Tp,k(Aobliv ) ≤ 4Tp,k(Acoord ) + 2. (5)

All the aforementioned upper bound results on order-invariant algorithms are actually established by
considering the linear search setting, where the treasure is placed at an arbitrary box, and boxes are
ordered by importance, that is, when focussing on the complexity Tk(A) = maxx≥1 Tk(A, x)/x of any
algorithm A (cf. Eq. (2)). Indeed, it turns out that the two settings (Bayesian search and linear search)
are highly related, as far as order-invariant algorithms are concerned: an order-invariant algorithm that
works well against a treasure placed arbitrarily would also work well in any probabilistic setting (under
the assumption that the indices of the boxes are ordered according to their relative likelihood). In fact,
in the linear search setting, Aorder and Aobliv have the same competitive ratio as those mentioned in
Eq. (3) and (5), respectively. Moreover, the lower bound of Eq. (4) also holds in the linear search setting,
i.e., Aorder has also optimal competitive ratio in this latter setting.
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As mentioned earlier, since we are dealing with non-coordinating search algorithms, we immediately
get robustness with respect to crashes of searchers. We point out that, in addition, our order-invariant
algorithms are robust also for the case where each searcher has a possibly different, distorted, list of
boxes. Such a distorted list may contain some extra boxes, and/or the order of the true boxes (those
possibly containing the treasure) may be permuted. More precisely, for every box x, let σsi(x) be
the box index of Bx in the “eyes” of searcher si, and let us denote by σ(x) = 1

k

∑k
i=1 σsi(x). We

show that if σ(x) = x+ o(x) for all x, then Aorder and Aobliv still have essentially the same respective
multiplicative ratios compared to Acoord running on the non-distorted list. In other words, the algorithm
works practically just as well even if the average placement of x is not very far from its correct placement.

All the characteristics and performances of our algorithms are summarized in Table 1.

Algorithms Performances Comments

Acoord optimal expected and worst-case running time Bayesian and linear search
coordination is allowed

A? optimal expected running time Bayesian search
2 times slower than Acoord for p ∼ Unif distribution p is given

Aorder 4
(

1− 1
k+1

)2
times slower than Acoord Bayesian search

optimal competitiveness w.r.t. Acoord relative likelihood is given
Aobliv 4 times slower than Acoord Bayesian search

uses logarithmic size memory relative likelihood is given
Aorder and Aobliv same competitiveness w.r.t. Acoord as for Bayesian Linear search

Aorder has optimal competitiveness w.r.t. Acoord
any Anon−coord robust to inconsistencies in the box indexing Bayesian and linear search

Table 1: Characteristics and performances of the algorithms presented in the paper. In all cases, the
number k of searchers is given as input to each searcher. All algorithms but Acoord run in absence of
coordination.

In terms of techniques, our approach uses a crucial aspect of non-coordinating algorithms: they
can be represented by infinite matrices. The performance analyses of our algorithms rely on carefully
analyzing the corresponding matrices, and on using known properties of the Gamma function. Not
surprisingly, demonstrating the optimality of A?, and establishing the optimality of the competitive ratio
of Aorder are the hardest tasks. To establish these results, we first approximate matrices by continuous
functions, and use compactness arguments. In fact, we establish a general technical lemma in the context
of Measure theory, that we apply to different settings in our paper.

1.2 Related work

The case of a single searcher that searches for a randomly placed treasure received significant amount
of attention from the communities of statistics, operational research and computer science (see e.g.,
[6, 11, 21]), and has been studied under various settings, including the cases where different costs are
associated with the queries to the locations where the treasure is suspected to be (in our case, a query is
just opening a box, and takes one step), where queries can be noisy (e.g., responses might be unreliable),
and where the target may be mobile (see the book [24]).

When it comes to parallel search, most of the literature deals with mobile agents that search graphs
of different topologies, and it is typically assumed that agents employ some form of communication. The
literature on this subject is vast, and some good references can be found in, e.g., [2, 3, 10, 18, 23]. The
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major difference between our setting and the mobile agent setting, is that we allow “random access” to
the different boxes. That is, our searcher can jump between different boxes at no cost. In other words,
our focus is on the query complexity rather than the move complexity. Note, however, that the settings
are related as the number of queries is always a lower bound on the number of moves.

Multiple random walkers are a special case of non-coordinating searchers. In a series of papers
[1, 8, 13, 12] several results regarding hitting time, cover time, and mixing times are established, such as
a linear speedup for several graph families including expanders and random graphs.

The linear search settings, in which the boxes are linearly ordered and the objective is to find a
treasure placed in a box in time that is compared to its index, are related to the cow-path problem
[4, 5, 19], which traditionally focused on the move complexity of a single mobile agent. In this context,
it is worth pointing out [9] which considers the case of faulty agents.

Motivated by applications to central search foraging by desert ants, a parallel variant of the cow-
path problem, called the ANTS problem, was introduced in [15, 16]. These latter works focus on
non-coordinating searchers that start the search at a single location in a grid topology, and aim to find
nearby treasures as fast as possible. In particular, it was shown therein that a speedup of O(k) can be
achieved with k non-coordinating searchers, and that a linear speedup cannot be achieved unless the
agents have some knowledge of k. Following [15, 16] several other aspects of the ANTS problem were
studied in, e.g., [20, 7, 14].

1.3 Outline

The paper is organized as follows. The next section provides the formal statement of the different search
problems we are interested in. This section also includes results about the robustness of non-coordinating
search algorithms, hence demonstrating their interest in fault-prone environments. In Section 3, we
focus on the order-invariant algorithms (i.e., algorithms which have only access to the relative order of
the boxes, either in term of likelihood, or importance), and we analyse the performances of Aorder and
Aobliv . Then Section 4 focuses on the case of algorithms which are given a complete description of the
distribution p as input. Algorithm A? is described and analyzed in that section. The lower bound for
order-invariant algorithms is established in Section 5. Finally, Section 6 includes concluding remarks,
and research perspectives. The paper is complemented by an Appendix containing the proofs of technical
lemmas used throughout the paper.

2 Model and Formalization of the Problem

2.1 Bayesian and linear search

Let us consider an infinite set of boxes Bx indexed by the integers x ≥ 1, and let us assume that a
treasure is hidden in one of these boxes. A searcher is an algorithm that is given the ability to query
boxes sequentially, in an order that is specified by the algorithm. The trivial search algorithm consists of
querying box Bt at step t ≥ 1. The result of a query to box Bx is a boolean bx returning whether this
box contains the treasure or not (hence, there is a unique x such that bx = true).

Given k ≥ 1, a k-searcher algorithm is a parallel algorithm performed concurrently by k searchers.
The algorithm Acoord lets searcher si, i ∈ {1, . . . , k}, query box Bk(t−1)+i at step t ≥ 1. This algorithm
assumes the capacity to fully coordinate the searchers. Instead, this paper focuses on non-coordinating
algorithms, that is, parallel algorithms in which each searcher performs individually the same algorithm,
obliviously to the behaviors of the other searchers. During the execution of this type of algorithm, a
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searcher may reopen a box that has been opened before by another searcher. This is not noticeable by
the former as querying a box lets no trace visible from the other searchers. In particular, two or more
searchers may query the same box at the same time, but, to the perspective of each searcher, this is
as if it is querying the box alone. Given a parallel algorithm A, we denote by Tk(A, x) the expected
time until at least one of the k searchers executing A visits Bx for the first time, that is, Tk(A, x) is the
expected number of steps until at least one searcher queries box Bx. (The expectation is taken over all
the random choices made by the searchers during their execution). From this point on, for the sake of
simplifying the notations, we shall not explicitly mention the number of searchers k in the notations. So,
formally,

T(A, x) =
∞∑
t=0

Pr[Bx was not queried by time t]. (6)

In this paper, we consider two scenarios regarding the way the treasure is placed in one of the boxes.

Bayesian search. The treasure is placed according to some probability distribution p over the positive
integers, i.e., p(x) ≥ 0 for every x ≥ 1, and

∑
x≥1 p(x) = 1. We consider the cases in which the

algorithm may or may not be given the distribution p as input. However, we always assume that
the algorithm is given the relative likelihood of the boxes as input. Hence, we systematically
assume that the boxes Bx, x ≥ 1, are indexed such that p(x+ 1) ≤ p(x) for every x ≥ 1. In this
scenario, we focus on the expected time for finding the treasure, that is, we focus on the average
complexity

Tavg(A) =
∑
x≥1

p(x) T(A, x).

In the context of Bayesian search, we systematically assume that the distribution p satisfies∑
x≥1 x p(x) <∞.

Linear search. The treasure is placed at an arbitrary position. In this scenario, the index of a box
reflects its “importance” with respect to finding the treasure in it. The performances of the
non-coordinating algorithms are thus compared to the position of the box where the treasure stands
because this is the time a single searcher opening boxes in increasing order of their importance
would take until it queries box Bx. That is, we focus on the worst-case complexity

Tworst(A) = max
x≥1

T(A, x)/x.

The terminology linear search comes from the fact that the boxes are linearly ordered, and must
ideally be checked in that order.

2.2 The Best Coordinating Algorithm

The performances of our algorithm will be compared to the performances of the best algorithm with full
coordination, i.e., the one minimizing Tavg or Tworst depending on the context. Recall that Algorithm
Acoord lets searcher si, i ∈ {1, . . . , k}, query box Bk(t−1)+i at step t ≥ 1. Note that T(Acoord , x) = dxk e, and

therefore, 1
k EX ≤ Tavg(Acoord ) ≤ 1

k EX+1 where X is distributed according to p, and T(Acoord , x)/x→ 1
k

when x→ +∞. These facts express that, for both settings, Acoord has essentially a speed up of k compared
to a single searcher opening boxes in increasing order of their indices, up to additive constants.

Lemma 1. Acoord has optimal search time among coordinating algorithms, for both Bayesian search,
and linear search.
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Proof. Let k ≥ 1. Because we allow coordination, any randomized search algorithm is centralized,
and thus can be seen as a distribution over deterministic search algorithms. It follows that it is
enough to consider deterministic search algorithms. W.l.o.g, as this cannot harm the running time,
one can restrict our analysis to algorithms that check each box only once, and for which there are
exactly k boxes that are checked at each step. Let OPT be an optimal algorithm. The infinite sequence
T(OPT, 1),T(OPT, 2), . . . contains exactly k copies of each positive integer. In the random placement
scenario, let us consider a distribution p. Since p(x) is a non-increasing sequence, it follows from the
Rearrangement inequality that Tavg(OPT) =

∑
x p(x)T(OPT, x) is minimized when the T(OPT, x)’s are

arranged in a non-decreasing order, which is exactly what algorithm Acoord does. Similarly, in the
importance-driven scenario, Tworst(OPT) = maxx≥1 T(OPT, x)/x is also minimized when the T(OPT, x)’s
are arranged in a non-decreasing order.

2.3 Order-Invariance and Functional View

2.3.1 Order-Invariance

Among all types of search algorithms, one class of algorithms is particularly appealing in the context of
non-coordinating algorithms: the class of order-invariant algorithms. We say that two distributions
p and p′ over the positive integers have similar shapes if, for every two integers x and y, we have:
p(x) ≤ p(y) ⇐⇒ p′(x) ≤ p′(y).

Definition 2. A search algorithm A is order-invariant if, for any two distributions p and p′ over the
positive integers with similar shapes, the queries performed by A for p and p′ are identically distributed.

By definition, order-invariant algorithms act the same for all distributions. We will show that some
simple order-invariant algorithms are extremely efficient, and therefore practical.

2.3.2 Functional View

The notion of functional view of a search algorithm, defined below, is a central notion in our analysis.

Definition 3. Given a non-coordinating search algorithm A, the functional view of A is the function
N : N+ × N → [0, 1] defined as N(x, t) = Pr[Bx was not yet checked by time t by searcher si] where si
is an arbitrary searcher performing A.

Hence, the probability that none of the k searchers checked x by time t is N(x, t)k, and thus, by
Eq. (6),

T(A, x) =
∞∑
t=0

N(x, t)k.

As we shall throughout the paper see, the information encoded in this functional view of A is all that is
needed to assess its running time (both in term of lower and upper bounds).

2.4 Competitive analysis

Lemma 1 yields the following definition for analyzing the performances of non-coordinating algorithms,
independently from which of the two scenarios we consider, i.e., Bayesian search and linear search.

Definition 4. Let c ≥ 1. A Bayesian search algorithm A is c-competitive if there exists a constant b ≥ 0
such that Tavg(A) ≤ c Tavg(Acoord) + b. Similarly, a linear search algorithm A is c-competitive if there
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exists a constant b ≥ 0 such that Tworst(A) ≤ c Tworst(Acoord) + b. Lastly, an algorithm A is pointwise
c-competitive if there exists a constant b ≥ 0 such that, for every x ≥ 1, T(A, x) ≤ c T(Acoord , x) + b.

The different notions of competitiveness described in Definition 4 are related as follows:

Lemma 5. For both Bayesian search and linear search, if a search algorithm is pointwise c-competitive,
then it is c-competitive.

Proof. Let k ≥ 1, and let us consider any distribution p. For all x, T(A, x) ≤ cT(Acoord , x)+b. Therefore,
in the Bayesian search, we have

Tavg(A) =
∑
x≥1

p(x)T(A, x) ≤
∑
x≥1

p(x) (cT(Acoord , x) + b) = cTavg(Acoord ) + b.

Similarly, in the linear search,

Tworst(A) = max
x≥1

T(A, x)/x ≤ max
x≥1

(cT(Acoord , x)/x+ b/x) ≤ cTworst(Acoord ) + b,

which completes the proof.

The following section about robustness also serves as a warm up for the proof techniques in the
paper.

2.5 Robustness

We conclude the section by some remarks on the robustness of non-coordinating algorithms. We have
already observed that non-coordinating search algorithms are inherently robust with respect to crashes
of searchers. We now point out that, for coordinating search, even a small difference in the boxes’ order
may be devastating to some algorithms (such as Acoord ). We show that, in the case of non-coordinating
algorithms, this actually has little effect, as long as the biases are not too large. For every x ≥ 1, let us
denote by σs(x) the index of box Bx in the “eyes” of searcher si, i ∈ {1, . . . , k}. We call σ the resulting
disordering, and we denote by Tσ(A, x) the expected time to check Bx when running an algorithm A
under this disordering. We denote by

σ(x) =

⌈
1

k

k∑
i=1

σsi(x)

⌉
the average placing of x according to σ. In essence, we show that if a non-coordinating algorithm is
c-competitive, then it is also c-competitive under disordering of the boxes. More specifically:

Theorem 6. Assume that a non-coordinating search algorithm A is pointwise c-competitive, and let
σ be some disordering of the boxes. Then, there exists a constant b such that, for every x ≥ 1,
Tσ(A, x) ≤ cT (Acoord , σ(x)) + b.

Proof. Since A is c-competitive, there exists a constant a such that, for every x ≥ 1, T(A, x) ≤
cT(Acoord , x) + a. Recall that N denotes the functional view of A, i.e., N(x, t) denotes the probability
that a fixed searcher si running A did not check box Bx by time t (when the boxes are ordered
correctly). The probability that none of the searchers checked box x by time t in the disordered setting
is N(σ1(x), t) · · ·N(σk(x), t). On the other hand, we have

Tσ(A, x) =

∞∑
t=0

Pr [x was not checked by time t] .

8



Therefore,

Tσ(A, x) =

∞∑
t=0

N(σ1(x), t) · · ·N(σk(x), t)

≤

( ∞∑
t=0

N(σ1(x), t)k

) 1
k

· · ·

( ∞∑
t=0

N(σk(x), t)k

) 1
k

where the inequality follows from a generalized form of Hölder’s inequality [17]. Since

T(A, x) =
∞∑
t=0

N(x, t)k,

we get from the above that

Tσ(A, x) ≤
k∏
s=1

T(A, σs(x))
1
k .

Using the AM-GM inequality for the second step below, it follows that

Tσ(A, x) ≤
k∏
s=1

(
a+ c

⌈
σs(x)

k

⌉) 1
k

≤ 1

k

k∑
s=1

(
a+ c

⌈
σs(x)

k

⌉)
= a+

c

k

k∑
s=1

⌈
σs(x)

k

⌉

≤ a+ c+
c

k

k∑
s=1

σs(x)

k
≤ a+ c+

c

k
σ(x) ≤ a+ c+ c

⌈
σ(x)

k

⌉
= a+ c+ cT (A, σ(x)) .

Hence, Tσ(A, x) ≤ cT (A, σ(x)) + (a+ c) as claimed (with b = a+ c).

Example 7. Assume that σ(x) = x+ o(x), i.e., on average, the mistakes in ordering are not too large.
In this case, Theorem 6 gives:

Tσ(A, x) ≤ cT (Acoord , σ(x)) + b = c

⌈
σ(x)

k

⌉
+ b

= (c+ o(1))
⌈x
k

⌉
+ b = (c+ o(1))T (Acoord , x) + b

where the o(1) term goes to 0 when x goes to infinity. So, by Lemma 5, even under reasonable disordered
conditions, where the average conceived ordering of a box is not too far from its correct place, we can
achieve a competitiveness that is close to the competitiveness obtained assuming the boxes are perfectly
ordered.

One cannot expect this same slight deterioration in competitiveness if boxes are disordered to be at a
linear distance from where they truly are, and not at a sub-linear one. This is clear since our definition
of disordering allows searchers to have “fake” boxes, i.e., boxes that have no corresponding true box. For
example, let A have a true pointwise competitiveness of c, i.e., there is an infinite number of x’s such
that T(A, x) ≥ cT(Acoord , x). Take σ such that for all i and all x, σi(x) = ax for some constant a > 1.
Then, for all these x’s:

Tσ(A, x) = T(A, ax) ≥ cT(Acoord , ax) ≈ acT(Acoord , x).

As this is true for an infinite number of x’s, the linear competitiveness of A is ac.
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3 Non-Coordinating Search in Ordered Boxes

In this section we consider the setting in which only the ordering of boxes is known to the algorithm
designer. This ordering may come from an a priori ordering of the boxes according to their “importance”
(like in linear search), or be induced by the relative likelihood of the boxes coming from some unknown
distribution p (like in Bayesian search). We design two algorithms, Aorder and Aobliv , and analyse their
performances. Both will be shown to be highly competitive. While Aorder achieve better competitive ratio
(in fact, this competitive ratio will be shown to be optimal in Section 5), Aobliv is essentially memoryless,
and its simplicity and efficiency make it an outstanding candidate for real life purposes.

3.1 Order-Invariant Algorithms

In this subsection, we study the competitiveness of the order-invariant non-coordinating algorithm Aorder ,
defined hereafter.

Algorithm Aorder (as performed by each searcher):
I ← ∅
for t = 1 to ∞ do

pick a index x uniformly at random in {1, . . . , d t2e(k+1)}\I.
I ← I ∪ {x}
open box Bx

Before analysing the performances of the algorithm, we first establish the following technical lemma.
Asymptotically, it is a known property of the Gamma function, but we will need this inequality for small
a and b as well. The technical proof is deferred to Appendix A.

Lemma 8. For any integers b ≥ a ≥ 1, and every real φ with 0 < φ ≤ 1,
∏b
i=a

i
i+φ ≤

(
a
b

)φ
.

Theorem 9. For every distribution p, and every k ≥ 1,

Tavg(Aorder ) ≤ 4

(
1− 1

k + 1

)2

Tavg(Acoord )+10, and Tworst(Aorder ) ≤ 4

(
1− 1

k + 1

)2

Tworst(Acoord )+10.

Proof. Using Lemma 5, it is sufficient to show that, for every x,

T(Aorder , x) ≤ 4

(
1− 1

k + 1

)2

T(Acoord , x) + 10.

For avoiding distinguishing odd and even time steps, count the time by grouping two consecutive steps,
so at each step t, Aorder chooses two distinct new boxes in {1, . . . , t(k + 1)}. We shall double the time
later in the analysis, for balancing this acceleration of Aorder . (Note that the speeded up Aorder might
actually end mid-step, but this just yields an over estimation of its performances). The number of
elements the algorithm chooses from at step t is (k + 1)t− 2(t− 1) = (k − 1)t+ 2. Box x starts to have
some probability of being checked at time s = dx/(k + 1)e, and for t ≥ s the probability of x not being
checked by time t is:

t∏
i=s

(
1− 2

(k − 1)i+ 2

)k
=

t∏
i=s

(
(k − 1)i

(k − 1)i+ 2

)k
=

(
t∏
i=s

i

i+ 2
k−1

)k
.

We claim that the product inside the parenthesis is at most
(
s+1
t

) 2
k−1 . Two cases:

10



1. k ≥ 3. In this case, 2/(k − 1) ≤ 1, and so by Lemma 8 the product is at most:

(s
t

) 2
k−1 ≤

(
s+ 1

t

) 2
k−1

.

2. k = 2. In this case, 2/(k − 1) = 2. If s = t then the claim is clearly true, as the product is at most
1, and ((s+ 1)/t)2 ≥ 1. Otherwise, the product is telescopic,

t∏
i=s

i

i+ 2
=

s(s+ 1)

(t+ 1)(t+ 2)
≤ (s+ 1)2

t2
.

Denoting a = 2k/(k − 1), the expected running time T(Aorder , x) is then at most (times 2):

∞∑
t=0

Pr [x not checked by time t] ≤ s+ 2 +

∞∑
t=s+2

(
s+ 1

t

)a
.

As ((s+ 1)/t)a is decreasing with t, we can bound the sum from above by taking the integral but starting
it at s+ 1 and not s+ 2. This gives the upper bound of:

s+ 2 +

∫ ∞
s+1

(
s+ 1

t

)a
dt = s+ 2 + (s+ 1)

∫ ∞
1

t−a dt = s+ 2 +
s+ 1

a− 1

= 1 + (s+ 1)

(
1 +

1
2k
k−1 − 1

)
= 1 +

(⌈
x

k + 1

⌉
+ 1

)(
1 +

k − 1

k + 1

)
≤ 1 +

(
x

k + 1
+ 2

)(
2k

k + 1

)
≤ 5 +

2k

(k + 1)2
x ≤ 5 +

2k2

(k + 1)2

⌈x
k

⌉
.

Multiplying by bound by 2 to rebalance the acceleration of Aorder yields the result.

3.2 Memory Efficient Version

In Algorithm Aobliv , every searcher performs obliviously to what it has done at previous steps (it just
has to count steps):

Algorithm Aobliv (as performed by each searcher):
for t = 1 to ∞ do

pick one index x uniformly at random in {1, . . . , d t2ek}
open box Bx

Theorem 10. For every distribution p, every k ≥ 1, and every non-coordinating algorithm A,

Tavg(Aobliv ) ≤ 4Tavg(Acoord ) + 2, and Tworst(Aobliv ) ≤ 4Tworst(Acoord ) + 2.

Proof. The proof proceeds in a very similar manner to that of Theorem 9, yet is in fact a little simpler.
Again, by Lemma 5, it is sufficient to show that, for every x,

T(Aobliv , x) ≤ 4T(Acoord , x) + 2.
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As in the proof of Theorem 9, we count time by grouping two consecutive steps, resulting in Aobliv
independently picking two indices i and j uniformly at random in {1, . . . , kt} at every step t. Box x
starts to have some probability of being checked at time s = dx/ke, and for t ≥ s the probability of Bx
not being checked by time t is:

t∏
i=s

((
1− 1

ki

)2
)k
≤

t∏
i=s

(
1− 1

ki+ 1

)2k

=
t∏
i=s

(
i

i+ 1
k

)2k

≤
(s
t

)2
,

where the last inequality is by Lemma 8. The expected running time for x is then at most (times 2):

s+ 1 +

∞∑
t=s+1

(s
t

)2
.

As (s/t)2 is decreasing with t, we can bound the sum from above by taking the integral, but starting it
at s and not s+ 1. This gives the upper bound of:

s+ 1 +

∫ ∞
s

(s
t

)2
dt = s+ 1 + s

∫ ∞
1

1

t2
dt = 2s+ 1.

Multiplying by 2 gives the result.

4 Bayesian search with complete knowledge

Ignoring the small additive term in Theorem 9, as k grows larger, Aorder is about 4 times worse than
the best coordinating algorithm. In this section we show that it is possible, for some distributions, to
improve on this if the exact distribution is given as input to the algorithm, by designing an optimal
algorithm for this setting. We denote this algorithm A?.

4.1 The Case of Uniform Distributions

The first example that comes to mind is when the treasure is uniformly placed in one of the boxes
{1, . . . ,M}. The most natural algorithm in this case is that each searcher, at each step, chooses uniformly
between all boxes it did not check already. As we will show, this is exactly what algorithm A? does, and
since we will show it is optimal, then the optimality of this natural algorithm follows. The analysis is
simple, and we approximate it here for the case where M � k.

Tavg(A
?) =

M∑
t=0

Pr [treasure not found by time t]

=
M∑
t=0

t−1∏
i=0

(
1− 1

M − i

)k
=

M∑
t=0

t−1∏
i=0

(
M − i− 1

M − i

)k

=
M∑
t=0

(
M − t
M

)k
=

1

Mk

M∑
i=0

ik ≈ 1

Mk

Mk+1

k + 1
=

M

k + 1
.

Note that with coordination, the expected running time would be approximately M/2k, so we lose about
a factor of 2 by non-coordination as opposed to 4 in the case of Algorithm Aorder . This algorithm is
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memory intensive, yet if we choose to simplify and just choose uniformly at random a box from all boxes
at each step, we get that the running time is practically the same for large M :

∞∑
t=0

(
1− 1

M

)kt
=

1

1−
(
1− 1

M

)k ≈ M

k
.

4.2 Preliminaries

Let us fix some distribution p over the positive integers, and let us consider a non-coordinating algorithm
A that is running on k searchers. Recall (cf. Definition 3) that the fucntional view N of A is defined by
N(x, t) = Pr[Bx was not already checked by time t by s] where s is an arbitrary searcher performing A.

Observation 11. The functional view N of A satisfies N(x, 0) = 1 for all x ≥ 1, and, for all x ≥ 1
and t ≥ 1, N(x, t) = N(x, t− 1) · Pr[x is not checked at time t | x was not checked by time t− 1].

Let us now consider such functions N on their own, possibly without a corresponding algorithm. So,
let N : N+ × N→ [0, 1], and, for time t ≥ 0, let us consider

CN (t) =
∑
x≥1

(1−N(x, t)).

Note that all our sums over x are only over boxes with p(x) > 0. In the case of an algorithm A, CN (t) is
the expected number of elements that were checked by time t by just one of the searchers running A,
and is therefore at most t. We say that N satisfies the column requirement at time t if

CN (t) ≤ t.

We define the set V of valid functions as:

V =
{
N : N+ × N→ [0, 1]

∣∣ ∀t, CN (t) ≤ t
}
.

So functions N corresponding to algorithms are always valid. Finally, the running time of a valid
function N is

T(N) =
∑
x≥1

p(x)
∑
t≥0

N(x, t)k =
∑
t≥0

∑
x≥1

p(x)N(x, t)k.

The running time of N is thus defined so that T(N) is indeed the expected running time of algorithm A
when N is the functional view of A. Indeed,

T(A, x) =
∑
t≥0

Pr [x was not found by time t] =
∑
t≥0

N(x, t)k.

Example 12. Consider Aorder when set to run on two searchers. At t = 1 it picks uniformly from
one of the boxes {1, 2, 3}, and at t = 2 chooses another one out of the two not chosen. It then picks
uniformly from one of the four remaining boxes of {1, . . . 6}, and then again. The following is a functional
representation corresponding to to this part of the algorithm. Note that the column requirement is
satisfied with equality, owing to the fact that Aorder never rechecks a box.

Aorder =

t→
x↓ 0 1 2 3 4

1 1 2/3 1/3 1/4 1/6
2 1 2/3 1/3 1/4 1/6
3 1 2/3 1/3 1/4 1/6
4 1 1 1 3/4 1/2
5 1 1 1 3/4 1/2
6 1 1 1 3/4 1/2
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To lower bound the running time of algorithms, we find the optimal N ∈ V, in the sense that it
minimizes T(N). For that, we introduce an important lemma, that we call the Presentation Lemma for
it provides a presentation of the optimal function we are looking for. At this point only a simple version
of the Presentation Lemma is needed, yet we present it in its full generality, as it will be needed later
in the paper. The notations adopted for the Presentation Lemma are taken from Measure theory, for
two reasons at least. First, we need to apply the lemma to different settings, corresponding to different
measure spaces. Second, and more importantly, our optimization methodology requires compactness
arguments, which are perfectly expressed in measure theory.

Fix some k ≥ 2, and let (X,X , µ) be a measure space. For T ≥ 0, let

V (T ) = {f : X → [0, 1] measurable, such that

∫
(1− f) dµ ≤ T}.

For any measurable function c : X → [0,∞), and for any real α ≥ 0, let us define the function

fc,α : X → [0, 1]

as:

fc,α(x) =

{
1 if c(x) = 0,

min
{

1, α c(x)−
1

k−1

}
otherwise.

The proof of the Presentation Lemma can be found in Appendix B.

Lemma 13.(Presentation Lemma) Let c : X → [0,∞) be a measurable function, and let T ≥ 0. If
there is some h ∈ V (T ) such that

∫
c hk dµ < ∞, then α = min {β ≥ 0 | fc,β ∈ V (T )} exists, and, for

every g ∈ V (T ),
∫
c fkc,α dµ ≤

∫
c gk dµ. Furthermore, if α 6= 0 then

∫
(1− fc,α) dµ = T .

This lemma is quite technical, but its purpose is given the weights c(·) of the elements of X, to find
the f : X → [0, 1], that minimizes

∑
x c(x)f(x)k. All this under a simple linear constraint on f . This is

exactly what we need.

As intuition for the proof of the lemma, assume X is a finite set, and consider some x and y where f
is not zero. Let us change f slightly, by setting f ′(x) = f(x) + ε and f ′(y) = f(y)− ε, for some small ε.
This maintains the linear constraint, and changes the sum we wish to minimize by:

c(x)
(

(f(x) + ε)k − f(x)k
)

+ c(y)
(

(f(y)− ε)k − f(y)k
)
.

Taking the derivative w.r.t. ε, this is εk times:

c(x)(f(x) + ε)k−1 − c(y)(f(y)− ε)k−1.

If f indeed minimizes the final sum, then at ε = 0 this is supposed to be 0. Therefore, c(x)f(x)k−1 =
c(y)f(y)k−1. Put differently, fixing one y, and taking any x, f(x) = αc(x)−1/(k−1), where α =
f(y)c(y)1/(k−1). Therefore, we see the form of the function as stated in the Lemma.

Towards finding the optimal N ∈ V, fix some t ≥ 0. Our aim is to minimize
∑

x≥1 p(x)N(x, t)k.
This can be done for each t completely separately, where the Presentation Lemma comes into play. Let
{1, . . . ,M} be the support of the distribution p, where

M = max{x ≥ 1 | p(x) > 0}

if this maximum exists, and M = +∞ otherwise. Recall that a function L satisfies the column requirement
at time t if CL(t) ≤ t.
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Lemma 14. The following function L is in V, and achieves minimal T(·) over all valid functions.

L(x, t) =


0 if t ≥M,

1 if t < M and p(x) = 0,

min{1, α(t)q(x)} otherwise,

where q(x) = p(x)−
1

k−1 , and, for all t < M , α(t) is such that CL(t) = t.

Proof. For t ≥ M , L satisfies the column requirement and is clearly optimal. Fix t < M . Setting
X = N+ with the trivial measure µ(x) = 1 for all x, T = t, and c = p, Lemma 13 gives the form
of the optimal function for this specific t, which is as it appears in L. In this case α(t) 6= 0 because
otherwise the column requirement is not satisfied, and so, by the last part of Lemma 13, CL(t) = t.
To check the condition of Lemma 13, take the constant function h(x) = 1. Clearly h ∈ V (t), and∫
chk dµ =

∑
x p(x) = 1 <∞.

Example 15. Let us consider a simple example: k = 2, p(1) = 1/2, p(2) = 1/3, and p(3) = 1/6, with
M = 3. In this case, q(1) = 2, q(2) = 3 and q(3) = 6, and some quick calculations show that α(1) = 1/5,
α(2) = 1/11, and α(3) = 0. This gives:

L =

t→
x↓ 0 1 2 3

1 1 0.4 2/11 0
2 1 0.6 3/11 0
3 1 1 6/11 0

4.3 The Optimal Algorithm A?

Although it may seem that every valid function N has a corresponding algorithm, it is not at all clear,
because the conditional probabilities arising from Observation 11 quickly become complicated for general
N when t increases. However, it turns out that because of the specific structure of the function L in
Lemma 14, there is in fact an algorithm that has L as its functional view.

Example 16. A corresponding algorithm for the function L in Example 15 is

1. choose box 1 w.p. 0.6, and otherwise choose box 2.

2. choose box 3 w.p. 5/11, and otherwise the unchosen box of 1 and 2.

3. choose the last remaining box.

Note especially step 2, where the remaining probability of 6/11 is used to check the unchosen box B
from 1 and 2, and indeed, by Observation 11, (2/11)/0.4 = (3/11)/0.6 = 5/11, which is the probability
of not checking B given that it was not checked up to this point.

We next present Algorithm A?, as depicted in Algorithm 1, which, given p, calculates the function L,
and randomly chooses boxes so as to get L as its functional view.

Let us start with an informal explanation of Algorithm A?. At step t ≥ 1, the first thing A? does is
to calculate the values of L(x, t) for all x, so that it can recreate them with its random choices. For that
A? needs to calculate α(t), which, by Lemma 14, means solving the equation:

t = CL(t) =
∑
x≥1

(1− L(x, t)) =
∑
x≥1

(1−min{1, α(t)q(x)}). (7)
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Algorithm 1 Algorithm A? for k ≥ 2 searchers, as executed by one of these searchers.

I ← ∅ . set of already opened boxes
ac(0)← 0 . ac(t) denotes the set of boxes susceptible to be opened at step t
for t = 1 to M do . M = max{x ≥ 1 | p(x) > 0} can be ∞

y ← ac(t− 1) . Calculate the set ac(t) of “active” boxes at step t

while
(
y < M and

∑y+1
x=1(1− q(x)/q(y)) ≤ t

)
do y ← y + 1 . q(x) = p(x)−

1
k−1

ac(t)← y . The search space is {1, . . . , ac(t)} at step t

α(t)← (ac(t)− t)/
∑ac(t)

x=1 q(x) . Calculate α(t)
for x = 1 to ac(t) do . Set the probability of choosing x

if x /∈ I then . for boxes which have not been opened at previous steps
if x ≤ ac(t− 1) then

ϕ(x)← 1− α(t)/α(t− 1) . all these boxes get same chance being opened
else

ϕ(x)← 1− α(t)q(x) . new active boxes get decreasing chances of being opened

pick x ∈ {1, . . . , ac(t)} \ I according to the probability distribution ϕ . Choose one index
I ← I ∪ {x} . remember this index
open box Bx . look for treasure

To calculate α(t), the first thing to do is to figure out which indices x actually contribute to the sum
above. Say box x is active at time t if L(x, t) < 1. As L is non-decreasing in x, there is some ac(t), s.t.
the set of active boxes at time t is {1, . . . , ac(t)}. To calculate ac(t), A? gradually decreases α(t), while
keeping the column requirement satisfied. A box x is active when α(t) < 1/q(x), and so to see which
box is active, A? needs only to check α(t) = 1/q(1), 1/q(2), . . .. Once ac(t) is found, solving Eq. (7) and
finding α(t) is straightforward.

Once L(x, t) is calculated, A? randomly chooses a box to check according to the functional view L,
using the fact that, up to step t, the probability that box x was not checked is L(x, t− 1). If a box was
not active, and now is, then clearly it should be checked with probability 1− q(x)α(t). If it was already
active, then it should change from q(x)α(t− 1) to q(x)α(t), which, by Observation 11, means it should
be checked with probability 1− α(t)/α(t− 1).

Remark. As an interesting side note, observe that at each step, all previously active yet unchecked
boxes get the same probability of being checked in A?. Moreover, this probability does not depend at all
at the previous choices made by the algorithm. This point sounds counter-intuitive from a Bayesian
point of view, as we would expect a rescaling of the probabilities that differs according to the history we
have already seen. Another important point is that A? has at each step a finite set of boxes to choose
from. As p goes to 0, q goes to infinity, and so if there are an infinite number of active boxes, then
α must be 0, but that means that all boxes were surely checked. Lastly, note that in the case of the
uniform distribution of Section 4.1, as q(x) is equal for all boxes, a searcher running A? will at the first
step choose among them uniformly, and continue to do so at each step, choosing from those that it did
not check yet. Thus, A? is indeed the natural algorithm for this distribution as analysed there.

We now show that A? is well defined, and is optimal.

Theorem 17. A? is well defined, and, for every distribution p, every number of searchers k ≥ 2, and
every non-coordinating algorithm A, we have Tavg(A

?) ≤ Tavg(A).

Proof. Note that y ≤ ac(t) if and only if α(t) < 1/q(y), and so, to calculate ac(t), it is enough to check
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values for α(t) that are equal to 1/q(y) for y > ac(t− 1). Once we know ac(t), by Lemma 14:

t =
∑

1≤x≤ac(t)

(1− α(t)q(x)).

Solving this for α(t) is what the algorithm does. To show that the next part of A? is at all valid, we show
that the probabilities of each step add up to at most 1. The number of boxes that were already active at
step t− 1, and were not checked yet at step t is ac(t− 1)− (t− 1). So, summing all the probabilities of
the different boxes, we get

(ac(t− 1)− t+ 1)

(
1− α(t)

α(t− 1)

)
+

∑
ac(t−1)<x≤ac(t)

(1− α(t)q(x)). (8)

Again, by Lemma 14, we get∑
1≤x≤ac(t−1)

α(t− 1)q(x) = t− 1 =⇒
∑

1≤x≤ac(t−1)

α(t− 1)q(x) = ac(t− 1)− t+ 1.

Plugging this is Eq. (8), the sum of the probabilities is

ac(t−1)∑
x=1

(α(t− 1)− α(t))q(x) +

ac(t)∑
x=ac(t−1)

1− α(t)q(x) =

ac(t)∑
x=1

(1− α(t)q(x))−
ac(t−1)∑
x=1

(1− α(t− 1)q(x)).

By Lemma 14 the first sum is t, and the second is t− 1, and so the sum of probabilities is indeed 1.

It remains to show that indeed the functional view of A? is L. This is proved by induction on t. Let
N be the functional view of A?. For t = 0, L(x, 1) = N(x, 1) for all x ≥ 1. Assume equality for t− 1, and
we prove it for t. For x ≤ ac(t− 1), we have N(x, t− 1) = L(x, t− 1) = α(t− 1)q(x). Using Observation
11:

N(x, t) = N(x, t− 1) · α(t)

α(t− 1)
= α(t− 1)q(x) · α(t)

α(t− 1)
= L(x, t).

For ac(t− 1) < x ≤ ac(t), N(x, t) = L(x, t) is straightforward. It follows that A? is well defined. The
optimality of A? directly follows from Lemma 14.

5 Optimal competitiveness

The purpose of this section is to show that Aorder has optimal competitive ratio among order-invariant
algorithms, with respect to Acoord , by proving the following result:

Theorem 18. For every k ≥ 1, and every order-invariant non-coordinating algorithm A, if there exist b
and c such that

Tavg(A) ≤ cTavg(Acoord ) + b or Tworst(A) ≤ cTworst(Acoord ) + b,

then c ≥ 4
(

1− 1
k+1

)2
.

The remaining of this section is entirely dedicated to the proof of Theorem 18
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5.1 Preliminaries

Instead of the set of functions in V defined in Section 4.2, we consider a more general class of functions.
For a measurable set X, we define

F(X) = {N : X × N→ [0, 1] |N(·, t) is measurable for every fixed t ∈ N} .

For a function N ∈ F(X), we say that N satisfies the column requirement if, for every t ≥ 0,

CN (t) =

∫
X

(1−N(x, t)) dx ≤ t.

Such a function N is called valid, and V(X) is the set of all valid functions in F(X). Given an integer
k ≥ 2, and some measurable function ρ : X → [0,∞), let us define

U(N) =
∞∑
t=0

∫
X
ρ(x)N(x, t)k dx.

This definition of U for functions N is equivalent of Tavg for algorithms A, but is “unnormalized”, as ρ
is not necessarily a distribution. The following result shows a connection between algorithms and valid
functions.

Lemma 19. For every non-increasing distribution p on N+, and every algorithm A for k ≥ 2 searchers,
there is a function L ∈ V([1,∞)) such that U(L) ≤ Tavg(A), where ρ : [1,∞] → [0,∞) is any non-
increasing measurable function that agrees with p on integer values.

Proof. For every x ∈ [1,+∞), and t ∈ N, let us define L(x, t) = N(bxc, t) where N is the functional
view of A. For any t ∈ N, we have

CL(t) =

∫ ∞
1

(1−N(bxc, t)) dx =

∞∑
x=1

(1−N(x, t)) = CN (t) ≤ t.

So L satisfies the column requirement. Next,

U(L) =
∑
t≥0

∫ ∞
1

ρ(x)N(bxc, t)k dx

≤
∑
t≥0

∫ ∞
1

p(bxc)N(bxc, t)k dx

=
∑
t≥0

∞∑
x=1

p(x)N(x, t)k

= Tavg(A),

as claimed.

Lemma 19 shows that lower bounding the “running time” of functions in V([1,∞)) will lower bound
the running time of algorithms.
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5.2 The Plan

The plan is to show that for every ε > 0 there is some distribution pε on N+ such that for any
algorithm A,

lim inf
ε→0

Tavg(A)

Tavg(Acoord )
≥ 4

(
1− 1

k + 1

)2

,

and limε→0 Tavg(Acoord ) =∞. This will prove the theorem. So, let us fix some ε > 0, and set

I =

( ∞∑
x=1

1

x2+ε

)−1
and J =

( ∞∑
x=1

1

x1+ε

)−1
.

Also set p(x) = pε(x) = I/x2+ε. We have

Tavg(Acoord ) =

∞∑
x=1

I

x2+ε

⌈x
k

⌉
≤
∞∑
x=1

I

x2+ε

(x
k

+ 1
)

=
I

k

∞∑
x=1

1

x1+ε
+

∞∑
x=1

I

x2+ε
=

I

kJ
+ 1 <∞. (9)

However, as ε tends to 0, I tends to some constant, and J goes to 0, hence Tavg(Acoord ) tends to infinity,
as desired.

Define ρ : [1,∞) → [0,∞) by ρ(x) = I/x2+ε. So ρ agrees with pε on x ∈ N+. By Lemma 19,
there is some L ∈ V([1,∞)) such that U(L) ≤ Tavg(A). Therefore, it is enough to prove that for any
N ∈ V([1,∞)),

lim inf
ε→0

kJ

I
U(N) ≥ 4

(
1 +

1

k + 1

)2

, (10)

where the +1 in Eq. (9) is omitted as it is insignificant in the limit. The question is then: among all
functions N satisfying ∫ ∞

1
(1−N(x, t)) dx ≤ t for every t ∈ N, (11)

what is the minimal value of

U(N) =
∞∑
t=0

∫ ∞
1

ρ(x)N(x, t)k dx ? (12)

5.3 Using the Presentation Lemma

To find the N that minimizes U(N) as in Eq. (12) it is enough to find an N that minimizes the inner
integral for each t separately while obeying the restriction in Eq. (11). Let us again use Lemma 13 for
each t separately. Fix such a t ∈ N, set X = [1,∞] with the standard measure, c = ρ, and T = t. By the
Presentation Lemma 13, an N minimizing the inner integral is

N(x, t) = min
{

1, αρ(x)−
1

k−1

}
(13)

where α is a function of t (and yet, for readability, we don’t write α(t)). To check the condition of the
lemma, take h(x) = 1. In this case,

∫∞
1 (1− h(x)) dx = 0 ≤ t, and∫ ∞

1
ρ(x)h(x)k dx =

∫ ∞
1

I

x2+ε
dx <∞,

as desired. From this point onwards, N will refer to this specific function.

To calculate α, we use what we know from Eq. (13) about what N looks like, and we rely on the
refinement of Eq. (11) given by the Presentation Lemma, i.e., that for all t,

∫∞
1 (1 − N(x, t)) dx = t.

Again, fix a t and examine the function f(x) = αρ(x)−1/(k−1). We observe the following:

19



• α cannot be zero, as otherwise N(x, t) = f(x) = 0 for all x, and then the constraint of Eq. (11) is
not satisfied (no matter what t is).

• ρ is strictly decreasing in x, and it goes to 0 as x goes to infinity. Therefore, f is strictly increasing,
and goes to infinity.

• Taking α = ρ(1)1/(k−1), means that f(1) = 1, and, by monotonicity, N(x, t) = min {1, f(x))} = 1
for all x ≥ 1. This α clearly satisfies the constraint of Eq. (11), and the minimality guaranteed by
Lemma 13 means that the “real” α is at most this value. So f(1) ≤ 1.

• From the above, and since f is continuous, there is some unique γ ≥ 1 (which is a function of t),
where f(γ) = 1. Such a γ satisfies

αρ(γ)−
1

k−1 = 1 ⇐⇒ α = ρ(γ)
1

k−1 .

Since N(x, t) = min {1, f(x)}, it follows that N(x, t) is monotonically increasing until x = γ, and it
remains constant equal to 1 from that point on. By Lemma 13, the constraint of Eq. (11) is an equality.
That is, we have

t =

∫ ∞
1

(1−N(x, t)) dx =

∫ γ

1
(1− αρ(x)−

1
k−1 ) dx = γ − 1−

∫ γ

1
αρ(x)−

1
k−1 dx.

It follows that

γ − t− 1 = α

∫ γ

1
ρ(x)−

1
k−1 dx (14)

= ρ(γ)
1

k−1

∫ γ

1
ρ(x)−

1
k−1 dx =

∫ γ

1

(
ρ(γ)

ρ(x)

) 1
k−1

dx. (15)

This restriction on γ, if solved, will give us α. Let us first simplify the inner integral of U(N) as follows:∫ ∞
1

ρ(x)N(x, t)k dx =

∫ γ

1
ρ(x)αkρ(x)−

k
k−1 dx+

∫ ∞
γ

ρ(x) dx

= αk−1
∫ γ

1
αρ(x)−

1
k−1 dx+

∫ ∞
γ

ρ(x) dx

= ρ(γ)(γ − t− 1)−R(γ),

(16)

where we use Eq. (14) and the fact that αk−1 = ρ(γ) for the last equality, and we denote R(γ) =∫∞
γ ρ(x) dx the indefinite integral. (Note that R(∞) = 0 because of the way ρ is defined).

5.4 Approximations and Calculations

Denote a = 2 + ε, and let us find γ from Eq. (15). We have

γ − t− 1 =

∫ γ

1

(
ρ(γ)

ρ(x)

) 1
k−1

dx =

∫ γ

1

(
x

γ

) a
k−1

dx = γ

∫ 1

1
γ

x
a
k−1dx

= γ
1

1 + a
k−1

[
x1+

a
k−1

]1
1
γ

= γ
k − 1

a+ k − 1

(
1− γ−

a+k−1
k−1

)

20



Since γ ≥ 1, and a+k−1
k−1 > 1, it follows that

0 < γ−
a+k−1
k−1 <

1

γ
,

and therefore

γ
k − 1

a+ k − 1
> γ − t− 1 > γ

k − 1

a+ k − 1

(
1− 1

γ

)
.

The left hand side in the above inequality bounding can be rewritten as

γ
a

a+ k − 1
< t+ 1 =⇒ γ <

a+ k − 1

a
(t+ 1).

Similarly, the right hand side can be rewritten

γ − t− 1 >
k − 1

a+ k − 1
(γ − 1) =⇒ (γ − 1)

a

a+ k − 1
> t =⇒ γ >

a+ k − 1

a
t+ 1.

Now examining Eq. (16), we get∫ ∞
1

ρ(x)N(x, t)k dx = ρ(γ)(γ − t− 1)−R(γ) = I

(
γ − t− 1

γa
+
γ1−a

a− 1

)
=

I

γa

(
γ − t− 1 +

γ

a− 1

)
=

I

γa

(
a

a− 1
γ − t− 1

)
≥ I

γa

(
a

a− 1

(
a+ k − 1

a
t+ 1

)
− t− 1

)
=

I

(a− 1)γa
(kt+ 1)

=
Ik

a− 1
·
t+ 1

k

γa
≥ Ik

a− 1
·

t+ 1
k(

a+k−1
a (t+ 1)

)a =
Ik

a− 1

(
a

a+ k − 1

)a
·
t+ 1

k

(t+ 1)a
.

Therefore,

U(N) ≥ Ik

a− 1

(
a

a+ k − 1

)a ∞∑
t=0

t+ 1
k

(t+ 1)a
.

Focusing on the sum only, and shifting it by 1, we get:

∞∑
t=1

t− k−1
k

ta
=

∞∑
t=1

1

ta−1
− k − 1

k

∞∑
t=1

1

ta
≥ 1

J
− k − 1

k

∞∑
t=1

1

t2
=

1− o(1)

J
,

where the term o(1) goes to 0 as a→ 2. (This is because the second sum converges, and 1/J goes to
infinity). Plugging this back in U(N), we get

U(N) ≥ (1− o(1))
Ik

J(a− 1)

(
a

a+ k − 1

)a
.

Coming back to Eq. (10), we obtain

lim inf
a→2

kJ

I
U(N) ≥ lim

a→2

k2

a− 1

(
a

a+ k − 1

)a
=

(
2k

k + 1

)2

= 4

(
1− 1

k + 1

)2

.

This concludes the proof of Theorem 18.
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6 Conclusion

In this paper, we have solved the non-coordinating Bayesian search problem by designing the optimal
non-coordinating algorithm A?. Given any distribution p over the integers, and given k searchers, A?

executes a number of queries by these k searchers which is minimum in expectation among all non-
coordinating algorithms for p. We have also designed the order-invariant non-coordinating algorithm
Aorder . The latter is far simpler than A?, and has optimal competitive ratio with respect to the best
coordinating algorithm, Acoord , among all non-coordinating order-invariant algorithms. This competitive
ratio turns out to be at most 4, demonstrating that non-coordinating algorithms are a viable alternative
to coordinating algorithms, especially in a context where searchers can crash or slightly misbehave. This
also holds for linear search, where the order of importance on the boxes is given a priori, and the treasure
is placed at an arbitrary position.

A few questions remain open, as far as Bayesian search is concerned. In particular, we know that A?

is optimal, which implies that it cannot performs worse than Aorder , whose running time is essentially
4(1 − 1

k+1)2 times the one of Acoord for k searchers. However, we do not know if A? is often or rarely
significantly better than Aorder . For the uniform distribution over a finite domain, we have seen that
A? performs roughly twice faster than Aorder , but we do not know whether such a factor 2 acceleration
holds for many distributions. (It does not hold for all distributions, as illustrated by the distributions pε
described in Section 5.2). Comparing Aorder and A? for a given distribution p is an important issue
because A? is significantly more complex to implement than Aorder . The question whether implementing
A? is worth the effort in terms of performances with respect to Aorder is therefore an important open
problem in the context of non-coordinating Bayesian search.

More generally, we have focussed our interest on non-coordinating search algorithms motivated by
their inherent fault-tolerance. The price to pay in terms of performances is rather limited (again, for k
searchers, at most 4(1− 1

k+1)2 times the optimal performance with full coordination). An interesting,
and non-trivial question is to find efficient and robust algorithms that are allowed to coordinate. Our
non-coordinating algorithms fall under this category, but one may potentially improve the running time
by allowing coordination. Finding tradeoffs between efficiency, robustness, and amount of coordination
is an intriguing open research direction.
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APPENDIX

A Proof of Lemma 3.1

Lemma 8 (restated). For any integers b ≥ a ≥ 1, and every real φ with 0 < φ ≤ 1,
∏b
i=a

i
i+φ ≤

(
a
b

)φ
.

Let b ≥ 1. The proof is by induction on a, from a = b down to a = 1. If a = b, then a/(a+ φ) ≤ 1,
as required. Assuming the result holds for a+ 1, we wish to prove that it holds for a. The l.h.s. is:

b∏
i=a

i

i+ φ
=

a

a+ φ
·

b∏
i=a+1

i

i+ φ
≤ a

a+ φ
·
(
a+ 1

b

)φ
.

So the aim is to prove:

a

a+ φ
·
(
a+ 1

b

)φ
≤
(a
b

)φ
⇐⇒ a

a+ φ
≤
(

a

a+ 1

)φ
⇐⇒

(
a+ φ

a

) 1
φ

≥ a+ 1

a
.

Take y = 1
a ≤ 1 and x = 1

φ ≥ 1. The above is equivalent to:(
1 +

y

x

)x
≥ 1 + y.

It is enough to show that the left side is increasing with x when x ≥ 1. It is increasing iff (1 + y/x)x/y is

increasing. Setting z = y/x ≤ 1, as z is decreasing in x, the question is whether (1 + z)1/z is decreasing,
which is the same as showing that 1

z ln (1 + z) is decreasing. Deriving, we want

− ln(1 + z)

z2
+

1

z(1 + z)
< 0 ⇐⇒ (1 + z) ln(1 + z) > z.

Using the equality ln (1 + z) =
∫ z
0

1
1+t dt, we get

(1 + z) ln (1 + z) =

∫ z

0

1 + z

1 + t
dt >

∫ z

0
1 dt = z,

as desired.

B Proof of Presentation Lemma

Lemma 13 (restated).(Presentation Lemma) Let c : X → [0,∞) be a measurable function, and let
T ≥ 0. If there is some h ∈ V (T ) such that

∫
c hk dµ < ∞, then α = min {β ≥ 0 | fc,β ∈ V (T )} exists,

and, for every g ∈ V (T ),
∫
c fkc,α dµ ≤

∫
c gk dµ. Furthermore, if α 6= 0 then

∫
(1− fc,α) dµ = T .

Proof. In what follows we will drop the subscript c in f when it is clear from context. We start by a
sequences of preliminary remarks, that we label for further references.

20. Note that all of the functions below are measurable, either by definition, or by straightforward proof.
Also, as all of these functions are positive, they all have a defined Lebesgue integral, although its value
may be ∞.
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21. The fact that α can be taken to be the minimal among all β’s assuming we have already proved that
there is some fβ ∈ V (T ) that is optimal in the above respect is quite simple: α = min {β ≥ 0 | fβ ∈ V (T )},
and from the assumption, this set is not empty. By monotonicity, if β < β′ then

∫
cfkβ dµ ≤

∫
cfkβ′ dµ, so

all what remains to be shown is that this minimum exists. If not, then there is some sequence {βn}∞n=1

that approaches the infimum α. By the definitions, fβn converges pointwise to fα. By Fatou’s lemma:∫
(1− fα) dµ ≤ lim inf

n→∞

∫
(1− fβn) dµ ≤ T

So fα ∈ V (T ), proving this point.

22. Denote by S = {x ∈ X | c(x) > 0} the support of c. If T ≥ µ(S), then take α = 0. We get f0(x) = 0
on S, and f0(x) = 1 elsewhere, so

∫
(1 − f0) dµ = µ(S) ≤ T , and so f0 ∈ V (T ). Also,

∫
cfk0 dµ = 0,

and is therefore optimal, so we are done. We will therefore always assume that T < µ(S). Specifically,
µ(S) > 0 and T < µ(X).

23. For any ε > 0, examine the set Y = {x ∈ X | c(x) > ε}. We claim that µ(Y ) <∞. Indeed, denote
Z = {x ∈ X |h(x) < 1/2}. As h ∈ V (T ), we get

T ≥
∫

(1− h) dµ ≥
∫
Z

1

2
dµ ≥ µ(Z)

2
.

So µ(Z) <∞, and therefore µ(Y ∩ Z) <∞. Also, we have

∞ >

∫
c hk dµ ≥

∫
Y ∩¬Z

c hk dµ ≥ ε

2k
· µ(Y ∩ ¬Z).

Together, this means that µ(Y ) <∞.

24. The last preliminary remark is regarding α 6= 0. Assume
∫

(1− fα) dµ < T ′ < T . The idea here is
to find some non-null set where fα can be slightly decreased, and so still be in V (T ), yet improve on the
target integral, contradicting fα’s minimality. We first claim that there is some ε > 0, and some Y with
0 < µ(Y ) <∞, such that for all x ∈ Y , c(x) > ε, and fα(x) > ε. Let

Yn = {x ∈ X | 1/n < c(x) < n} .

As S = ∪n∈NYn, and as, by 22, µ(S) > 0, it follows by sigma additivity that there is some n such that
µ(Yn) > 0. By 23, µ(Yn) < ∞. Setting Y = Yn, and taking ε < 1/n guarantees c(x) > ε as required.
Now, for every x ∈ Y , either fα(x) = 1, in which case we are fine since we can assume ε < 1, or

fα(x) = α c(x)−1/(k−1) > αn1/(k−1).

Taking ε to be smaller than this value allows us to conclude this part regarding α 6= 0. Define g = fα
everywhere, except on Y where it is defined as g = fα − δ, where 0 < δ < ε, and δ < (T − T ′)/µ(Y ).
This means that g > 0 everywhere, and that g ∈ V (T ). Also, by this setting, we get∫

cfkα dµ−
∫
cgk dµ =

∫
Y
c
(
fkα − (fkα − δ)k

)
dµ ≥

∫
Y
εδk dµ > 0

because when a > b > 0, then (a− b)k ≤ ak − bk. This contradicts the optimality of fα.
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Once we are done with these preliminary remarks, the proof now proceeds by a gradual increase of
the generality of the function c that we handle. We start with indicator functions.

(1) Indicator functions. Let us assume that c = 1A, the indicator function of some set A ⊆ X. By 23,
we get µ(A) <∞, and by 22, we can assume that T < µ(A). For any g ∈ V (T ):∫

c gk dµ =

∫
A
gk dµ ≥ µ(A) ·

(
1

µ(A)

∫
A
g dµ

)k
≥ 1

µ(A)k−1
·
(
µ(A)−

∫
A

(1− g) dµ

)k
≥ (µ(A)− T )k

µ(A)k−1
,

where we used Jensen’s inequality for the case where the total measure is not 1. Let us take

α = (µ(A)− T )/µ(A).

We get 0 < α < 1, with fα(x) = α for every x ∈ A, and fα(x) = 1 elsewhere. Also,∫
(1− fα) dµ =

∫
A

(1− fα) dµ =

∫
A

T

µ(A)
dµ = T.

So fα ∈ V (T ). Also, ∫
cfkα dµ =

∫
A
αk dµ =

(µ(A)− T )k

µ(A)k−1
.

It follows that fα is optimal. (Note that fα is a constant function on A). We consider separately two
cases.

(2) Simple functions. Let

c =
n∑
i=1

ci1Xi ,

where all ci > 0, and the Xi are pairwise disjoint. By 23, we assume that all the Xi are of finite measure.
Given some g ∈ V (T ), let us examine it on each of the Xi’s separately. Let

Ti =

∫
Xi

(1− g) dµ.

Restricted to Xi, according to the case of indicator functions, there is some constant gi ≥ 0, such that∫
Xi

(1− gi) dµ ≤ Ti, and

∫
Xi

gki dµ ≤
∫
Xi

gk dµ.

Thus, we define

g′ = 1Y +
n∑
i=1

gi1Xi ,

where Y = X \ ∪ni=1Xi. According to the above, we get∫
(1− g′) dµ =

n∑
i=1

∫
Xi

(1− gi) dµ ≤
n∑
i=1

∫
Xi

(1− g) dµ ≤
∫

(1− g) dµ ≤ T.
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It follows that g′ ∈ V (T ). Also,∫
c gk dµ =

n∑
i=1

ci

∫
Xi

gk dµ ≥
n∑
i=1

ci

∫
Xi

gki dµ =

∫
c g′k dµ.

Therefore, g′ is a better candidate than g, and we can thus assume that g is constant on each of the
Xi’s, and hence can be written as

g =
n∑
i=1

gi1Xi .

Our question can now be viewed as follows. Given c1, . . . , cn, and given µ1, . . . µn > 0, find g1, . . . , gn ∈
[0, 1] among those satisfying

∑n
i=1 µi(1− gi) ≤ T , which minimize

∑n
i=1 ci g

k
i . As the solution space is

compact, and as the function to minimize are continuous, there exists an optimal solution g1, . . . , gn.
Take some i such that 1 < i ≤ n. We can rebalance the values of g1 and gi as we wish, as long as the
sum µ1g1 + µigi remains the same. We use the following claim, whose proof is postponed at the end of
the Appendix so that to keep the flow of the current proof.

Claim 25. Let k ≥ 2, c1, c2, µ1, µ2 > 0, and m ≤ µ1 +µ2. The minimal value of µ1c1g
k
1 +µ2c2g

k
2 , where

g1, g2 ∈ [0, 1] and µ1g1 + µ2g2 = m is achieved only when

g1 = min
{

1, (c2/c1)
1

k−1 · g2
}
.

According to Claim 25, the values of g1 and gi must satisfy:

gi = min
{

1, (c1/ci)
1

k−1 g1

}
.

Taking α = c
1/(k−1)
1 g1, we obtain the desired form gi = min

{
1, αc

−1/(k−1)
i

}
which concludes this case.

(3) The general case. Let {cn}∞n=1 be a non-decreasing family of simple functions that have c as their
pointwise limit. According to the simple function case, for each n, there is some αn such that the
function fn = fcn,αn yields minimal

∫
cnf

k
n dµ among all functions of V (T ). If this sequence (αn)n≥1

is unbounded, we can keep only a sub-sequence where αn →∞, and define f(x) = limn→∞ fn(x) = 1
everywhere. Otherwise we can keep only a converging sub-sequence of (αn)n≥1, and denote its limit by
α. Now, let us define the function f(x) = fc,α(x) = limn→∞ fn(x). Either way the pointwise limit of the
fn’s exists, and we denote it by f . Let us examine the sequence of functions (1− fn)n≥1. Each element
of this sequence satisfies

∫
(1− fn) dµ ≤ T . Therefore, by Fatou lemma:∫

(1− f) dµ ≤ lim inf
n→∞

∫
(1− fn) dµ ≤ T.

Therefore, f ∈ V (T ). Moreover, the function cfk is the pointwise limit of cnf
k
n , and hence, as fn is

optimal for cn, we get ∫
cnf

k
n dµ ≤

∫
cnh

k dµ ≤
∫
chk dµ <∞.

So all these integrals are jointly bounded, and thus their lim inf exists. Therefore, by Fatou lemma again,
we get ∫

cfk dµ ≤ lim inf
n→∞

∫
cnf

k
n dµ <∞.
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Let us assume that there is some g that is better than f . That is, there is some δ > 0 such that:∫
c gk dµ <

∫
c fk dµ− δ.

Let us then pick n large enough, and let us use the fact that fn is optimal for cn, which yields∫
c fk dµ− δ

2
<

∫
cn f

k
n dµ ≤

∫
cn g

k dµ ≤
∫
c gk dµ,

leading to a contradiction.

The only thing left to show is that f = fc,α for some α. By 22, there is some ε > 0 such that the set

A = {x ∈ X | c(x) > ε}

satisfies µ(A) > 0. Moreover, by 23, we also have µ(A) <∞. If T < µ(A), then let is pick the function
g(x) = 1− T/µ(A) on this set and g(x) = 1 elsewhere. Clearly g ∈ V (T ). Also,∫

c1kX dµ−
∫
c gk dµ =

∫
A
c

T

µ(A)
dµ ≥ εT > 0.

As f is optimal, it cannot be the function 1X , and this it must be of the required form. If T > µ(A),
then we proceed in the same way, except that we set g(x) = 0 on A and g(x) = 1 elsewhere. This
completes the proof of the Presentation Lemma.

It just remains to prove the technical Claim 25.

Proof (of Claim 25). Let c = c2/c1, and µ = µ2/µ1. Setting N = m/µ1, we can write the claim
equivalently as follows. Assuming N ≤ 1 + µ, and knowing that g1 + µg2 = N , we claim that the values
g1, g2 ∈ [0, 1] minimizing gk1 + cµgk2 satisfy g1 = min

{
1, c1/(k−1)g2

}
. Denoting g2 = (N − g1)/µ, we want

to minimize:
gk1 +

c

µk−1
(N − g1)k.

Let us take the derivative w.r.t. g1, yielding

k

(
gk−11 − c

µk−1
(N − g1)k−1

)
. (17)

This is zero exactly when

g1 = c
1

k−1 · N − g1
µ

= c
1

k−1 g2,

from which we get that

g1 =
c

1
k−1

µ+ c
1

k−1

N. (18)

Let us now take the second derivative w.r.t. g1 (the first derivative was expressed in Eq. (17)), yielding

k(k − 1)

(
gk−21 +

c

µk−1
(N − g1)k−2

)
.

If we consider g1 in the range [0, N ], this second derivative is always strictly positive, meaning that our
function is U-shaped. Also, by Eq. (18) the minimum is somewhere in [0, N ]. Recall that g1 ∈ [0, 1].
If the minimum of the U-shape is in [0, 1] then we get the lemma. Otherwise this minimum must be
somewhere in (1, N ], and so our minimum would be at g1 = 1. Note that the minimum is unique.
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